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N5-methylcytosine (m5C) methylation modification plays a
crucial role in the epigenetic mechanisms underlying tumori-
genesis, aggressiveness, and malignancy in diffuse glioma.
Our study aimed to develop a novel prognostic risk-scoring sys-
tem to assess the impact of m5C modification in glioma pa-
tients. Initially, we identified two distinct m5C clusters based
on the expression level of m5C regulators in The Cancer
Genome Atlas glioblastoma (TCGA-GBM) dataset. Differen-
tially expressed genes (DEGs) between the two m5C cluster
groups were determined. Utilizing these m5C regulation-
related DEGs, we classified glioma patients into three gene clus-
ter groups: A, B, and C. Subsequently, an m5C scoring system
was developed through a univariate Cox regression model,
quantifying the m5C modification patterns utilizing six DEGs
associated with disease prognosis. The resulting scoring system
allowed us to categorize patients into high- or low-risk groups
based on their m5C scores. In test (TCGA-GBM) and validation
(Chinese Glioma Genome Atlas [CGGA]-1018 and CGGA-301)
datasets, glioma patients with a higher m5C score consistently
exhibited shorter survival durations, fewer isocitrate dehydro-
genase (IDH) mutations, less 1p/19q codeletion and higher
World Health Organization (WHO) grades. Additionally,
distinct immune cell infiltration characteristics were observed
among different m5C cluster groups and risk groups. Our study
developed a novel prognostic scoring system based on m5C
modification patterns for glioma patients, complementing ex-
isting molecular classifications and providing valuable insights
into prognosis for glioma patients.

INTRODUCTION
Diffuse glioma is the most common type of primary brain tumor,
arising from astrocytes, oligodendrocytes, oligodendroglia-astrocytes
or ependyma. In the fifth edition of the World Health Organization
(WHO) Classification of Tumors of the Central Nervous System
Molec
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(WHO CNS 5),1 diffuse glioma can be graded from WHO grades
1–4, with higher grades indicating aggressive progression. Isocitrate
dehydrogenase (IDH) wild-type glioblastoma (GBM) is designated
as WHO grade 4, which has extreme malignant consequences even
with high-intensity combination treatment of operation and radia-
tion, chemotherapy, hormonotherapy, or immunotherapy.2 The me-
dian survival time of GBM patients is only 12–15 months, and only
3%–5% of patients live longer than 3 years.3

The traditional classification system for diffuse glioma is largely based
on histopathologic features and cannot accurately explain the biolog-
ical behaviors of tumors.4,5 For example, glioma categorized as mixed
oligoastrocytoma can be considered either “low grade” or “high
grade.”6 Misclassification prevents patients from receiving the most
suitable therapy strategy, which may cause patients to miss the
optimal treatment time. Therefore, a new classification system was es-
tablished by the WHO in 2021. This classification system is more ac-
curate in clinical diagnosis and prediction for the prognosis of glioma
patients by integrating multiple morphological and molecular
markers, such as IDH, 1p/19q codeletion, ATRX (a chromatin re-
modeler protein, is recurrently mutated in H3F3A-mutant pediatric
glioblastoma) mutant, TP53 mutant, and others.4 Based on the new
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Figure 1. Flowchart of the present study

Three classifications (m5C cluster, gene cluster, and m5C

score) were identified based on the expression of 14 m5C

regulators in the TCGA-GBM testing dataset.

Subsequently, we estimated TME cell infiltration and

analyzed patients’ clinical characteristics among the three

different classifications. PAM: partitioning around medoids;

DEGs: differentially expressed genes; PCA: principal

component analysis.
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system, adult diffuse gliomas are divided into three main categories:
astrocytoma with IDH mutant, oligodendroglioma with IDH mutant
and 1p/19q codeleted, and GBM with IDH wild type. In this manner,
low-grade diffuse gliomas (WHO grades 2 and 3) are characterized by
the presence of IDH mutations. In contrast, IDH wild-type astrocy-
toma GBM has invasive biological behaviors.7

Recently, several studies highlighted the role of RNA modifications,
such as N5-methylcytosine (m5C) or N6-methyladenine (m6A)
methylation, in regulating the initiation and progression of glioma.6

RNA methylation is responsible for more than 60% of RNA epige-
netic modifications in eukaryotes, regulating the expression of genes
and affecting the biological behavior of cells.3 The m6A and m5C
modifications are the two most common methylation forms, with
high abundance and stability in cells.2,8 These two methylations of
2 Molecular Therapy: Oncology Vol. 32 June 2024
RNA could activate oncogenesis-related pathways
and create a microenvironment that is conducive
to the migration and metastasis of cancer cells in
skin cancer, bladder carcinoma, prostate cancer,
and breast cancer.3,4

The m5C methylation, which occurs at the fifth N
position of cytosine nucleotides in coding RNA or
noncoding RNA domains, can regulate stem cell
stress, cytotoxic stress, mRNA nucleation, and
gene expression. The m5C methylation and those
m5C-regulated genes have been reported to be
linked to the epigenetic mechanisms for the
tumorigenesis, aggressiveness, and malignancy
of diffuse glioma,7 although the precise mecha-
nism is not yet clear. For example, the loss of
ten-eleven translocation 2 (TET2), which is
responsible for the reversible conversion of
5-methylcytosine to 5-hydroxymethylcytosine,
has been linked to GBM stem cells and poor sur-
vival rates of GBM patients.9 However, there is
still a lack of systematic analyses of the correla-
tions between m5C-regulating genes and glioma
prognosis.

The present study therefore aimed to systemati-
cally integrate all putative m5C regulators to
construct a reliable scoring system to quantify
the m5C modification pattern in individual glioma patients and
further investigate the tumor microenvironment (TME) cell infiltra-
tion characteristics mediated by all regulators to enhance our under-
standing of TME immune regulation in patients.

RESULTS
Construction and functional annotations of m5C cluster

modification patterns

From the test dataset (The Cancer Genome Atlas [TCGA]-GBM), we
successfully extracted the gene expression of 10 m5C regulators and
performed unsupervised clustering analysis with the “Consensu-
sClusterPlus” package, which eventually determined 2 stable modifi-
cation patterns (m5C cluster 1, 83 subjects; m5C cluster 2, 84 subjects)
(Figures 1 and 2A; Tables S2–S4). To further investigate the differen-
tial biological behaviors between the two clusters, we performed gene
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set variation (GSVA) pathway variation analysis with the Molecular
Signatures Database (MSigDB) reference set. The preprocessed
11,668 genes from the TCGA-GBM dataset were enriched in 169
pathways. Then, we conducted differential expression pathway
analysis with the “limma” package and found a total of 110 signifi-
cantly different pathways (adjusted p < 0.05; Figures 2B and S1;
Tables S2–S5). The top 20 differential pathways shown in Figure 2B
suggested that the two clusters were significantly different in path-
ways involving cellular components and DNA stability, such as spli-
ceosome, lysosome, cell cycle, DNA replication, and mismatch repair.

For the two distinct m5C clusters, we estimated the relative propor-
tion of immune matrix components in the TME for each sample
via the estimation of stromal and immune cells in malignant tumor
tissues using expression data (ESTIMATE) algorithm (Figures 3A–
3C). The results showed that the glioma patients in m5C cluster 2
had significantly higher stromal, immune, and ESTIMATE scores
than those in m5C cluster 1 (p < 0.001). Furthermore, we calculated
the relative proportion of 22 types of immune cells for each sample
and found that four types of cells had a relatively high proportion
in these samples, with a range of �1%–40% (Figure 3D). To avoid
any potential over-interpretation of the statistical results and mini-
mize the risk of false positive signals, immunological cells with a pro-
portion exceeding 1% were primarily presented here. Among them,
the proportions of m5C cluster 1 samples were significantly lower
in resting memory CD4 T cells (Q2 [second quartile], cluster 1:
9.88%; cluster 2: 11.15%; p < 0.0001) and monocytes (Q2, cluster 1:
8.67%; cluster 2: 18.01%; p < 0.0001) and prominently higher in
M0 macrophages (Q2, cluster 1: 10.10%; cluster 2: 2.14%;
p < 0.0001; Figure 3D) and M2 macrophages (Q2, cluster 1:
38.37%; cluster 2: 37.68%; p < 0.0001; Figure 3D).

Construction and functional annotations of gene cluster

modification patterns

To investigate the gene expression profile in the two distinct m5C
cluster modification patterns, we conducted differentially expressed
gene (DEG) analysis with the “limma” package and identified 209
DEGs between the two clusters (|log2FC| > 1 (FC, stands for fold
change, represents the multiple change in the expression level of
the target molecule under the experimental condition relative to the
control condition) and false discovery rate [FDR] < 0.05;
Tables S2–S6; Figure S2). These genes were considered m5C regula-
tion-related genes and further utilized for gene cluster consensus clus-
tering analysis. As shown in Figure S3, the 167 samples in the TCGA-
GBMdataset could be divided into three distinct clusters (gene cluster
A, 53; gene cluster B, 87; and gene cluster C, 27; Tables S2–S4). Then,
we performed GSVA pathway variation analysis for the 3 gene clus-
ters with pairwise comparisons, which identified 82, 114, and 62 dif-
Figure 2. Patterns of m5C methylation modification and differential pathway en

(A) Consensus clustering analysis according to 10 m5C regulators in the TCGA-GBM da

clusters. (C) Top 20 DEPs between the two m5C score groups. The x axis represents l

represent opposite regulation directions of each pathway: red indicates upregulation,

references, respectively, inB and C).
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ferential pathways for gene cluster A vs. B, B vs. C, and A vs. C com-
parisons, respectively (adjusted p < 0.05). Notably, the 3 sets of
differential pathways were mainly involved in pathways for DNA sta-
bility and the immune system, such as DNA replication, mismatch
repair, the cytosolic DNA sensing pathway, antigen processing and
presentation, autoimmune thyroid disease, and the intestinal immune
network (Figures S4 and S5; Tables S2–S7).

For the three distinct gene cluster patterns, we also estimated the rela-
tive proportion of immune matrix components in the TME for each
sample and observed that glioma patients in gene cluster C had the
lowest score in all three components comparedwith those in gene clus-
ters A and B (p < 0.001; Figures S6A‒S6C). The calculation of the rela-
tive proportion of 22 types of immune cells identified that the three
gene cluster patterns mainly consisted of resting memory CD4
T cells, monocytes, M0 macrophages, and M2 macrophages (range,
�1%–40%). Among them, gene cluster A contained the largest pro-
portions of CD4 memory resting cells (Q2, A: 11.58%; B: 10.81%; C:
7.93%; p < 0.0001) and M2 macrophages (Q2, A: 39.15%; B: 38.15%;
C: 36.37%; p < 0.0001), while gene cluster B had the largest proportions
of monocytes (Q2, A: 11.23%; B: 16.79%; C: 4.91%; p < 0.0001). More-
over, gene cluster C contained the largest proportion of M0 macro-
phages (Q2, A: 6.57%; B: 2.27%; C: 27.54%; p < 0.0001; Figure S6D).

Construction and survival analysis of m5C score modification

patterns

For the 209 DEGs between the two distinct m5C cluster patterns, uni-
variate Cox regression analyses identified a set of six genes with prom-
inent associations with disease prognostics (p < 0.01; IGFBP6,CXCL2,
SERPINA1, NEU4, CLEC2B, and CHI3L1; Figures S7A‒S7F). As
shown in Figure S7, patients with a lower level of gene expression
in five of the six genes, except the NEU4 gene, had a higher survival
probability. Based on the expression of the six genes and the calcu-
lated principal-component analyses (PCAs) from the TCGA-GBM
test dataset, a stable m5C score risk evaluation model was constructed
with the maximum rank statistic and further utilized to classify gli-
oma patients into m5C-score-high and -low groups (m5C-score-
high group, 147; m5C-score-low group, 20; Tables S2–S4). The log
rank tests identified a significant difference between the two groups,
and the low-score group of patients had a prominently longer overall
survival (OS) time (hazard ratio [HR], 0.31; 95% confidence interval
[CI], 0.16–0.62; p = 8.77 � 10�4; Figure 4A). We also successfully
constructed the m5C score risk system in the two validation datasets
Chinese Glioma Genome Atlas (CGGA)-301 and CGGA-1018
(CGGA-301, m5C-score-high group: 156 and m5C-score-low group:
145; CGGA-1018, m5C-score-high group: 536 and m5C-score-low
group: 482) and observed the consistent trend that patients with a
lower score had a longer OS time (HR, 0.29; 95% CI, 0.21–0.40; p =
richment analysis for the two m5C clusters

taset. (B) Top 20 differentially expressed pathways (DEPs) between the two distinct

og10 (adjusted p), and the y axis shows the name of each pathway. Different colors

and blue indicates downregulation (m5C cluster 2 and m5C-score-low group as



Figure 3. TME cell infiltration characteristics

(A‒D) TME cell infiltration characteristics in two distinct m5C

cluster patterns. Shown are comparison of the relative scores of

immune matrix components (A–C) and comparison of the rela-

tive proportions of 22 types of TME-infiltrating cells for each

sample (D). ns, p R 0.05; *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001. (E‒H) TME cell infiltration characteristics in the

high- and low-m5C-score groups. Shown are comparison of the

relative scores of immune matrix components between the two

groups (E) and comparison of the relative proportions of 22 types

of TME-infiltrating cells for each sample (F). ns, p R 0.05;

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 4. Comparison of overall survival (OS) time between the high- and low-m5C-score groups

(A) OS curves drawn by the Kaplan-Meier method in the TCGA-GBM test dataset. (B) OS curves drawn by the Kaplan-Meier method in the CGGA-301 validation dataset. (C)

OS curves drawn by the Kaplan-Meier method in the CGGA-1018 validation dataset. (D) OS curves drawn by the Kaplan-Meier method in the testing dataset. (E) OS curves

drawn by the Kaplan-Meier method in the first validation dataset. (F) OS curves drawn by the Kaplan-Meier method in the second validation dataset. The x axis represents the

survival time (days), and the y axis shows the survival probability (percentage).
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1.70 � 10�14; Figure 4B; HR, 0.25; 95% CI, 0.21–0.30; p =
2.04 � 10�52; Figure 4C). For another m5C score risk model that uti-
lized the combinedWHO grade 4 samples from the TCGA-GBM and
CGGA-1018 datasets as the testing dataset, the m5C-score-low pa-
tients were found to have a longer OS time in the testing dataset,
the first validation dataset, and the second validation dataset, respec-
tively (HR, 0.55; 95% CI, 0.40–0.74, p = 1.20 � 10�4; Figure 4D; HR,
0.50; 95% CI, 0.36–0.70; p = 3.56� 10�5; Figure 4E; HR, 0.23; 95% CI,
0.17–0.33; p = 2.63 � 10�17; Figure 4F). These findings support the
robustness of the two different scoring systems.

We performed GSVA for the two groups and identified 75 differen-
tial biological pathways (adjusted p < 0.05; Tables S2–S8; Figures 2C
and S8). These pathways were mainly involved in immune-related
functions (cytokine-cytokine receptor interaction, antigen process-
ing and presentation, Toll-like receptor signaling pathway, and in-
testinal immune network) and cellular components (lysosome, ribo-
some, and cell adhesion molecules). Following the findings, we
applied Pearson’s correlation coefficients to evaluate the relationship
6 Molecular Therapy: Oncology Vol. 32 June 2024
of the constructed m5C score with a set of 10 immune checkpoint-
related genes, which were successfully matched in the TCGA-GBM
dataset. As shown in Figure S9, the constructed m5C score patterns
had significant positive correlations with a total of 8 target genes
(range of R value, 0.25–0.71; p < 0.0001) and had a significant in-
verse correlation with the CD200 gene (R = �0.35, p < 0.0001).

For the high and low m5C score groups, we further estimated
the relative proportion of immune matrix components in the
TME for each sample and found that glioma patients with a
high score had significantly higher stromal, immune, and
ESTIMATE scores than those with a low score (p < 0.001;
Figures 3E–3G). The calculation of the relative proportion of 22
types of immune cells implied that the high-m5C-score group con-
tained a higher proportion of monocytes (Q2, high group: 12.69%;
low group: 11.75%, p < 0.0001), M0 macrophages (Q2, high group:
6.15%; low group: 1.50%, p < 0.0001), and M2 macrophages (Q2,
high group: 38.15%; low group: 37.12%, p < 0.0001), while the low-
m5C-cluster group had a higher proportion of activated natural
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killer (NK) cells (Q2, high group: 1.09%; low group: 3.38%,
p < 0.0001; Figure 3H).

Comparison of clinical characteristics between distinct m5C

modification patterns

In comparison with clinical characteristics and those well-knownmo-
lecular subtypes for the 3 sets of distinct m5Cmodification patterns in
the TCGA-GBM dataset (m5C cluster, gene cluster, and m5C score),
we observed that patients in different groups were sex matched. Inter-
estingly, we found significant differences in the history of neoadjuvant
treatment and in the IDHmutation status between the two m5C clus-
ter patterns (p = 0.04 and 0.01, respectively; Figures 5E and 5F) as well
as the IDH mutation status between the high- and low-m5C-score
groups (p = 9.98 � 10�12; Figure 5N), implying that the constructed
m5C modification patterns and m5C risk groups were highly consis-
tent with the well-known IDH mutation status for glioma patients
(Figure 6A). However, we did not find any significant difference in
clinical characteristics or molecular subtypes among the three m5C
regulation-related gene cluster patterns (Figure S10).

For the two validation datasets, the patients in the low- and high-m5C-
score groups were also sex matched to those in the test dataset
(Figures 7A and 7I). In the CGGA-301 dataset, we observed that pa-
tients with a high m5C score had a substantially higher proportion of
disease primary rate and WHO grade 4 (p = 8.26 � 10�22; Figure 7E)
as well as a higher proportion of IDHmutation status and 1p19q code-
letion status (p = 2.13� 10�17, Figure 7F; p = 1.18� 10�4, Figure 7G).
Additionally, the high-m5C-score group also had a higher rate of
chemotherapy (p = 4.15� 10�3; Figure 7B). For another validation da-
taset, CGGA-1018, we also observed a similar phenomenon for the
chemotherapy rate, disease primary rate, WHO 4 grade, IDHmutation
status, and 1p19q codeletion status in patients with a high m5C score
(Figures 7J and 7L‒7O). In addition, the high-m5C-score group had
a lower rate of MGMT (a gene located on chromosome 10q26, encodes
a DNA repair protein responsible for removing alkyl groups from the
O6 position of guanine, a crucial site for DNA alkylation) promoter
methylation status (p = 0.02; Figure 7P). These findings suggested
that glioma patients with a higherm5C score in the two validation data-
sets usually had worse well-known molecular subtypes and a higher
WHO grade level.

DISCUSSION
The present study successfully constructed, for the first time, a rela-
tively reliable scoring system to quantify the m5C modification
pattern in individual glioma patients by integrating all putative
m5C regulators from the test dataset TCGA-GBM, which was further
confirmed by more glioma patients in the other two validation data-
sets. Notably, the glioma patients in all 3 datasets with a higher m5C
score were consistently found to have a lower OS probability
(HR < 0.31, p < 8.77 � 10�4), suggesting the robust stability and uni-
versality of the constructed scoring system. In addition, we also
observed that this scoring system had a strong correlation with im-
mune heterogeneity and the well-known molecular subtypes for gli-
oma patients.
Helpful for differentiation of immunologic heterogeneity for

glioma patients with the constructed m5C clusters and scoring

system

The current study employed the ESTIMATE algorithm, which ob-
tained significantly higher scores in stromal, immune, and
ESTIMATE in patients with m5C cluster 2 (Figure 3A) and with a
high m5C score (Figure 3E). Moreover, we also observed statistically
significant differences in the proportions of 22 types of immune cells
in different m5C cluster and m5C score groups, implying an essential
role of m5C modification patterns in mediating individual glioma
infiltration characteristics. Additionally, the identified differential
pathways were mainly involved in immune-related functions. Taken
together, these findings suggested that the constructed m5C clusters
and scoring systemmay be helpful for differentiation of immunologic
heterogeneity for glioma patients. High-grade glioma patients have an
abysmal prognosis even when undergoing a combination of therapies,
including operation, radiation, chemotherapy, hormonotherapy, and
immunotherapy.10,11 The significant heterogeneity of gliomas in
terms of the composition of the immune microenvironment and
gene mutations could account for their varied biological behavior.12

Impaired regulation of the immune response and immune evasion
could cause tumorigenesis, invasion, and metastasis. Monocytes, eo-
sinophils, and neutrophils are part of the innate immune system.12,13

The adaptive immune system is essential in recognizing the antigen of
tumors and providing helper and killer functions for tumors but often
fails to establish immune memory.14,15 In addition, activated den-
dritic cells (DCs) can present antigens to CD4+ T cells and recruit
monocytes or macrophages to the tumor site.16

The brain immune response is mediated mainly by myeloid cells.17

Thus, macrophages and T cell-dependent immune responses play
crucial roles in tumor behavior. Specific CD4+ T cells are able to
determine whether the disease course is monophasic or relapsing. A
higher percentage of CD8+ cytotoxic T and NK cells is associated
with an enhanced antitumoral immune response.10,18 Moreover, acti-
vated macrophages (M1) are supposed to induce antitumoral re-
sponses through proinflammatory activity, whereas M2 macrophages
are thought to be protumoral.15,19 According to our statistical results
for the proportions of 22 types of immune cells, primarily focusing on
immunological cells with a proportion exceeding 1%, we observed a
higher percentage of M2 macrophages and a lower percentage of
memory CD4 resting T cells in patients with the constructed high
m5C score, which could partially explain the shorter survival duration
for this group of patients.

Strong correlation of the constructed m5C clusters and scoring

system with the well-known molecular subtypes and grade

levels

The two m5C modification patterns (m5C cluster and m5C score)
were found to be associated with the patients’ therapy history
(chemotherapy, neoadjuvant treatment, radiotherapy, or hormono-
therapy) in the test and validation datasets. Moreover, the patients
with a high m5C score in the validation datasets showed significantly
fewer IDH mutations and 1p19q codeletion as well as a substantially
Molecular Therapy: Oncology Vol. 32 June 2024 7
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Figure 5. Comparison of clinical characteristics between the two m5C cluster modification patterns/m5C score groups in the TCGA-GBM dataset

(A‒H) Comparison of clinical characteristics between the two m5C cluster modification patterns/m5C score groups in the TCGA-GBM dataset. (I‒P) Comparison of clinical

characteristics between the two in the TCGA-GBM dataset. Significant: p < 0.05; non-significant: p R 0.05.
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higher proportion in WHO high-level grade, suggesting much poorer
outcomes for this group of patients. These findings demonstrated the
efficacy of m5C modification models in predicting the immunologic
8 Molecular Therapy: Oncology Vol. 32 June 2024
response to glioma and the potential efficacy of immunotherapy. It
has been reported that mutations in the IDH gene are frequently
seen in infiltrating grade 2 and 3 gliomas of adults as well as secondary



Figure 6. Sankey diagrams showing the changes in m5C cluster,

m5C score, the well-known IDH mutation, and 1p19q codeletion

status

(A) Sankey diagram for TCGA-GBM. Left: m5C cluster. Center: m5C

score. Right: IDH mutation status. (B) Sankey diagram for CGGA-301.

Left: m5C score. Center: IDH mutation. Right: 1p19q codeletion

status. (C) Sankey diagram for CGGA-1018. Left: m5C score. Center:

IDH mutation. Right: 1p19q codeletion status.
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GBMs and are significant factors in discriminating the biologic
class.20 Glioma patients with IDH and 1p19q codeletion have a longer
survival duration.2 Mutations in the IDH gene could lead to low IDH
enzyme activity, preventing the efficient conversion of 2-oxoglutarate
to R-2-hydroxyglutarate (R-2-HG). This conversion inhibits enzymes
that regulate transcription and metabolism in nuclear, cytoplasmic,
and mitochondrial biochemistry.21 Moreover, patients with the
1p/19q codeletion have been reported to be sensitive to
chemotherapy.22–24

Limitations

There are several limitations in the present study. The first is that all
patients in the test dataset TCGA-GBMwere classified asWHO grade
4, while less than 50% of patients in the two validation datasets were
classified as grade 4 glioma, which may induce a statistical bias to the
constructed m5C scoring system from the relatively pure test dataset.
However, we observed a similar trend where patients with a higher
m5C score had a shorter OS time in all 3 datasets, which, in turn, im-
plies the robustness in stability and universality of the system. Second,
we could not fully include all 14 m5C-related regulators to construct
the m5C cluster patterns, as 4 of them were not matched in the test
dataset, which may result in missing values for the 4 regulators
contributing to the cluster patterns. In addition, m5C and m6A are
the two most common methylation forms, with high abundance in
eukaryotic cells.2 Including the two methylation forms simulta-
neously in one systemmay substantially improve the accuracy and ef-
ficacy of the prediction system.

Conclusions

In summary, the present study proposed a new molecular classifica-
tion method for glioma patients, based on the m5C score methylation
scoring system, that had strong correlations with the immune cell
infiltration, therapeutic response, survival duration, and WHO grade
of the patients.

MATERIALS AND METHODS
Flowchart of the study

In this study, we first identified two distinct m5C cluster modification
patterns according to the expression of 10 m5C regulators in the pre-
processed 11,668 genes from the TCGA-GBM test dataset. We then
recognized three distinct gene cluster patterns based on DEGs be-
tween the two m5C cluster patterns (see flowchart in Figure 1).
Among these DEGs, we further identified a set of six genes with a
prominent association with disease prognostics and then established
a set of m5C score systems to quantify the m5C modification pattern
in individual patients. Next, we analyzed the TME cell infiltration
characteristics and clinical characteristics in high- and low-m5C-
score patients.

Glioma dataset source and preprocessing

By systematically searching the TCGA and the CGGA databases, we
obtained three gene expression datasets and patients’ full clinical
annotation information, including their basic information, therapy
methods, molecular subtypes, and survival data (Tables 1 and S2,
10 Molecular Therapy: Oncology Vol. 32 June 2024
T1-T3). All of them were glioma samples and were named TCGA-
GBM, CGGA-1018 (RNA-seq_1018), and CGGA-301 (mRNA-
array_301), respectively. To maintain the consistency of gene expres-
sion data for further analyses, RNA sequencing data (FPKM value)
(fragments per kilobase of transcript per million mapped reads, is a
normalized measure of gene expression, accounting for both gene
length and total read count) were downloaded from all three datasets
for further analyses and comparisons. For TCGA-GBM, expression
data were obtained from the Genomic Data Commons (GDC) using
the R package TCGA Biolinks.25 After that, genes with FPKM values
of less than 1 in over 20% of the samples and FPKM values equal to
0 in over 50% of the samples were removed from further analysis (Ta-
ble S1). For CGGA-1018 (Table S2) and CGGA-301 (Table S3), the
FPKM data had already been preprocessed and were directly down-
loaded from the CGGA database (http://www.cgga.org.cn).

Unsupervised clustering for 14 m5C regulators

A total of 14 m5C regulators or related genes were systematically
searched from various reports and the literature: 11 writers, 1 eraser,
and 2 readers (NSUN1, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6,
NSUN7, DNMT1, DNMT2, DNMT3A, DNMT3B, TET2, ALYREF,
and YBX1).7,9,26–36 Ten of them were detected from the test dataset
(TCGA-GBM) and finally utilized to construct the m5C modification
patterns. Unsupervised clustering analysis was employed to identify
distinct patterns (m5C cluster) based on the gene expression of the
10 regulators and to classify glioma patients into different distinct
patterns. The “ConsensusClusterPlus” R package was applied here
to perform clustering analysis for identifying distinct patterns with
the following parameters: the “partitioning around medoids”
(PAM) algorithm for clustering analysis to determine the number
of clusters, Euclidean distance for calculating pattern distance, 80%
of total sample for resampling, and 100 repetitions to guarantee the
stability of classification.37

Identification of DEGs between distinct m5C patterns and

construction of DEG-based clusters

After obtaining stable consensus clusters, the empirical Bayesian
approach of the “limma” R package was utilized to determine
DEGs between different modification patterns.38 The Benjamini-
Hochberg method was applied to control the FDR.39 Genes with |
log2FC| greater than 1 and FDR less than 0.05 were considered
m5C regulation-related DEGs, which were visualized by the R pack-
age ggplot2. Based on those DEGs, unsupervised clustering analysis
was also applied to identify distinct gene patterns (gene cluster) and
classify glioma patients for further analysis. The “pheatmap” R pack-
age was utilized to classify three different gene clusters with the
Ward.D algorithm.40

Construction and validation of the m5C score prognostic risk

model

With those identified DEGs between the two m5C cluster patterns, we
constructed a set of scoring risk systems so that we could quantify the
m5C modification patterns of individual tumors and eventually eval-
uate the prognostic risk score of individual patients with glioma (m5C

http://www.cgga.org.cn


Figure 7. Comparison of clinical characteristics andmolecular phenotypes between the twom5C score groups in the CGGA-301 and CGGA-1018 validation

datasets

(A‒H) Comparison of clinical characteristics and molecular phenotypes between the twom5C score groups in the CGGA-301 validation dataset. (I‒P) Comparison of clinical

characteristics and molecular phenotypes between the two m5C score groups in the CGGA-1018 validation dataset. Significant: p < 0.05; non-significant: p R 0.05.
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Table 1. Full clinical annotation information for the three sets of glioma datasets

TCGA-GBM CGGA_1018 CGGA_301

Platform Illumina RNAseq Illumina HiSeq
Agilent Technologies Whole
Human Genome (array)

Number of genes 11,668 23,271 19,416

Number of patients 167 1,018 301

Sex
female: 59
male: 108

female: 417
male: 601

female: 121
male: 180

Grade WHO 4: 167

WHO 2: 291
WHO 3: 334
WHO 4: 388
N/A: 5

WHO 2: 117
WHO 3: 57
WHO 4: 124
N/A: 3

PRS type N/A

primary: 651
recurrent: 333
secondary: 30
N/A: 4

primary: 264
recurrent: 23
secondary: 11
N/A: 3

Chemotherapy
yes: 101
no: 20
N/A: 46

yes: 679
no: 272
N/A: 67

yes: 133
no: 144
N/A:24

Radiotherapy
yes: 120
no: 47

yes: 754
no: 202
N/A: 62

yes: 237
no: 46
N/A: 18

IDH mutation status
mutant: 12
wild type: 160
N/A: 7

mutant: 531
wild type: 435
N/A: 52

mutant: 134
wild type: 165
N/A: 2

1p19q codeletion status
codel: 0
not codel: 161
N/A: 6

codel: 212
not codel: 78
N/A: 728

codel: 16
not codel: 76
N/A: 209

MGMTp methylation status
methylated: 55
unmethylated: 73
N/A: 39

methylated: 472
unmethylated: 170
N/A: 113

methylated: 55
unmethylated: 187
N/A: 15

Hormonotherapy
yes: 13
no: 108
N/A: 46

N/A N/A

Neoadjuvant treatment
yes: 4
no: 163

N/A N/A

New tumor type
locoregional disease: 2
progression of disease: 75
Recurrence: 21 unknown: 69

N/A N/A

Survival data OS OS OS

TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; N/A, not available; OS, overall survival.

Molecular Therapy: Oncology
score). Briefly, the risk scoring system was established and validated
through four main steps as follows.

(1) The univariate Cox regression model was applied for the prog-
nostic analysis to select the DEGs that had a significant associa-
tion with disease prognostics. We set the significance threshold
at a stricter level with a p value of 0.01, which could ensure a
strong association between the selected DEGs and disease prog-
nostics.

(2) With those prognostic-associated DEGs, PCA was performed to
construct the m5C score risking system. In brief, all principal
components were calculated based on the expression data of
the associated DEGs, and then the number of components having
12 Molecular Therapy: Oncology Vol. 32 June 2024
a cumulative explained variance over 80% was selected to act as a
signature score in the test dataset (TGCA-GBM). The method
had a strong ability to ensure that the constructed risk
model mainly stood for the original expression data and statisti-
cally explained enough variance of disease. The m5C score for the
ith patient (Si) was calculated by the equations we developed as
follows:

A = VST

m5C � score =
Xj

n = 1

Aij
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where V is the feature vector (n = 1) or the feature vector matrix
(n > 1), S is the gene expressionmatrix (row for each gene and column
for each sample), and A is the n dimension matrix (row for each sam-
ple i and column for each principal component j).

(3) Based on the constructed m5C score for individual patients, the
“surv-cutpoint” function in the “survminer” R package was em-
ployed to dichotomize the score, which could divide all the pa-
tients into m5C-high andm5C-low groups according to the maxi-
mally selected log rank statistics to decrease the batch effect of
calculation. The applied function was designed to repeatedly
test all potential cut points to find the maximum rank statistic.
After that, the classical functions in the “survival” R package
were adopted to determine the significance of differences by log
rank tests and generate the 3-year OS curves via the Kaplan-
Meier method.

(4) The effectiveness of the constructed m5C-score system was vali-
dated by using the other two validation datasets of glioma sam-
ples (CGGA-1018 and CGGA-301). In the two datasets, PCA
was conducted, and the number of PCs having a cumulative ex-
plained variance over 80% was selected to act as a signature score,
which could keep a consistent standard between the test and vali-
dation datasets. We also identified the significance of differences
for the high and low m5C score groups.

In addition to employing the methods above, we also utilized another
approach to construct and validate the risk model with the three data-
sets. Notably, the CGGA-301 dataset (Agilent Technologies Whole
Human Genome-GPL16022) was conducted on a different platform
from the one used for the TCGA-GBM and CGGA-1018 datasets (Il-
lumina HiSeq). Therefore, we initially combined the WHO grade 4
samples from the TCGA-GBM and CGGA-1018 datasets as the
testing dataset and the first validation dataset after removing batch ef-
fects. Additionally, the grade 4 samples in the CGGA-301 dataset
were considered as the second validation dataset. First, we removed
low-expression genes with FPKM values of less than 1 in over 20%
of the samples and FPKM values equal to 0 in over 50% of samples
in the former two datasets, including all samples in the TCGA-
GBM dataset and all WHO grade 4 samples in the CGGA-1018 data-
set. To minimize potential heterogeneity between the two datasets, we
further utilized the “Combat” package in R language programming to
remove any potential batch effects.41 Outlier samples were also
removed after performing a PCA. The remaining samples were
equally divided into two parts in a random way, named the training
dataset and the first validation dataset, respectively. Subsequently,
we constructed the prognostic risk-scoring system from the training
dataset following the flowchart in Figure 1 and validated the efficacy
of the score system in the first and second validation datasets,
respectively.
GSVA and functional annotations

To further explore the difference in biological processes between the
distinct m5C modification patterns (m5C cluster, gene cluster, and
m5C score), the “GSVA” R package was applied to perform GSVA.
With the samples of an expression dataset, GSVA is usually applied
to estimate the variation of a gene set in pathways and biological pro-
cesses activity.42 A reference set of “c2.cp.kegg.v7.4.symbols” was
downloaded from the public MSigDB to perform GSVA and obtain
an enrichment scoring matrix. After that, the “limma” R package
was employed to identify differentially expressed pathways and pro-
cesses between those distinct patterns. An adjusted p < 0.05 was
considered statistically significant.

Estimation of glioma TME cell infiltration

The ESTIMATE algorithm in the “estimate” R package was utilized to
quantify the relative proportion of immunematrix components in the
TME for each glioma sample.43 Based on the gene expression of each
glioma sample, the CIBERSORT (a method for deconvoluting the cell
composition of complex tissues from their gene expression profiles)
algorithm was applied to estimate the relative abundance of each
TME-infiltrating cell for each sample. The gene expression matrix
LM22 was downloaded from http://cibersort.stanford.edu/. The ma-
trix contains 547 genes that could distinguish 22 human hematopoi-
etic cell phenotypes, including seven T cell types, naive andmemory B
cells, plasma cells, NK cells, and myeloid subsets.

Statistical analysis

A t test and one-way ANOVA were used to assess the difference of
components in two or multiple immune groups, respectively. For
distinct m5C modification patterns (m5C cluster, gene cluster, and
m5C score), the two types of analysis methods were also utilized to
identify potential differences in clinical characteristics, including
sex, chemotherapy, neoadjuvant therapy, hormone therapy, radio-
therapy, tumor progression, IDH molecular subtype, 1P/19Q codele-
tion and MGMT promoter methylation status. p or post hoc p < 0.05
was considered statistically significant. The immuno-component dia-
gram and parallel bar graph for multiple pathways were visualized by
the “ggplot2” package, while a histogram for various clinical charac-
teristics was drawn by the function “ggbarstats” in the “ggstatsplot”
package. Additionally, Pearson’s correlation coefficients were calcu-
lated to evaluate the relationship of the constructed m5C score with
a set of 36 immune checkpoint-related genes. Ten of them
(TNFRSF14, PLEKHG5, LGALS9, PDCD1LG2, NRP1, CD86, CD44,
CD40, and CD200) were matched in the TCGA-GBM dataset, and
correlation analyses were conducted, which were further visualized
by the “geom_tile” function in the “ggplot2” package. All data pro-
cessing was conducted in the R programming language (v.4.0.1).

DATA AND CODE AVAILABILITY
The datasets analyzed during the current study are available in TCGA
(https://portal.gdc.cancer.gov/) and CGGA (http://www.cgga.org.cn/;
CGGA-1018, http://www.cgga.org.cn/download?file=download/20200506/
CGGA.mRNAseq_693.RSEM-genes.20200506.txt.zip&type=mRNAseq_
693&time=20200506, http://www.cgga.org.cn/download?file=download/20
200506/CGGA.mRNAseq_325.RSEM-genes.20200506.txt.zip&type=mRNA
seq_325&time=20200506; CGGA-301, http://www.cgga.org.cn/download?
file=download/20200506/CGGA.mRNA_array_301_gene_level.20200506.
txt.zip&type=mRNA_array_301_gene_level&time=20200506).
Molecular Therapy: Oncology Vol. 32 June 2024 13

http://cibersort.stanford.edu/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNAseq_693.RSEM-genes.20200506.txt.zip&amp;type=mRNAseq_693&amp;time=20200506
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNAseq_693.RSEM-genes.20200506.txt.zip&amp;type=mRNAseq_693&amp;time=20200506
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNAseq_693.RSEM-genes.20200506.txt.zip&amp;type=mRNAseq_693&amp;time=20200506
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNAseq_325.RSEM-genes.20200506.txt.zip&amp;type=mRNAseq_325&amp;time=20200506
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNAseq_325.RSEM-genes.20200506.txt.zip&amp;type=mRNAseq_325&amp;time=20200506
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNAseq_325.RSEM-genes.20200506.txt.zip&amp;type=mRNAseq_325&amp;time=20200506
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNA_array_301_gene_level.20200506.txt.zip&amp;type=mRNA_array_301_gene_level&amp;time=20200506
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNA_array_301_gene_level.20200506.txt.zip&amp;type=mRNA_array_301_gene_level&amp;time=20200506
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNA_array_301_gene_level.20200506.txt.zip&amp;type=mRNA_array_301_gene_level&amp;time=20200506
http://www.moleculartherapy.org


Molecular Therapy: Oncology
The data generated based on the public database are available from
the corresponding author upon reasonable request.
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