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1  |  INTRODUC TION

Daytime (diurnal) ecological studies far outpace night- time (noctur-
nal) studies (Gaston, 2019; Park, 1940). This diurnal research bias 
in ecology, likely driven by a plethora of logistical challenges, is 

exacerbated in submerged aquatic systems where light is naturally 
scarce, and where organisms must be studied in situ. Coral reefs 
typify this disparity resulting in a fragmentary understanding of the 
ecological functions performed by coral reef organisms during the 
nocturnal period. This is true even for major biological components 
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Abstract
The ecological functions of nocturnal coral reef fishes are poorly known. Yet, noc-
turnal resources for coral reef consumers are theoretically as abundant and produc-
tive, if not more so, than their diurnal counterparts. In this study, we quantify and 
contrast the energetic dynamics of nocturnal and diurnal fishes in a model coral reef 
ecosystem,	evaluating	whether	they	attain	similar	levels	of	biomass	production.	We	
integrated a detailed dataset of coral reef fish counts, comprising diurnal and noc-
turnal	species,	in	sites	sheltered	and	exposed	to	wave	action.	We	combined	somatic	
growth and mortality models to estimate rates of consumer biomass production, a key 
ecosystem	function.	We	found	that	diurnal	fish	assemblages	have	a	higher	biomass	
than nocturnal fishes: 104% more in sheltered sites and 271% more in exposed sites. 
Differences in productivity were even more pronounced, with diurnal fishes con-
tributing	163%	more	productivity	in	sheltered	locations,	and	558%	more	in	exposed	
locations.	Apogonidae	dominated	biomass	production	within	 the	nocturnal	 fish	as-
semblage, comprising 54% of total nocturnal fish productivity, which is proportionally 
more than any diurnal fish family. The substantially lower contributions of nocturnal 
fishes to biomass and biomass production likely indicate constraints on resource ac-
cessibility. Taxa that overcome these constraints may thrive, as evidenced by apo-
gonids. This study highlights the importance of nocturnal fishes in underpinning the 
flow of energy and nutrients from nocturnal resources to reef communities; a process 
driven mainly by small, cryptic fishes.
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of	 these	 high-	diversity	 systems,	 such	 as	 reef	 fishes	 (see	 Fox	 &	
Bellwood, 2011).

Understanding community structure is one of the first steps to-
ward a deeper understanding of ecosystem functioning. Community 
structure offers insights into the relative importance of differing 
groups of organisms within the ecosystem, and is often used to quan-
tify changes in ecosystems through time (e.g., Bellwood et al., 2006; 
Jackson	&	Blois,	2015;	 Stevens,	2009;	 Syms	&	Jones,	2000). Reef 
fishes are a conspicuous, species rich, morphologically diverse, and 
abundant group of organisms on coral reefs (Bellwood et al., 2019; 
Brandl et al., 2019). Because of the diverse roles they play in coral 
reef ecosystems, reef fishes have been a major focus of coral reef 
ecology (Mora, 2015;	e.g.,	Morais,	Connolly,	&	Bellwood,	2020; Plass- 
Johnson	et	al.,	2015;	Streit	et	al.,	2019; Tebbett et al., 2017). However, 
despite the numerous studies characterizing reef fish community 
structure and/or composition (e.g., Bellwood et al., 2006;	Hémery	&	
McClanahan, 2005;	Kane	&	Tissot,	2017;	Syms	&	Jones,	2000), ex-
plicit evaluations of temporal partitioning of reef communities into 
diurnal and nocturnal communities are surprisingly rare. For exam-
ple, on the Great Barrier Reef, there are no quantitative comparisons 
of diel whole reef fish community patterns, with only a few studies 
focusing on commercially important fisheries target species (Cappo 
et al., 2004;	Newman	&	Williams,	1995, 2001). Therefore, we still 
lack a comprehensive quantitative comparison of the relative impor-
tance of nocturnal and diurnal reef fishes in the overall community 
structure and, most importantly, in their relative contribution to 
major ecosystem functions, especially biomass production.

Based on the presence of potential food resources one may hy-
pothesize that the biomass and productivity of nocturnal feeding 
fishes	would	 be	 comparable	 to	 their	 diurnal	 counterparts.	 Sessile	
primary producers and invertebrates do not change in abundance 
between day and night, and even in photosynthetically active taxa, 
key nutritional components (protein) are likely to remain consistent 
(Zemke-	White	et	al.,	2002).	Similarly,	motile	invertebrates	and	small	
fishes also remain on the reefs at night. But it is in the plankton 
that changes are most likely, with emergent and migratory noctur-
nal plankton boosting nocturnal planktonic communities (Hobson 
&	 Chess,	 1979; Kramer et al., 2013; Yahel et al., 2002, 2005). 
Nocturnal	planktonic	communities	are	more	diverse	and	abundant	
than	 corresponding	 diurnal	 planktonic	 communities	 (Carleton	 &	
Hamner, 2007; Hammer, 1981;	Hobson	&	Chess,	1979;	 Sorokin	&	
Sorokin,	2009; Yahel et al., 2005). One may therefore expect to find 
more fish- based production, especially in planktivores, at night.

The nocturnal period is a known time of activity for many reef 
predators (Connell, 1998;	 Danilowicz	 &	 Sale,	1999), particularly, 
for mobile fish species that travel off the reef to feed at night 
(Burke, 1995;	Nagelkerken	&	van	der	Velde,	2004). However, feed-
ing under low light conditions is challenging, particularly for preda-
tors of elusive or camouflaged prey (e.g., other fishes or planktonic 
crustaceans).	Nocturnal	feeding	is	thus	normally	limited	to	species	
with morphological and/or behavioral traits that allow them to 
feed	 in	 low	 light	 conditions	 (Goatley	&	Bellwood,	2009;	 Schmitz	
&	Wainwright,	2011). Because of these physiological challenges, 

most of the visually oriented plankton feeders that dominate reefs 
during the day are absent during the night (Hobson, 1965; Hobson 
&	Chess,	1979). This raises the key issue of presence versus avail-
ability: To what extent does prey presence equate to prey availabil-
ity? One way of disentangling the relative availability of nocturnal 
versus diurnal prey to fish consumers is by measuring the biomass 
production of nocturnal and diurnal fish communities. If prey 
presence is the primary factor they should be similar; if nocturnal 
constraints restrict availability they are likely to differ. These rela-
tionships may also be context- dependent, as there is evidence of 
spatial	variation	in	fish	productivity	(Morais	&	Bellwood,	2019). By 
assessing locations that are both sheltered and exposed to wind 
and wave action (Figure 1), we can address the potential of spatial 
variation in hydrodynamics to shape differences in biomass and 
productivity.

Fish communities are typically evaluated or inferred based on 
numeric variables such as the abundance of individuals or species 
richness. However, while these variables tell us which individu-
als and species are present or absent from a location, that is, how 
prevalent they are in the community, they convey little information 
with regard to their role in the ecosystem. To explore the functional 
contribution more directly, we assess the nocturnal versus diurnal 
community structure through more functionally relevant metrics 
such as biomass (i.e., the cumulative weight of organisms) and pro-
ductivity	 (i.e.,	 the	cumulative	net	biomass	produced)	 (cf.	Morais	&	
Bellwood, 2020).	We	thus	provide	a	detailed	comparison	of	the	bio-
mass and productivity of diurnal versus nocturnal reef fishes within 
a coral reef system, while simultaneously exploring differences be-
tween exposed and sheltered locations— an important determinant 
for community structure which may also shape the relative intensity 
of	ecological	functions	(Bronstein	&	Loya,	2014; Davis et al., 2021; 
Depczynski	&	Bellwood,	2005;	Fulton	&	Bellwood,	2005;	Valenzuela	
et al., 2021). By scaling individual contributions to energetic or nu-
trient flows, we provide insights into the role of diurnal versus noc-
turnal organisms in storing or moving energy or material within or 
between ecosystems: key reef- scale ecosystem processes (Bellwood 
et al., 2019).

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

To compare the relative contributions of diurnal and nocturnal fishes 
to community- level production of biomass, we carried out 75 under-
water	visual	surveys	using	SCUBA	on	the	mid-	shelf	reefs	at	Lizard	
Island, in the northern Great Barrier Reef (GBR) (Figure 1a) be-
tween	April	2017	and	December	2018.	All	surveys	were	conducted	
between	10:00	and	15:00 h	by	the	same	experienced	observer	 (R.	
Morais), to keep observer bias consistent across counts. The surveys 
were specifically designed to encompass all visually apparent fishes, 
including	nocturnal	species	(following	Ackerman	&	Bellwood,	2000; 
Morais	&	Bellwood,	2019). Each survey consisted of four overlapping 
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transects, each transect focusing on a different set of species from 
the total fish assemblage, to help maximize the fish species detected 
within the survey area.

Our	UVC	method	was	designed	to	include	components	of	the	fish	
community	that	are	often	missed	from	traditional	UVCs	(Ackerman	
&	Bellwood,	2000).	Our	method	(based	on	the	findings	of	Ackerman	
&	 Bellwood)	 was	 specifically	 designed	 to	 ensure	 we	 recorded	 as	
many nocturnal species as possible, especially apogonids. However, 
it is inevitable that a number of cryptobenthic fishes, predominantly 
gobies and other small cryptobenthic forms, will have been missed. 
However, these smaller cryptobenthic fishes contribute very little 
to biomass and only a small amount to biomass production on reefs 
(Brandl et al., 2019;	Morais	&	Bellwood,	2019). Furthermore, most if 
not all are likely to be diurnal. The nocturnal proportion of the cryp-
tobenthic	community	(driven	greatly	by	Apogonidae)	is	well	retained	
in	combined	UVC	strip	censuses	when	compared	with	results	from	
rotenone stations (the most effective way to sample cryptobenthic 
communities;	 Ackerman	 &	 Bellwood,	 2000, 2002). Biomass and 
its production is often dominated by planktivores, inconspicuous 
medium- sized species or relatively small, but conspicuous, species 
(Brandl et al., 2019; Morais et al., 2021;	Morais	&	Bellwood,	2019). 
Unlike	almost	all	other	UVCs,	our	methods	 include	counts	specifi-
cally	aimed	at	these	fishes.	We	do	not	consider	immigration,	emigra-
tion, or recruitment; we record the individuals visually apparent at 
the time of the survey.

Overall, our surveys provide a snapshot of the visually apparent 
reef fishes on a coral reef. The nocturnal fish counts are, if anything, 
likely to be slightly overestimated (as noted below), while the diur-
nal counts are likely to be slightly conservative (due to missing small 
cryptobenthic taxa). For further information on the methods, see 
Appendix	S1.

2.2  |  Defining nocturnal reef fishes

To classify the diel habits of all the fish species in the surveys, informa-
tion	on	each	species	was	collated	using	the	One	Search	engine	on	the	
James	Cook	University	 library	system,	with	the	search	string	“Genus 
species”	AND	“nocturnal”	OR	“diurnal”	OR	“diel.”	Relevant	research	pa-
pers	were	checked	for	evidence	of	quantification	of	diel	habits.	Species	
level diel habits were then recorded as: diurnal, nocturnal, or both. To 
account for the bias in research effort (diurnal vs. nocturnal studies), 
we only considered a species in this search as exclusively diurnal, noc-
turnal, or both, if there was clear evidence that the species had been 
monitored during both the day and night. For this study, species which 
were	considered	as	crepuscular	feeders	were	included	in	the	“both”	cat-
egory. If there was no evidence (or in most cases no studies) looking at 
their activity during both time periods, we referred to Fishbase (Froese 
&	Pauly,	2021), Randall et al. (1998) and/or (Myers, 1999).	When	no	ex-
plicit mention of diel habits was made for a species in any of these ref-
erences, the typical values for the genus or family level behavior were 
used in conjunction with expert assessments (from the Research Hub 
for	Coral	Reef	Ecosystem	Functions	at	JCU).	Expert	assessments	were	
based	on	combined	prior	experience	amounting	to	several	1000 h	of	
diving. The final diel classification of all species referred to in this study 
is given in Table S1.	As	this	study	focuses	on	the	habits	of	fishes	active	
during	the	night,	we	consider	“nocturnal”	fishes	herein	as	those	that	
are either exclusively active during the night or facultative nocturnal 
fishes (inc. crepuscular) which may be active during the day and night 
(the	fishes	considered	as	“both”).	This	meant	that	species	which	were	
considered	 as	 “both”	were	 pooled	with	 the	 nocturnal	 fishes	 for	 the	
analysis.	Overall,	the	“nocturnal”	fishes	included	herein	encompasses	
obligate nocturnal fishes and a range of others that may feed at night 
(inc. facultative nocturnal fishes and crepuscular feeders).

F I G U R E  1 (a)	Map	of	Lizard	Island,	in	
the	northern	Great	Barrier	Reef.	Sample	
sites are highlighted with yellow dots 
representing	the	“sheltered”	sites	and	
brown	dots	representing	“exposed”	sites.	
Photos depict examples of nocturnal 
coral reef fishes. (b) the cardinalfish, 
Ostorhinchus cyanosoma	(Apogonidae).	
(c)	Sweetlips,	Diagramma pictum 
(Haemulidae). (d) Bigeye, Priacanthus 
hamrur (Priacanthidae). c and d photos by 
Victor	Huertas.
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2.3  |  Estimating standing biomass and productivity 
from underwater fish surveys

In order to estimate the standing biomass and productivity of fishes 
from the visual surveys, we followed the methods of Morais and 
Bellwood (2020), with further details outlined in Appendix	S1. In short, 
the weight of individuals was calculated based on species- specific 
length- weight conversion factors as compiled by FishBase (Froese, 
R.	and	Pauly,	D.	Froese	&	Pauly,	2021). Individual weights were then 
summed across all individuals of diurnal and nocturnal species to out-
put their standing biomass. Productivity was derived from the balance 
between the estimated cumulative somatic growth and mortality of all 
individuals.	Growth	was	assumed	to	follow	a	Von	Bertalanffy	Growth	
model and was estimated from the derived Kmax coefficient and spe-
cies	maximum	size	(Morais	and	Bellwood	2018).	Mortality	was	simu-
lated stochastically based on the probability of mortality of individual 
fishes	(Morais	&	Bellwood,	2020), which was based on the estimated 
instantaneous	mortality	parameter	“M”.	Simulations	used	a	Bernoulli	
distribution to assign the fate (survival or mortality) for each individual 
after 1 day, with the total productivity being the cumulative somatic 
growth	of	surviving	individuals.	Stochastic	mortality	simulations	were	
repeated over 1000 iterations. Biomass and productivity were calcu-
lated for each sample (survey) by summing individual body masses and 
average productivities of all fishes in that survey. Finally, biomass and 
productivity were averaged across samples for sheltered and exposed 
locations, and for nocturnal and diurnal representatives of each family. 
Biomass	 is	presented	as	 tonnes	per	hectare	 (t ha−1) and productivity 
is presented as grams per 100 m2	per	day	(g	100 m−2 day−1).	A	more	
detailed description of all these procedures can be found in Appendix	
S1 and Morais and Bellwood (2020).

2.4  |  Data analyses

All	statistical	analyses	were	carried	out	using	R	(R	Core	Team,	2021). 
To test for differences in community biomass and productivity be-
tween site exposure types and diel habits (nocturnal vs. diurnal), 
as	well	 as	 the	 biomass	 and	 productivity	 of	Apogonidae	 between	
site exposure types, we used Bayesian generalized linear mixed ef-
fect models. Each model included either biomass or productivity 

as the response variable. For each model, both habits (diurnal vs. 
nocturnal) and site type (exposed vs. sheltered) were used as ex-
planatory variables, and survey number (sample) nested within site 
was included as a random effect. These models were developed 
with	the	No-	U-	Turn	Markov	Chain	Monte	Carlo	 (MCMC)	sampler	
in	Stan	via	“rstan”	(Stan	Development	Team,	2020)	and	“rstanarm”	
(Goodrich et al., 2020)	 in	R.	For	each	model,	we	used	5000 itera-
tions per chain in a total of four chains, including a 50% burn- in. 
The distribution, priors, and diagnostics used in these models can 
be found in Appendix	S1.

Non-	metric	 multidimensional	 scaling	 (NMDS)	 of	 Bray–	Curtis	
dissimilarity	 on	 square-	root	 and	 Wisconsin	 double-	standardized	
data were used to inspect the taxonomic (family) composition of the 
productivity and biomass of nocturnal fishes and how they varied 
between exposed and sheltered sites. These were performed using 
the	 “metaMDS”	 function	 from	 the	 “vegan”	 (Oksanen	 et	 al.,	2020) 
package in R. Details are outlined in Appendix	S1.

3  |  RESULTS

3.1  |  Biomass

The standing stock of diurnal reef fishes was higher than noctur-
nal reef fishes in both sheltered and exposed locations (Table 1). 
Across	MCMC	samples,	 the	diurnal	 fish	biomass	was	greater	 than	
nocturnal fish biomass 91% of the time. In sheltered sites, diurnal 
fish	biomass	(median:	2.22 t ha−1,	HPD:	1.26–	3.49;	Figure 2; Table 1) 
exceeded	 nocturnal	 fish	 biomass	 (median:	 1.10	 t ha−1,	HPD:	 0.57–	
1.74; Figure 2; Table 1), comprising on average 104% more biomass 
(βDS/NS =	2.04,	HPD:	1.03–	3.31).	In	exposed	sites,	these	differences	
were even clearer, as diurnal fishes comprised 271% more biomass 
than nocturnal fishes (βDE/NE =	3.71,	HPD:	2.44–	5.05;	Figure 2).

Site	 exposure,	 however,	 had	 a	 weaker	 effect	 than	 diel	 habits	
(Figure 2). The biomass of diurnal fishes, for example, was only 33% 
higher on sheltered locations compared to exposed locations, yet 
this involved large variability (βDS/DE =	1.33,	HPD:	0.59–	2.40),	with	
the probability of this contrast (BiomDS > BiomDE)	 being	only	82%.	
Site	type	had	a	stronger	effect	for	the	biomass	of	nocturnal	fishes,	
with the median nocturnal fish biomass at sheltered sites being 

Metric Habits Site type Mean
Median (lower -  
upper 95% HDI)

Biomass
(t ha−1)

Diurnal Sheltered 2.30 2.22	(1.26–	3.49)

Exposed 1.71 1.68	(1.04–	2.46)

Nocturnal Sheltered 1.14 1.10	(0.57–	1.74)

Exposed 0.46 0.45	(0.27–	0.65)

Productivity
(g	100 m−2 day−1)

Diurnal Sheltered 4.24 4.11	(2.48–	6.31)

Exposed 3.04 2.99	(1.90–	4.22)

Nocturnal Sheltered 1.62 1.58	(0.88–	2.42)

Exposed 0.46 0.45	(0.30–	0.64)

TA B L E  1 Posterior	estimates	(mean	
and medians) with 95% high posterior 
density intervals (HDI) from Bayesian 
generalized linear models comparing the 
biomass and productivity of nocturnal 
reef fishes.
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142% (βNS/NE =	2.42,	HPD:	1.12–	4.55)	greater	 than	exposed	sites,	
with a probability of 99.1%.

3.2  |  Productivity

The same general trends were found for productivity, except that 
the magnitude of the differences was much greater (Figure 3). 
Overall, the diurnal fish productivity was higher than nocturnal fish 
productivity in both sheltered and exposed locations (Table 1).

In sheltered sites, the median diurnal fish productivity 
(4.11 g	 100 m−2 day−1,	 HPD:	 2.48–	6.31;	 Figure 3; Table 1) was 163% 
(βDS/NS =	2.63,	HPD:	1.53–	4.08)	greater	than	the	median	nocturnal	fish	
productivity	(1.58 g	100 m−2 day−1,	HPD:	0.88–	2.42;	Figure 3; Table 1). 
In exposed sites, the differences between median diurnal productivity 
(2.99 g	100 m−2 day−1,	HPD:	1.90–	4.22;	Figure 3; Table 1) and median 
nocturnal	 fish	 productivity	 (0.45 g	 100 m−2 day−1,	 HPD:	 0.30–	0.64;	
Figure 3; Table 1) were even more contrasting, with diurnal fishes sup-
porting	558%	(βDE/NE =	6.58,	HPD:	4.70–	8.79)	more	productivity	than	
nocturnal fishes.

As	with	biomass,	site	exposure	also	had	a	weaker	effect	than	diel	
habits on productivity (Figure 3; Table 1). Diurnal fish productivity in 
sheltered	sites	was	38%	higher	than	in	exposed	locations,	yet	with	
large variability (βDS/DE =	1.38,	HPD:	0.67–	2.38).	The	probability	of	
this contrast (ProdDS > ProdDE)	 was	 87%.	 However,	 as	 in	 biomass,	
there was a strong effect of site exposure on median nocturnal 
fish productivity, with sheltered sites having, on average, 250% 
(βNS/NE =	 3.50,	 HPD:	 1.66–	5.92)	more	 nocturnal	 fish	 productivity	
than exposed sites, with ~100% probability.

3.3  |  Community composition: Nocturnal 
productivity

The multivariate family structure of nocturnal biomass and produc-
tivity,	exemplified	by	 the	NMDS	plots,	 showed	a	higher	variability	
at sheltered sites compared to exposed sites (Figure 4; Figure S1). 
Overall, sites with high productivity tended to be sheltered, with 
site	differences	being	driven	mainly	by	the	productivity	of	Siganidae,	
Haemulidae,	Lethrinidae,	Apogonidae,	Lutjanidae,	and	Epinephelidae	
(Figure 4).

Looking in more detail at the productivity of individual nocturnal 
fish families, two clear patterns were detected. First, family- specific 
biomass and productivity (of the top five nocturnal families based on 
productivity) were smaller in exposed compared to shelter habitats, 
in	 all	 families	 except	Acanthuridae	 (Figure 5; Figure S2; Table S2). 
Second,	there	was	an	overwhelming	contribution	of	Apogonidae	pro-
ductivity in sheltered locations (Figure 5; Figure S2). Furthermore, 
because total productivity was much higher in sheltered sites, the 
overall contribution of apogonids to total productivity, regardless of 
exposure type, was larger than all other families, comprising 54% of 
all nocturnal fish productivity in the study (Figure S2, Table S2).

The	productivity	of	Apogonidae	at	sheltered	sites	was	1300%	
greater (βS/E =	14,	HPD:	0.47–	59.6)	 than	 their	productivity	at	ex-
posed sites (Figures 5 and 6; Figure S2).	Although	there	was	very	
large variability, the probability of this contrast was 99.5%. This 
variability was manifested spatially, with sites in the inner part of 
the lagoon having the highest productivities, and sites on the outer 
part of the lagoon having productivity similar to exposed sites 
(Figure 6).

F I G U R E  2 Diurnal	(blue)	and	nocturnal	(black)	fish	biomass	
estimates. Gray dots represent the raw datapoints. Large, colored 
dots represent the median biomass from the posterior distribution. 
Thick bars represent the 50% credible intervals, and the thin bars 
represent the 95% credible intervals.
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F I G U R E  3 Diurnal	(blue)	and	nocturnal	(black)	fish	productivity	
estimates. Gray dots represent the raw datapoints. Large, colored 
dots represent the median productivity from the posterior 
distribution. Thick bars represent the 50% credible intervals, and 
the thin bars represent the 95% credible intervals.
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4  |  DISCUSSION

By combining surveys of whole fish communities and a recently 
developed method for estimating biomass production, we were 
able to estimate the contributions of both diurnal and nocturnal 

fishes to community level consumer productivity on a coral reef 
in	 the	 largest	 reef	 system	 in	 world,	 the	 Great	 Barrier	 Reef.	We	
found that diurnal fishes produced much more biomass than noc-
turnal fishes, with this difference being particularly pronounced 
in exposed sites. This finding contrasts with expectations that 
the greater (theoretical) availability of resources during the noc-
turnal period has the potential to allow nocturnal consumers to 
attain higher biomass and productivity. This suggests that the 
presence of nocturnal resources is not the main limiting ener-
getic factor. These results, therefore, provide a window into the 
trophodynamics of reefs at night. In doing so, they emphasize a 
likely balance between the opportunities provided and constraints 
imposed when exploiting abundant, yet potentially inaccessible, 
resources. Below, we explore, in detail, these main findings and 
their implications.

4.1  |  Biomass storage versus production in diurnal 
versus nocturnal fishes

It is well established in ecology that organisms can only persist in 
locations where there are sufficient resources for survival (Begon 
et al., 2005;	 Odum	 &	 Barrett,	 2005).	 At	 first	 glance,	 it	 would	 be	
tempting to assume that the results we have presented could be 
driven by fewer resources at night compared to the day. However, 
there is evidence to suggest that there is as much, if not more, re-
sources available during the night compared to the day. For example, 
sessile primary producers (i.e., macroalgae, algal turfs, corals) do not 
go anywhere at night and other common fish prey, such as benthic 
invertebrates remain on reefs during the night. Furthermore, it has 
been shown that the planktonic and motile benthic invertebrate 
communities on coral reefs are more diverse and/or abundant at 

F I G U R E  4 Site	level	NMDS	plots	of	(exposed	in	brown,	
sheltered in yellow) nocturnal species which were grouped into 
a family level. The figure shows only the top 10 nocturnal fish 
families (based on their contributions to productivity). The top five 
families	are	in	represented	by	the	color	black	and	the	top	6–	10	
families are in gray. Dot size represents the relative productivity of 
each site (diameter scaled to productivity).
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night	 compared	 to	 the	 day	 (e.g.,	 Hobson	 &	 Chess,	 1979; Kramer 
et al., 2013; Yahel et al., 2002, 2005; Zapata- Hernández et al., 2021). 
Core to this high resource availability at night are the subsidies in-
troduced: the emergence of resident benthic plankton and the verti-
cal migration of deeper water pelagic plankton to shallower habitats 
that include reefs (Hammer, 1981;	Hobson	&	Chess,	1979). In sum-
mary, there is evidence suggesting that the resource pool available 
for coral reef fishes is the same or greater at night compared to the 
day. However, what appears to change is their relative availability 
for consumption by the fishes. The most obvious conclusion is that 
there may be difficulties associated with accessing some of these 
resources (i.e., the presence of functional constraints). These func-
tional limitations may be reflected in the morphological features of 
diurnal and nocturnal reef fish assemblages.

Nocturnal	coral	reef	fishes	tend	to	possess	a	suite	of	“standard”	
morphological traits: a combination of greater relative eye diameter 
and greater relative horizontal mouth gape compared to most other 
reef	fish	ecomorphotypes	(Goatley	&	Bellwood,	2009;	Mihalitsis	&	
Bellwood, 2019;	 Schmitz	&	Wainwright,	2011). These morpholog-
ical differences may allow nocturnal fishes to locate and feed on 
prey in low light conditions (Luehrmann et al., 2020;	Shand,	1997; 
Warrant,	2004). From the fossil record, it seems that this combination 
of morphological traits became prevalent in the Eocene, 50 million 

years ago (Goatley et al., 2010). Moreover, throughout the evolution 
of marine fishes, only a limited number of strictly nocturnal reef fish 
lineages have arisen (Rabosky et al., 2018;	Siqueira	et	al.,	2020). The 
fact	 that	 “strict”	nocturnality	has	appeared	 relatively	 few	 times	 in	
the marine fish tree of life adds support to the suggestion that the 
predominance of diurnal versus nocturnal fish biomass and produc-
tivity is related to the challenges of accessing reef resources at night. 
Teasing apart the potential causes of variation in nocturnal biomass 
and productivity between exposed and sheltered locations may help 
to explain the basis of these constraints.

4.2  |  Habitat as a driver of fish productivity 
& biomass

Although	 both	 diurnal	 and	 nocturnal	 reef	 fishes	 had	 less	 biomass	
and lower productivity on exposed sites compared to sheltered 
ones, these differences were particularly pronounced for noctur-
nal fishes. Given that the exposed and sheltered sites were part of 
the same reef system, this raises the question: what are the major 
factors distinguishing these habitat types, and how could they be 
influencing the biomass and productivity of nocturnal fishes? There 
are three key aspects that need to be considered: water movement, 
depth, and prey availability.

In the study location, exposed sites are subject to the dominant 
south	eastly	winds.	As	such,	they	experience	much	greater	wave	ac-
tion and, presumably, also current motion than the sheltered sites 
(Fulton	&	Bellwood,	2005;	Jokiel	&	Morrissey,	1993). Hydrodynamics 
could be, thus, influencing the distribution of nocturnal fishes in 
multiple ways. First, it could directly affect habitat occupancy and, 
with it, feeding ability. Occupying and feeding in high- energy en-
vironments requires morphological traits enabling fish to cope 
with these conditions, often dependent on fin morphology (Fulton 
et al., 2005). To date, the major morphological distinctions among 
diurnal versus nocturnal fishes have been found in predatory fishes 
(e.g.,	 Goatley	 &	 Bellwood,	 2009;	 Mihalitsis	 &	 Bellwood,	 2019; 
Schmitz	&	Motani,	2010;	Schmitz	&	Wainwright,	2011).	Nocturnal	
fish morphology is typified by Myripristis sp.,	the	Soldierfishes,	which	
have	large	eyes	and	large	relative	mouth	gapes.	Nocturnal	piscivores	
also have intermediate fin aspect ratios between those of pelagic 
and	diurnal	benthic	piscivores	(Mihalitsis	&	Bellwood,	2019).	As	fin	
aspect ratio has been closely linked to sustained swimming speeds 
(Fulton et al., 2005), this suggests that nocturnal piscivores may have 
only limited swimming competency in high- energy environments 
(Mihalitsis	&	Bellwood,	2019), potentially limiting their capacity to 
occupy	these	habitats,	or	conferring	higher	energetic	costs.	A	similar	
constraint may also apply to other nocturnal fishes (such as apogo-
nids) which also tend to have moderate to low aspect ratio fins (ho-
locentrid's caudal fins are deeply forked which may reflect a more 
intermediate swimming capacity).

Compared to sheltered locations, exposed locations are also sit-
uated in, or closer to, deeper water (Figure 1).	Water	 filters	 light,	
while suspended sediments scatter light (Mayerhöfer et al., 2020). 

F I G U R E  6 Mean	estimates	of	apogonid	productivity	at	the	
sample sites (exposed in brown and sheltered in yellow) around 
Lizard Island. Light gray shades represent the reef contour and dark 
gray shades represent land. The blue arrow indicates the prevailing 
south easterly wind direction.
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Increasing water column depth, therefore, reduces light availability. 
An	 important	 implication	of	 this	 is	 that,	 at	night	 (where	 the	 initial	
input of light is low), the light attenuates quicker with increased 
depth, and therefore light energy changes significantly with small 
changes	in	depth	(Abdelrhman,	2017). In essence, it is possible that 
shallower and presumably better- illuminated feeding habitats in 
sheltered locations would enhance the capacity of nocturnal fishes 
to detect and/or capture prey compared to deeper and presumably 
less well- illuminated feeding habitats in exposed locations.

Evidence with which to test this hypothesis is, however, scarce. 
Using flume chamber feeding experiments that simulated different 
levels of natural illuminance, Holzman and Genin (2003) have shown 
that Apogon annularis, still had significant feeding success at light 
levels	equivalent	to	18 m	depth	on	a	moonless	night	and	47 m	on	full	
moon	nights	(Holzman	&	Genin,	2003).	Job	(1999) likewise showed 
that pre- settlement apogonid larvae would be able to feed down to 
15 m	in	full	moonlight	intensities.	However,	even	the	most	sensitive	
larvae would be incapable of visually mediated feeding at light in-
tensities	around	the	new	moon	(Job,	1999). In the present study, the 
depth of the reef- sand interface (i.e., reef base) in the exposed sites 
exceeds	18 m	(Leon	et	al.,	2013), while water turbidity is likely to be 
much higher than the simulated clear water reef conditions in the 
Red	Sea	 from	Holzman	and	Genin	 (2003). Therefore, it is possible 
that the depth of sandy substrata may be a factor limiting the occu-
pancy and thus the productivity of nocturnal fishes, via decreased 
feeding success, although this scenario remains highly speculative.

Finally, it is also possible that the observed differences in noc-
turnal fish productivity between exposed and sheltered locations 
reflect not limitations on predatory features of nocturnal fishes, 
but on the availability of their prey. Most nocturnal fishes are 
planktivorous, feeding on the larger reef- resident emergent plank-
ton	 (Carleton	 &	 Hamner,	 2007; Hobson, 1965, 1991;	 Holzman	 &	
Genin, 2003;	Marnane	&	Bellwood,	2002). It, therefore, seems likely 
that the distribution of nocturnal fishes would match that of their 
prey. The larger emergent plankton has been shown to be more 
associated with the soft sediment environment within lagoons and 
sand	flats	on	coral	reefs	including	around	Lizard	Island	(Alldredge	&	
King, 1977). These sandy areas near reefs are known to concentrate 
reef detritus, which presumably composes an important part of the 
diet	of	these	emergent	plankton	(Carleton	&	McKinnon,	2007). It is 
also possible that these resident plankton could be actively avoiding 
high current areas on the edge of reefs which may pose increased 
risk of displacement (cf. Hobson, 1991).

Whether	influenced	directly	(i.e.,	waves,	current,	or	lack	of	light	
limiting fish feeding) or indirectly (i.e., reduced prey due to waves, 
current, or light), exposed sites had lower productivity and biomass 
of diurnal and, particularly, of nocturnal fishes. It may be that re-
duced	benthic	productivity	on	the	sand	of	exposed	reefs	(Alldredge	
&	King,	1977;	Carleton	&	McKinnon,	2007), reduced visual detect-
ability	 (Holzman	&	Genin,	2003;	 Job,	1999) and increased cost of 
foraging (Fulton et al., 2005;	 Mihalitsis	 &	 Bellwood,	 2019) act in 
synergy to limit nocturnal fish productivity in exposed locations. It 
should also be noted that Lizard Island has been exposed to severe 

disturbances that have removed much of the coral cover in exposed 
locations. The observed patterns must, therefore, be placed in the 
context of low- coral cover in exposed locations, and the broader 
generality of our observations and interpretation requires further 
investigation.

4.3  |  Apogonidae: Their role in nocturnal 
productivity

Our community- level evaluation of biomass and productivity re-
flects a well- known division in foraging activity, diurnal versus noc-
turnal. However, our data also revealed a division within nocturnal 
fishes. Most nocturnal families detected are relatively large- bodied 
with a moderate contribution to both total community biomass 
and	 productivity	 (e.g.,	 Acanthuridae,	 Lutjanidae,	 Haemulidae,	 and	
Lethrinidae).	In	marked	contrast,	Apogonidae	are	small-	bodied,	have	
low total community biomass, yet delivered the highest productiv-
ity. This family alone comprised 54% of all nocturnal fish productiv-
ity,	more	than	all	other	families	combined.	Apogonidae	also	showed	
a very clear distinction between exposed and sheltered locations, 
in contrast to the other families, with apogonids in sheltered loca-
tions having 1300% more productivity than in exposed locations 
(Figures 5 and 6; Figure S2).	Apogonids,	 thus,	appear	 to	be	an	ex-
tremely important part of the nocturnal fish assemblage, with a 
dominant role in driving the variation in nocturnal fish productiv-
ity between sheltered and exposed sites. The exact reason for this 
distinction between sheltered and exposed sites, however, remains 
unclear. Results from various homing studies have shown that site 
fidelity in apogonids can be driven by both social preferences and 
habitat,	depending	on	 the	species	 (Gardiner	&	Jones,	2005, 2010; 
Rueger et al., 2016).	When	 assessing	microhabitat	 types	 for	 apo-
gonid	resting	sites,	Gardiner	and	Jones	(2005) showed that nine of 
their 10 study species were strongly associated with live scleractin-
ian	coral	cover.	In	contrast	to	these	results,	Wismer	et	al.	(2019) doc-
umented at Lizard Island a 43.1% reduction in total live coral cover 
between	2016	and	2018	that	was	paralleled	by	an	8600%	increase	in	
apogonid	recruit	and	juvenile	abundances,	and	a	178.6%	increase	in	
adult apogonid abundance. However, without species- level identifi-
cation, we cannot say whether these results contradict prior reports 
of reliance on live coral cover, or a possible switch between species 
with a high versus low reliance on live corals.

Interestingly we found a divide in apogonid production within 
the sheltered sites (Figure 6). The four innermost sheltered sites 
had very high apogonid productivity whereas the other three had 
productivity levels similar to the exposed sites (Figure 6). For this 
reason, it seems likely that the major factors, as outlined previously 
(wave action, prey availability, and light), that distinguish exposed 
versus sheltered locations, are acting on a different scale for apogo-
nids. Due to their small body size and reduced swimming ability, 
life in high- energy locations would be particularly energetically de-
manding	for	apogonids	with	poor	swimming	abilities	(cf.	Stobutzki	&	
Bellwood, 1997). It would also increase predation risks for apogonids, 
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making the exposed locations far from ideal resting sites. However, 
understanding the divide within sheltered locations would require 
a much more detailed understanding of the reefs on a finer scale.

Our findings suggest the existence of two major functional 
groups of nocturnal fishes. The first group incorporates those 
generally larger in body size with a high standing biomass and rel-
atively low productivity. The second group includes those smaller 
in body size which have a low standing biomass and high produc-
tivity,	 typified	by	 the	apogonids.	A	clear	path	 forward	 in	detailing	
these functional roles will require an understanding of their spatial 
context.	 Apogonids	 typically	 feed	 over	 the	 shallow	 sandy	 lagoon	
substrata	 close	 to	 the	 reefs	 (Marnane	 &	 Bellwood,	 2002). Given 
their	outstanding	reported	homing	ability	(Gardiner	&	Jones,	2016; 
Marnane, 2000), it is not impossible that these fishes could be trav-
eling hundreds of metres to feed each night, as has been reported 
for pempherids, another family of small nocturnal reef fishes (Koeda 
et al., 2021). If this is the case, the high productivity of apogonids 
could represent a significant source of spatial subsidies underpin-
ning energy and nutrient flows from off- reef locations to coral reefs 
(Morais et al., 2021).

Compared to apogonids, even less is known about the functional 
movement	of	larger	nocturnal	fishes	on	coral	reefs.	We	know	from	
acoustic tracking studies that these larger, high biomass families have 
the	capacity	to	move	great	distances	(Hitt,	Pittman,	&	Brown,	2011; 
Hitt,	Pittman,	&	Nemeth,	2011), however, the locations where they 
feed or occupy at night, in general, are poorly known, and may not 
be	obvious	from	our	knowledge	of	their	diurnal	habits.	A	clear	ex-
ample is the rabbitfish Siganus lineatus, which has been found to in-
clude sharp variations in diel activity between groups of individuals 
only	a	few	kilometers	apart	(Fox	&	Bellwood,	2011). On top of that, 
some of these larger nocturnal fish families, such as Lutjanidae and 
Lethrinidae, are fisheries- target groups on coral reefs in the Indo- 
Pacific (Hutchings et al., 2019;	Newman	&	Williams,	2001).	A	better	
knowledge of their functional role and spatial usage would help in-
form fisheries management and potential conservation efforts.

In summary, this study provides the first quantitative, functional, 
comparison of nocturnal and diurnal fishes on a typical coral reef in 
the largest reef system on Earth. These findings further our under-
standing of the energetic landscape of day versus night in coral reef 
systems. Despite similar availability of resources between diurnal 
and nocturnal periods, we have shown that diurnal fishes have much 
greater contributions to community- level biomass production com-
pared to nocturnal fishes. These results highlight the potential evolu-
tionary and ecological constraints of a nocturnal lifestyle and unveiled 
a strong spatial variation in the productivity and biomass of noctur-
nal	fishes,	which	is	highest	in	shallow	sheltered	locations.	Within	the	
nocturnal fishes, we revealed two distinct energetic strategies. Firstly, 
the smaller nocturnal fishes with low biomass and high productivity, 
driven mainly by apogonids, displaying energetic strategies which 
facilitate	a	high	level	of	energy	movement	through	the	system.	And	
secondly the larger nocturnal fishes with high biomass and low pro-
ductivity, which store/retain energy and contribute very little to the 
production of new biomass. These findings set the scene and provide 

a steppingstone for studying energetic pathways in nocturnal fishes. 
They raise many questions regarding the spatial footprint of these en-
ergy transactions: where do highly productive nocturnal fishes feed, 
what are the constraints of feeding in nocturnal systems, and what 
are	these	fishes	are	feeding	on?	All	of	which	would	provide	us	with	a	
more holistic understanding of coral reef ecology.
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