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Abstract: Hyperbaric oxygen therapy (HBOT) and topical oxygen therapy (TOT) including con-
tinuous diffuse oxygen therapy (CDOT) are often utilized to enhance wound healing in patients
with diabetic foot ulcerations. High pressure pure oxygen assists in the oxygenation of hypoxic
wounds to increase perfusion. Although oxygen therapy provides wound healing benefits to some
patients with diabetic foot ulcers, it is currently performed from clinical examination and imaging.
Data suggest that oxygen therapy promotes wound healing via angiogenesis, the creation of new
blood vessels. Molecular biomarkers relating to tissue inflammation, repair, and healing have been
identified. Predictive biomarkers can be used to identify patients who will most likely benefit from
this specialized treatment. In diabetic foot ulcerations, specifically, certain biomarkers have been
linked to factors involving angiogenesis and inflammation, two crucial aspects of wound healing. In
this review, the mechanism of how oxygen works in wound healing on a physiological basis, such
as cell metabolism and growth factor signaling transduction is detailed. Additionally, observable
clinical outcomes such as collagen formation, angiogenesis, respiratory burst and cell proliferation
are described. The scientific evidence for the impact of oxygen on biomolecular pathways and its
relationship to the outcomes in clinical research is discussed in this narrative review.

Keywords: oxygen; hyperbaric; topical oxygen; continuous diffusion oxygen; diabetic foot ulcer;
molecular biomarkers

1. Introduction

Lower extremity complications in people with diabetes constitute a large worldwide
burden within in already burdened population [1,2]. Every 1.2 s, someone with diabetes
develops a foot ulcer [1]. More than half of these wounds become infected [3–5], leading to
a high rate of emergency department visits, hospitalizations and ultimately amputation [6].
Every 20 s, someone with diabetes undergoes an amputation somewhere in the world [7–9].
Patients with diabetic foot ulcers are at a near three-fold greater risk for death in the year
following wounding than patients with diabetes without foot ulcers [10]. This increases
with additional comorbidities. Following ulceration, Charcot arthropathy, development of
chronic limb threatening ischemia or amputation, 5-year mortality is comparable to most
cancers [11–13]. Additionally, the costs for care for patients with diabetic foot ulcers exceed
the cost of care most individual cancers [11,14,15].

The role of oxygen in wound healing has long garnered interest among researchers
and clinicians alike. This interest has only increased as modalities for delivery of oxygen
have evolved from large hyperbaric chambers to portable, direct topical application using
localized chambers and more recently to handheld, wearable systems which continuously
diffuse oxygen directly into the wound bed. There are distinct differences and advantages
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of each modality for oxygen delivery. Although oxygen therapy can be used for a variety of
etiologies, the focus of oxygen therapy discussed revolves around its most common usage
which is diabetic foot ulcerations due to its element of ischemia, either involving a macro or
micro circulatory component. In hyperbaric oxygen therapy (HBOT) a contained chamber
is pressurized with 100% oxygen to 2.0–2.4 atmospheres absolute for 90 min 5–7 days
per week. HBOT relies on respiration and the circulatory system to deliver oxygen to
the wound bed [16]. The increased pressure supersaturates the plasma; however, oxygen
delivery relies on local capillary structure to reach injured tissues. Deficient or absent
capillary beds may impede the oxygen delivery to ischemic tissues. Traditional TOT uses
high flow oxygen concentrators coupled with chambers or bags placed directly over or
around the wound. TOT applies oxygen directly to the wound, allowing the oxygen
to diffuse directly into the wound and is therefore not reliant on underlying capillary
structures. TOT follows an intermittent treatment regimen similar to HBOT. Currently,
most recent devices are wearable and continuously generate pure, humidified oxygen from
surrounding air using electrochemical oxygen generators. There is no need for an external
oxygen source. They continuously diffuse oxygen (CDO) directly into wounds (24 h a day,
7 days a week) using an oxygen diffuser or oxygen diffusion dressings. CDOT, like TOT,
does not depend on the underlying capillary structure of the wound bed, however, unlike
TOT, the continuous application of oxygen resembles physiologic oxygen delivery. The
biomolecular evidence for the effects of oxygen in wound healing including all modalities
of delivery are presented. Although delivery mechanisms differ, the effect of oxygen at a
cellular level is consistent.

However, the availability of oxygen to injured tissues will depend on the method
of delivery. For HBOT, which relies on inspired oxygen, the availability depends on
arterial pO2, vascular supply, local capillary structures and the diffusion distance for
the oxygen from the capillaries to the cells. Both edema and necrotic debris increase
the diffusion distance. If the local structures are impaired or vasoconstriction is present,
wound perfusion can be significantly impaired such that little to no increase in wound
pO2 levels occurs despite breathing supplemental oxygen [17–19]. Hence, there is a need
for determining local vascular adequacy using methods such as transcutaneous oxygen
pressure measurement prior to initiating HBOT. Modalities that use direct application of
oxygen to the wound, such as TOT and CDOT, still require adequate vascular sufficiency,
yet are significantly less dependent on local capillary structures. Necrotic tissue increases
the diffusion distance to the wound, so debridement is an important step to ensure optimal
diffusion of oxygen into the wound bed for topically applied oxygen. Debridement has been
shown to have significant benefit when applied to standard moist wound therapies [20–22].
The importance of debridement in topically applied oxygen was recently demonstrated in
a double blind, placebo-controlled clinical study, where CDOT showed dramatically higher
wound closure rates and overall closure for wounds that were debrided frequently versus
those that were not [23] in patients with diabetic foot ulcers.

The molecular processes discussed herein are oxygen dependent and do not occur
without oxygen. The reactions are catalyzed by enzymes which typically have about 50%
maximum speed at normal tissue pO2 levels (40–80 mm Hg) and reach 90% of maximum
speed at levels varying between about 150 mm Hg to over 400 mm Hg [24,25]. These
higher levels can only be achieved with supplemental oxygen. An interesting finding
regarding the positive correlation between oxygen concentration and functionality is that
the more oxygen there is, the faster and better the outcomes are compared to normal
wound healing. The differences are even greater when compared to ischemic wounds
which are hypoxic. The definitions of hypoxia and hyperoxia are relative. In the context of
this review, they are relative to the levels normally found in healthy tissue surrounding a
wound (40–80 mm Hg).
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2. Cell Metabolism and Energy

Oxygen plays a crucial role in energy production and cell metabolism. In this role,
oxygen is required for intracellular processes such as biosynthesis and transport, not to
mention cell survival [26]. Oxygen dependent enzymes include adenosine triphosphate
(ATP) for chemical energy and nicotinamide adenine dinucleotide phosphate (NADPH)
oxygenase for respiratory burst (reactive oxygen species release). ATP fuels most active
cellular processes and the increased energy demand of tissue that is undergoing healing
leads to a hypermetabolic state wherein additional energy is generated from oxidative
metabolism [27–30]. Other metabolic processes such as aerobic glycolysis, ß-oxidation of
fatty acids and the citric acid cycle are tightly attached to the energy acquisition by oxidative
phosphorylation and are, therefore, oxygen dependent [31]. Conversely, when tissue oxy-
gen levels are consistently too low (<20 mmHg pO2), cells convert to anaerobic metabolism
and go into survival mode in which wound healing activities such as mitotic cell division,
and, therefore, re-epithelialization with collagen production are impaired [32–34]. Pro-
longed exposure to extremely low oxygen levels, if not alleviated by oxygen, can result
in cell death and tissue necrosis due to the inability of the cells to repair the spontaneous
decay of cell components (DNA, RNA and proteins) and inability to maintain calcium
pumps which require ATP to function [35,36].

3. Molecular Biomarkers in Growth Factor Signaling Transduction

Reactive oxygen species (ROS) are essential for the signaling processes of growth
factors and processes such as leukocyte recruitment, cell motility, angiogenesis and extra-
cellular matrix formation involved in wound healing [37]. The rate-limiting substrate for
ROS production is oxygen. In a wound site, almost all wound-related cells can generate
ROS using the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase.
The functionality of NADPH oxidase correlates positively to pO2 levels, with the maximal
function of NADPH oxidase observed at pO2 > 300 mm Hg, levels only achievable with
supplemental oxygen. In wounds deficient of oxygen, such as diabetic or ischemic wounds,
NADPH oxidase ceases to function at pO2 levels below 20 mm Hg. There have been no
noted adverse effects or increased reports of safety issues associated with high concentra-
tions of oxygen in wound care. The increased ROS levels appear to accelerate the signaling
processes without causing any damage at the cellular level. On a clinical level, studies
have shown comparable or decreased adverse events and hospitalizations compared to
standard of care with no supplemental oxygen [38–41].

Signal transduction of growth factors and cytokines is stimulated by ROS [42]. ROS,
such as superoxide and hydrogen peroxide, increase vascular endothelial growth factor
(VEGF) production in macrophages and keratinocytes [43,44]. ROS are also required for
platelet-derived growth factor (PDGF) to regulate cell growth and division [45]. Like VEGF,
PDGF plays a significant role in blood vessel formation (angiogenesis) [46]. ROS have
effects on other processes such as cytokine action, cell motility and extracellular matrix
formation [47]. Conversely, tissue hypoxia will limit redox signaling and disable the func-
tion of several growth factors such as PDGF, VEGF, keratinocyte growth factor, insulin-like
growth factor one (IGF-1), transforming growth factor beta (TFG-β) and numerous molecu-
lar mechanisms (e.g., leukocyte recruitment, cell motility and integrin function) which rely
on redox signaling [37,48,49]. This positive correlation between pO2 levels, ROS produc-
tion, and growth factor promotion of cytokine expression explains why ischemic diabetic
wounds, having little to no ROS, fail to heal and why wounds supplemented with oxygen
heal faster. Typical molecular biomarkers that are indicative of wound healing are shown
in Table 1 along with the processes that they are associated with. These biomarkers and
their effects on wound healing will be discussed in greater detail throughout this review.
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Table 1. Molecular Biomarkers and Clinical Impact in Wound Healing.

Growth Factors

IGF-1 protein production and cell proliferation and migration

PDGF cell growth and division and chemotaxis

TGF-β
angiogenesis, fibroblast proliferation, collagen synthesis and deposition,

extracellular matrix (ECM) remodeling, tissue remodeling, granulation tissue
stimulant and anti-inflammatory mediator

VEGF angiogenesis and collagen deposition and epithelialization

IGF-1 protein production and cell proliferation and migration

cytokines

CXCL8 angiogenesis, epithelialization, fibroblast migration and inflammatory mediator

IL-6 leukocyte infiltration, angiogenesis, collagen accumulation, anti-inflammatory,
granulation tissue stimulant and mitogenic

TNF-α leukocyte recruitment, cell regulator, ECM synthesis and inflammatory mediator

The impact of continuous diffusion of oxygen therapy (CDOT) on wound cytokines
and growth factors was recently demonstrated in a prospective study of 23 patients with
diabetic foot ulcers below the malleolus [50]. Results showed significant increases in
growth factors, cytokines and transcutaneous oxygen pressure measurement levels after
application of CDOT. Growth factors significantly increased from 280% to 820% of base
levels in the first week and decreased in subsequent weeks [50] (Figure 1). Cytokines
increased significantly (up to 680% compared to baseline levels) in the first two weeks
and then decreased. Significant increases in transcutaneous oxygen pressure measurement
indicated increased oxygen perfusion in the wound periphery. This is evidence that the
topically applied oxygen not only saturated the wound bed, yet also elevated the levels of
oxygen in the surrounding tissues.
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4. Collagen Formation

Oxygen is essential to make and properly organize collagen, which is the primary
component of skin, accounting for 70–80% of dry weight and acts as the primary structural
scaffold of skin and structures the matrix for angiogenesis. Organized collagen is bundled
into fibers, which are interwoven and can be stretched in multiple directions without
tearing. At the biomolecular level, oxygen is required for the hydroxylation of proline
and lysine in procollagen [51]. Several posttranslational steps in collagen synthesis are
oxygen dependent. The enzymes prolyl hydroxylase, lysyl hydroxylase and lysyl oxidase
all require oxygen [46,52,53]. The formation of cross-linked triple-helices occurs via the
oxygen-dependent enzyme prolyl hydroxylase and are excreted as collagen fibers. Collagen
fibers are arranged into linear fibrils via cross-linking by lysyl hydroxylase. Linear fibrils
are cross-linked by lysyl oxidase—a necessary step to achieve the necessary tensile strength
for healed wounds.

Higher oxygen concentrations increase the amount of collagen deposition [54] and ten-
sile strength [55–57]. The rate limiting step is the rate of prolyl hydroxylation [52,53]. The
oxygen level required for optimal prolyl hydryoxlase activity is at oxygen levels approach-
ing 250 mmHg, exceeding those present in normal wounds and only achievable using
oxygen therapy treatment [58,59]. It has been shown that increasing oxygen concentrations
above normal physiologic levels enhances collagen synthesis and tensile strength in both
animal and human subjects [55–57] and can increase the level of collagen organization [60].
Correction of vasoconstriction and hypoxia can result in a 10-fold increase in collagen de-
position in wound repair [17,54,56,61]. The rates of collagen deposition increase as oxygen
levels increase, with optimal activity at levels higher than 250 mmHg [62]. Conversely,
hypoxic wounds as in patients with diabetes deposit collagen poorly and become infected
easily [51,54],

In a study using supplemental oxygen at a rate of 4 L/min through nasal cannula
for 12 h a day for 3 days, it was found that three times as much collagen was deposited
in patients with well-perfused and oxygenated wounds compared with those with lower
oxygenation and perfusion scores [54]. A separate study using direct topical oxygen
on chronic diabetic foot ulcers showed significant increases in the expression of genes
associated with collagen production (TGF-β, VEGF and IL-6) during weekly follow-up
visits after application of CDO in patients with diabetic foot ulcers [50].

5. Angiogenesis Biomarkers

The creation of new blood vessels, angiogenesis, is essential to the growth and survival
of repair tissue. Oxygen levels directly affect not only the rate, yet also the quality of new
blood vessel growth. Sufficient oxygen levels are required for correct collagen synthesis
(posttranslational hydroxylation) [63] without which the new capillary tubes assemble
poorly and remain fragile [62,64,65]. Supplemental oxygen has been shown to accelerate
blood vessel growth [66]. Moderate hyperoxia increases the appearance of new blood
vessels in wounds [67]. Similar to ROS activity, the rate of angiogenesis has been shown to
be directly proportional to oxygen levels in damaged tissues [62], with maximum activity
levels at pO2 levels exceeding 250 mm Hg.

VEGF has been shown to be a major long-term angiogenic stimulus at the wound
site and is believed to be most prevalent and efficacious signal for angiogenesis. Oxygen
treatment induces VEGF mRNA levels in endothelial cells and macrophages [68–70] and
VEGF 121/165 protein expression in wounds [71]. Oxygen has also been shown to facilitate
the release of VEGF165 from cell-associated stores [72].

Hyperbaric and topical oxygen therapy have been shown to increase VEGF expression
in wounds [73] and induce angiogenesis [74]. More recently, a clinical study on gene
expression of multiple factors involved in angiogenesis (VEGF, TGF-β, IL-6 and CXCL8)
showed significant increases upon continuous application of oxygen (Figure 1) [50]. The
expression levels over time are similar to gross observations of their effect in the field:
increased redness within the first week and exudate levels that peak within the first
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two weeks and then subside, both indicators of new capillary formation. Furthermore, the
curved response shown in Figure 1 reflects what would be expected of a chronic wound
“reawakening” and entering the inflammatory stage.

6. Respiratory Burst Process and Cytokine Production

Oxygen is essential for respiratory burst, or the production of reactive oxygen species
(ROS), used by phagocytes such as neutrophils and macrophages in bactericidal activity
and the removal of necrotic cellular debris. NADPH oxidase, also known as leukocyte
oxidase, has been shown to support macrophage survival, a delay of apoptosis and enables
dead cell cleansing by phagocytosis [75]. NADPH oxidase in wound phagocytes, such
as neutrophils and macrophages, produces superoxides (O2- and H2O2) for bactericidal
activities [76]. It has been shown that up to 98% of oxygen consumed by these cells is
used to produce ROS during phagocytosis [24]. Leukocyte activity, which involves the
production of ROS which enables oxidative killing, is directly proportional to local oxygen
concentration [77,78]. The optimal ROS production is seen at oxygen levels of greater
than 300 mmHg, levels which can only be achieved with supplemental oxygen [79]. ROS
activity is not restricted to phagocytes. At the wound site, ROS are generated by almost
all wound-related cells [46]. The efficacy of supplemental oxygen has been shown to be
similar to antibiotic administration and has additive effects when used together [80,81].

Interleukins are a type of cytokine protein that play important roles in the differ-
entiation/activation of immune cells in addition to their proliferation, maturation, mi-
gration and adhesion. [https://www.ncbi.nlm.nih.gov/books/NBK499840/ StatPearls
Publishing; 31 January 2021]. The addition of continuous oxygen therapy directly to a
wound has been shown to increaseIL-6 significantly (up to 680% relative to baseline) in
clinical studies [50,82]. IL-6 has been shown to induce chemotaxis of leukocytes into a
wound [83,84]. As inflammation progresses, IL-6 signaling is responsible for the switch to
a reparative environment.

7. Cell Proliferation Molecular Markers

Increasing oxygen levels results in faster cell proliferation, re-epithelialization and
collagen formation. Fibroblast proliferation and protein production have been reported
to be optimal at 160 mmHg, i.e., at pO2 levels two-fold to three-fold higher than those
found in healthy tissues [85], indicating that supplemental oxygen increases the rate of
wound repair. Endothelial progenitor cells (EPCs) are essential in wound healing, but
their circulating and wound level numbers are decreased in diabetes. Elevated oxygen
levels (hyperoxia) reverse the diabetic defect in EPC mobilization [86]. EPC mobilization
into circulation is triggered by hyperoxia through induction of nitric oxide with resulting
enhancement in ischemic limb perfusion and diabetic wound healing [87–89].

Matrix metalloproteinases (MMPs) are a group of enzymes responsible for degrad-
ing a majority of extracellular matrix proteins during tissue development, growth and
turnover [90,91]. MMPs have diagnostic, predictive and indicative power for wound
healing and can be measured from wound fluid. They are required for a wound to heal
properly, at a suitable level, in the correct position and for a certain length of time. Excess
activity may lead to a chronic non healing wound. Chronically increased levels of MMPs
and reduced levels of TIMPs (MMP regulators), or just abnormalities in their ratio, are
associated with non-healing. Studies show that medical interventions which aid in lower-
ing MMP activity will promote the healing of stalled wounds and that decreasing MMP-2
tissue levels will result in wound healing. In one study elevated MMP-1 and TIMP-1 levels
were noted in on oxygen treatment group, yet not in the control group [82].

At the clinical level, the cumulative effects of oxygen in all the various aspects dis-
cussed herein result in significant real-world results. In a clinical study which analyzed
VEGF expression versus wound size reduction using TOT, a significant correlation be-
tween wound closure and VEGF expression was found [73]. Recent results using topically
applied oxygen therapy, both continuously and intermittently, on diabetic foot wounds

https://www.ncbi.nlm.nih.gov/books/NBK499840/
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has been shown to increase the rate of wound closure, by as much as 460% relative to
moist wound therapy in several double-blinded trials, two of which had placebo control
groups [23,38–41]. As would be predicted by the positive correlation of various mecha-
nisms of action to the relative concentration of oxygen, wounds that were larger, deeper,
more chronic and weight-bearing had improved responses relative to controls than those
that were smaller, shallower, less chronic or non-weight-bearing, respectively [38].

8. Summary

Biomolecular pathways associated with wound care have been shown to be positively
correlated to local tissue oxygen concentration. Maximal activity levels of the related
enzymes, growth factors and cytokines, as well as the associated physiological processes,
are significantly above the levels normally found in healthy tissues. The positive, dif-
ferential effect from supplemental oxygen has been shown to be even higher for tissues
with compromised blood supply leading to ischemic diabetic wounds. Increasing the
levels of oxygen in afflicted tissues significantly increases not only the rate, yet also the
quality of tissue repair. These elevated levels of oxygen can only be achieved through
supplemental oxygen therapy, whether it be respiratory based (HBOT) or directly applied
to the wound (TOT, CDOT), all of which are reliant on diffusion gradients. The recent
research on the scientific basis and clinical outcomes of oxygen therapy lays a foundation
for further research in molecular biomarkers utilizing oxygen therapy.
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