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A B S T R A C T   

Fecal microbiota transplantation (FMT) is a recommended therapy for recurrent Clostridioides difficile infection and is being investigated as a potential therapy for 
dozens of other indications, notably inflammatory bowel disease. The immense variability in human stool, combined with anecdotal reports from FMT studies, have 
suggested the existence of “donor effects”, in which stool from some FMT donors is more efficacious than stool from other donors. In this study, simulated clinical 
trials were used to estimate the number of patients that would be required to detect donor effects under a variety of study designs. In most cases, reliable detection of 
donor effects required more than 100 patients treated with FMT. These results suggest that previous reports of donor effects need to be verified with results from large 
clinical trials and that patient biomarkers may be the most promising route to robustly identifying donor effects.   

1. Introduction 

Fecal microbiota transplantation (FMT), the transfer of stool from 
healthy donors into ill patients, is a recommended therapy for multiply 
recurrent Clostridioides difficile infection, the most common hospital- 
acquired infection in the United States [1]. FMT is also being investi-
gated as a potential therapy for dozens of other indications, including 
inflammatory bowel disease, metabolic diseases, cancer, and central 
nervous disorders [1,2]. Although FMT’s molecular mechanisms for 
treating C. difficile infection are not fully understood, FMT’s efficacy for 
treating C. difficile has motivated its experimental use in these other 
areas [3]. 

Stool donors are selected by a process of exclusion designed to 
maximize patient safety. Candidate donors are excluded based on blood 
and stool tests for known pathogens, risk factors for pathogen carriage, 
and personal and family history of potentially microbiome-mediated 
diseases [4]. However, given the enormous complexity of stool –which 
includes bacteria, viruses, fungi, microbe-derived molecules, and 
host-derived molecules– and the variability of stool from person to 
person [5,6], it stands to reason that different stool could have different 
ability to treat disease. Anecdotes from FMT research, particularly in 
ulcerative colitis [7,8], have created interest in the possibility of “donor 
effects”, that is, in potential variability in the efficacy of different do-
nors’ stool [9–12]. 

A “donor effect” refers to the possibility that stool from some donors 
is more efficacious than stool from other donors for treating some 
indication. For example, some FMT studies have tested for the possibility 
that one donor produced more efficacious stool than the other donors in 

the study [7,8,13]. Others have tested for the possibility that donors 
with greater microbiota diversity, or a differential abundance of some 
microbial taxon, are more efficacious [14–18]. Finally, at least one study 
has tested for the possibility that the composition of a donor’s gut 
microbiota is associated with the outcomes of patients treated with that 
donor’s stool [19]. If donor effects do exist —if some donor, or some 
particular stool, is more efficacious than other donors or stool— they 
would be crucial to improving FMT as a therapy and to clarifying FMT’s 
molecular mechanisms [10]. 

Although multiple studies have tested for donor effects, these tests 
were all performed post hoc. In no case was a search for a donor effect 
part of the experimental design. It remains unclear if we can expect 
today’s FMT studies, mostly 20 to 40 patients in size [2], to reliably 
determine if donor effects exist. A key barrier to discovering donor ef-
fects, then, is a lack of statistical power methodology. Here we expand 
on previous theoretical models of donor effects [9,20] and use simula-
tions to estimate FMT studies’ statistical power to detect donor effects. 

2. Methods 

Four designs for detecting donor effects were investigated. 

2.1. Contingency table model 

In this model, variations of which were used in two previous theo-
retical studies of donor effects [9,20], donors are assumed to be "effi-
cacious" or "inefficacious" and the distribution of donor efficacies is 
bimodal. Donor effects are tested for using a contingency table of patient 
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outcomes stratified by their associated donors. This approach was 
designed to model the statistical tests used to search for donor effects in 
previous FMT studies [7,8,13]. 

Specifically, a fraction φ of donors, the “efficacious” donors, have an 
efficacy ε+ (i.e., each patient treated with stool from an efficacious 
donor has a probability ε+ of a positive outcome). The remaining pro-
portion 1 − φ of donors, the “inefficacious” donors, have efficacy ε− <

ε+. To simplify the model, we make the assumptions that φ = 1
2 and the 

mean efficacy (ε− +ε+)/2 = 1
2 (i.e., ε− = 1 − ε+), leaving only a single 

parameter Δε = ε+ − ε− (Fig. 1). 
Simulated clinical trials were run to determine the relationship be-

tween the effect size Δε and the statistical power of the study. In each 
simulated trial, NP patients were evenly distributed among ND donors. 
Each donor’s underlying efficacy, either ε− or ε+, is randomly set ac-
cording to φ. Each patient’s dichotomous outcome is randomly deter-
mined depending on the efficacy of their donor. Heterogeneity among 
the donors’ efficacies was tested for using a χ2 test with Yates’s 
correction on the ND × 2 contingency table of patient outcomes by 
donor. 

2.2. Donor biomarker model 

In this model, donor effects are detected by searching for an asso-
ciation between some continuous-valued donor biomarker and the 
associated patients’ outcomes. This approach was designed to model the 
statistical tests used to search for donor effects in previous FMT studies, 
where the biomarker in question is typically the donor’s gut microbiota 
community diversity or the abundance of particular microbial taxa in 
the donor [21]. 

Specifically, each donor has a continuous-valued biomarker X, 
drawn from a normal distribution with standard deviation σ, which 
determines that donors’ efficacy according to logit− 1

(βX). To simplify 
the model, we assume that donors with the mean biomarker values have 
efficacy 12. Thus, the model has one effect size βσ, which is the log odds 
ratio in donor efficacy per standard deviation increase in biomarker 
value. In other words, donor efficacies are log-normal distributed with 
shape parameter βσ. High β means that donors with different biomarkers 
have more distinct efficacies; high σ means that a sample of donors will 
have a wider range of biomarkers and efficacies. 

For example, for βσ = 0, all donors have efficacy 1
2. For βσ = 1, a 

donor with a biomarker one standard deviation above the mean has an 
efficacy of logit− 1

(1) ≈ 73%, while a donor one standard deviation 
below the mean has efficacy logit− 1

( − 1) ≈ 27%. For βσ≫1, half the 
donors have 0% efficacy and the other half have 100% efficacy (i.e., the 
same distribution of efficacies as for the contingency table model for 
Δε = 1). Below the critical value βσ =

̅̅̅
2

√
≈ 1.4, the distribution of 

donor efficacies is unimodal; above that value, it is bimodal. 
In each simulated clinical trial, NP patients receive FMT, each from a 

different donor, and their outcomes are simulated based on the 
randomly-sampled donor biomarker values X (Fig. 2). A donor effect is 
detected using a Mann-Whitney test. 

2.3. Donor microbiota model 

In this model, a donor effect is detected by looking for a separation in 
the donor gut microbiota composition by the donors’ associated patient 
outcomes. This approach was designed to model the investigation 

Fig. 1. Contingency table model. a) In this model, 
half of donors have efficacy ε+ and the other half ε− , 
with mean efficacy (ε+ + ε− )/2 = 1

2. The effect size is 
Δε = ε+ − ε− . b) Donors’ efficacies are drawn from 
the distribution in a. c) Patient outcomes are drawn 
based on their associated donors’ efficacies. d) Sta-
tistical significance is assessed with a χ2 test on the 
contingency table of patient outcomes by donor. e) 
Minimum effect size required to reach 80% statistical 
power in simulated clinical trials.   
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performed in Jacob et al. [19]. 
In this model, like in the contingency table model, donors have one of 

2 efficacies, ε− or ε+, and patients have dichotomous outcomes. Again, 
we make the simplifying assumptions that φ = 1

2 and (ε+ − ε− )/ 2 = 1
2. 

In this model, donor effects are detected based on separation of the 
microbiota of donors associated with patients who had positive out-
comes, compared to the microbiota of donors associated with negative 
outcomes. A PERMANOVA test [22] checks for whether donors’ 
microbiota compositions are correlated with those donors’ associated 
patient outcomes. 

This model has two relevant effect sizes. The first is the same effect 
size as in the contingency table model, Δε. The second is more subtle: 
how distinguishable are efficacious and inefficacious donors, in terms of 
their microbiota composition? To model "strong” versus “weak” sepa-
ration in microbiota composition, data from previous case-control 
studies of diarrhea [23] and obesity [24] were used. The gut micro-
biota composition of cases with diarrhea are easily distinguishable from 
controls (in a random forest classifier, AUC ≈ 0.98), while obesity cases 
only weakly separate from healthy controls (AUC ≈ 0.69) [25]. 

In each simulation, a donor was assigned as efficacious or ineffica-
cious, as in the contingency table model. Then, each efficacious donor 
was assigned a microbiota composition drawn at random from the 
controls in one of the two case-control studies. Each inefficacious donor 
was assigned a case’s microbiota composition (Fig. 3). Next, 1 patient 
was assigned to each donor, and each patient’s outcome was determined 
at random according to the associated donor’s efficacy. Finally, a donor 
effect was searched for with a PERMANOVA test, comparing the donors’ 
microbiota, conditioned on the patients’ outcomes. 

Microbiota compositions were drawn from MicrobiomeHD [26], 

which processed 16S rRNA taxonomic marker gene sequences as 
described previously [25]. For the diarrhea study, non-Clostridioides 
difficile diarrhea patients were used as cases. For the obesity study, obese 
subjects were used as cases. The beta diversity matrix input into PER-
MANOVA was computed using the Bray-Curtis distance metric. 

2.4. Patient biomarker model 

In this model, the donor effect is not restricted to efficacy of 
dichotomous donor outcomes. Instead, it is assumed that there is some 
continuous-valued biomarker measured in patients after the FMT, such 
as fecal calprotectin in the case of ulcerative colitis [27,28] or a 
microbiome biomarker such as microbial engraftment. Heterogeneity in 
donors is detected using a Kruskal-Wallis test. 

Specifically, each patient’s biomarker outcome is drawn from a 
normal distribution with standard deviation σP, which is common to all 
patients, but centered on a mean value μd that is specific to the donor 
d used to treat that patient. The donor-associated values μd are them-
selves drawn from a hyperdistribution with standard deviation σD 
(Fig. 4). The relevant effect size is the ratio σD/σP. For σD/σP≫0, the 
variance in patients’ outcomes is due mostly to donor effects. For σD/

σP = 0, the variance is due solely to patient factors. 

3. Simulations 

For all models, the number of patients was varied over 12, 24, 48, 96, 
and 196. For the contingency table and patient biomarker models, the 
number of donors was varied over 2, 4, 6, 8, and 12. For the donor 
biomarker and donor microbiota models, the number of donors was 

Fig. 2. Donor biomarker model. a) Donor bio-
markers (ticks) are drawn from a normal distribution 
(curve) with standard deviation σ. b) Donor efficacies 
(points) are determined based on their biomarkers X 
and the log odds parameter β according to ε =

logit− 1
(βX). The effect size is βσ, the log odds ratio in 

donor efficacy per standard deviation of donor 
biomarker value. Patient outcomes (colors) are 
randomly determined based on their corresponding 
donors’ efficacies. c) A difference in donor biomarker 
values based on the outcomes of their corresponding 
patients is tested for with a Mann-Whitney test. c) 
Minimum effect size required to reach 80% statistical 
power in simulated clinical trials. (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the Web version of this article.)   
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equal to the number of patients. For the contingency table and donor 
microbiota models, the effect size Δε was varied over [0, 1]. For the 
donor biomarker model, βσ was varied over [0, log25]. For the patient 
biomarker model, σD/(σP +σD) was varied over [0, 1]. 

At 11 points along a grid of effect sizes in each model’s range, 1000 
simulations were conducted to compute the statistical power at the 0.05 
confidence level. All calculations were performed using R (version 3.6.0) 
[29]. χ2 tests were formed using chisq.test, Mann-Whitney tests using 
wilcox.test, Kruskal-Wallis tests using kruskal.test, and PERMANOVA 
tests using the function adonis in the vegan package (version 2.5–6) [30]. 

4. Results 

In the contingency table model, 80% statistical power was achieved 
in simulations similar to a typical FMT trial (i.e., with 24 patients), but 
the minimum effect size to achieve that power was Δε+ = 0.76 (Fig. 1). 
In other words, the difference between efficacious and inefficacious 
donors had to be so great that on average 88% of patients assigned to 
efficacious donors had positive outcomes (i.e., ε+ = 1

2+ Δε/ 2 = 0.88), 
and only 12% of patients assigned to inefficacious donors had positive 
outcomes. As the number of patients in the simulated trials was 
increased, the minimum effect size to achieve 80% power decreased: for 
simulated trials with 192 patients receiving FMT, the minimum effect 
size was Δε = 0.3. 

In the donor biomarker model, 80% statistical power was achieved 
with 24 patients and a minimum effect size of βσ = 1.5 (Fig. 2). This 
effect size means that a donor with a biomarker one standard deviation 
above the mean has an efficacy of logit− 1

(1.5) ≈ 82%, and a donor one 
standard deviation below the mean has an efficacy of 18%. For 192 

patients, this minimum effect size declined to 0.5 (i.e., donors one 
standard deviation above the mean have efficacy logit− 1

(0.5) ≈ 62%. 
In the donor microbiota model, 80% statistical power was achieved 

with 24 patients when using the diarrhea case-control data as simulated 
efficacious and inefficacious microbiota, with a minimum effect size of 
Δε = 0.76 (i.e., efficacious donors have an efficacy ε+ = 1

2+ Δε/2 =

88%; Fig. 3). For 196 patients, the minimum effect size dropped to Δε =

0.29. When using the obesity case-control data, representing a more 
subtle difference between efficacious and inefficacious donors’ micro-
biota, 80% power was achieved only with 192 patients and Δε = 0.72. 

In the patient biomarker model, 80% statistical power was achieved 
in simulations with 24 patients with a minimum effect size effect size 
σD/σP = 3.4 (Fig. 4). In other words, the variability in the mean patient 
biomarkers induced by different donors σD must be more than three 
times larger than the variability σP in patient biomarkers who receive 
FMT material from the same donor. For 192 patients, the minimum ef-
fect size declined to less than 0.8. 

5. Discussion 

In this study, using 4 different models of donor effects, the minimum 
effect size required to achieve to achieve reasonable statistical power for 
a given number of patients were estimated. In the contingency table, 
donor biomarker, and donor microbiota models, 80% statistical power 
was achievable with 24 patients only when the effect sizes were 
implausibly large. These results suggest that current FMT trials, which 
typically include 20 to 40 patients treated with FMT, would seem un-
likely to discover a true donor effect when using one of these ap-
proaches, and large clinical trials will be needed to verify previous 

Fig. 3. Donor microbiota model. Two donor effi-
cacies, dichotomous patient outcomes, donor effect 
measured by separation of microbiota composition. a) 
An example ordination plot of the data from a 
microbiota case-control study. b) A subset of cases 
and controls, representing the simulated donors’ 
microbiota, are drawn, depending on the number of 
individuals in the simulated trial. c) Patient outcomes 
associated with each donor microbiota composition 
are drawn according to the efficacies ε+ and ε− . The 
effect size Δε determines the values ε+ and ε− as in 
the contingency table model. A PERMANOVA test is 
run on the corresponding dissimilarity matrix of 
microbiota compositions to detect a donor effect. d) 
Minimum effect size required to reach 80% statistical 
power when using the contrast between cases and 
controls from microbiome studies as a proxy for the 
microbiome signature difference between efficacious 
and inefficacious controls.   
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reports of donors effects. The patient biomarker model, however, was 
more powerful than the other approaches. 

Contingency table model In the clinical study [7] that motivated 
two previous modeling studies [9,20], 38 patients were treated with 
FMT, the efficacy of the apparently efficacious donor was estimated as 
ε+ = 7/18 = 39%, and the efficacy of the remaining inefficacious do-
nors was estimated as ε− = 2/20 = 10%. In our simulations, a 30% 
point difference in efficacy between the two classes of donors (i.e., Δε =

0.3) required more than 96 FMT-treated patients to be reliably detected. 
Donor biomarker model In one clinical study [14], 13 patients 

were treated with FMT, and a significant difference in donor biomarkers 
(microbiota community diversity) between donors based on their asso-
ciated patients’ outcomes was detected (Mann-Whitney test, p =

0.012). The results here suggest that, if such an effect were to be 
robustly detected in 12-patient trials, it would need to be implausibly 
large, with donors one standard deviation above the mean (i.e., 16% of 
donors) having an efficacy of at least 83%. 

Donor microbiota model In one clinical study [19], 20 patients 
were treated with stool from 4 donors, with each patient receiving a 
mixture of 2 donors’ stool. A statisically significant separation in the 
mixtures’ microbiota composition based on the associated patients’ 
outcomes was detected (PERMANOVA, p = 0.044). By contrast, the 
results from this study suggest that reliable detection of such an effect in 
24-patient studies would require both that efficacious and inefficacious 
donors have markedly different microbiota compositions (as different as 
diarrhea patients from healthy controls) and that their efficacies were 
implausibly distinct (Δε = 0.76, or 88% vs. 12% efficacy). These results 
broadly accord with previously work showing that microbiome studies 
are unlikely to robustly detect individual taxa mediating FMT patients’ 

outcomes [31]. 
Patient biomarker model The term “donor effects” has mostly been 

restricted to referring to differences in donor efficacy. However, finding 
any robust difference among donors in the effect that FMT has on pa-
tients would be helpful for understanding the molecular mechanism of 
FMT [10]. In the case of fecal calprotectin as a patient biomarker in 
inflammatory bowel disease, it appears that the variability in the 
biomarker among patients with the same disease severity is comparable 
to the variability in the mean biomarkers for different severities [27,28]. 
In other words, if FMT from some donors could reliably move patients 
from severe to mild disease (i.e., σD ≈ σP), then the results of these 
simulations suggest that a donor effect could feasibly be detected with 
trials with as few as 48 patients. Furthermore, donor effects could 
feasibly be detected in animal studies when there is a relevant 
biomarker, even if the animal does not reach a clinical endpoint in the 
sense of a human clinical trial [32]. 

Strengths and limitations The key strength of this study was that it 
used straightforward mathematical models to make generous estimates 
of the statistical power of study designs that could detect donor effects. 
The key limitation of this study is that it does not account for the many 
sources of variance that arise in a clinical trial, most notably patient 
diagnoses and comorbidities. Thus, the estimates in this study should be 
taken as proof-of-concept only. In fact, additional variance coming from 
variability between patients, or from attempting an analysis using data 
from multiple clinical trials, will only increase the number of patients 
required to detect these effects. 

Conclusions Given the large number of patients that would be 
required to prospectively detect a donor effect, post hoc detections of 
donor effects in small clinical trials should be verified with large clinical 

Fig. 4. Patient biomarker model. Patient 
biomarker outcome. a) Each donor (colored ticks) has 
a mean patient biomarker value drawn from a 
hyperdistribution with standard deviation σD (black 
curve). b) Patients’ biomarkers (colored ticks) are 
drawn from distributions (colored curves), all with 
the same standard deviation σP, centered on the mean 
of their associated donor. The effect size is σD/σP. c) 
Donor effects are detected by a Kruskal-Wallis test on 
patient biomarker values. d) Minimum effect size 
required to reach 80% statistical power in simulated 
clinical trials.   
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trials. The most promising path toward identifying donor effects, and 
using those effects to improve microbial therapeutics, appears to lie in 
using patient biomarkers, rather than donor biomarkers or in patient 
outcomes alone. 

Clinical trialists should take care, however, that different approaches 
to testing for donor effects require mutually contradictory designs. For 
example, if a test will be run on patient biomarkers, then 2 to 6 donors 
should be used to maximize the study’s power to detect a donor effect. 
Using a different donor for every patient completely precludes the use of 
an Kruskal-Wallis or ANOVA test. However, if a donor effect will be 
detected via an association between donor biomarkers and patient 
outcomes, then a different donor should be used with each patient to 
maximize the study’s power. In that case, using the same donor to treat 
more than one patient will only make the subsequent analysis more 
complex and less powerful. 
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M. Elisabeth, H. Mathus-Vliegen, M. Willem, de Vos, et al., Findings from a 
randomized controlled trial of fecal transplantation for patients with ulcerative 
colitis, Gastroenterology 149 (1) (Jul 2015) 110–118, e4. 

[14] Severine Vermeire, Marie Joossens, Kristin Verbeke, Jun Wang, Kathleen Machiels, 
João Sabino, Marc Ferrante, Gert Van Assche, Rutgeerts Paul, Jeroen Raes, Donor 
species richness determines faecal microbiota transplantation success in 
inflammatory bowel disease, J. Crohns Colitis 10 (4) (October 2015) 387–394. 
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of the donor intestinal microbiota is a major factor influencing the efficacy of 
faecal microbiota transplantation in therapy refractory ulcerative colitis, Aliment. 
Pharmacol. Ther. 47 (1) (October 2017) 67–77. 

[16] Alka Goyal, Andrew Yeh, Brian R. Bush, Brian A. Firek, Leah M. Siebold, Matthew 
Brian Rogers, Adam D. Kufen, Michael J. Morowitz, Safety, clinical response, and 
microbiome findings following fecal microbiota transplant in children with 
inflammatory bowel disease, Inflamm. Bowel Dis. 24 (2) (January 2018) 410–421. 

[17] Shinta Mizuno, Tatsuhiro Masaoka, Makoto Naganuma, Taishiro Kishimoto, 
Momoko Kitazawa, Shunya Kurokawa, Moeko Nakashima, Kozue Takeshita, 
Wataru Suda, Masaru Mimura, Masahira Hattori, Takanori Kanai, Bifidobacterium- 
rich fecal donor may be a positive predictor for successful fecal microbiota 
transplantation in patients with irritable bowel syndrome, Digestion 96 (1) (2017) 
29–38. 

[18] Atsushi Nishida, Hirotsugu Imaeda, Masashi Ohno, Osamu Inatomi, 
Shigeki Bamba, Mitsushige Sugimoto, Akira Andoh, Efficacy and safety of single 
fecal microbiota transplantation for Japanese patients with mild to moderately 
active ulcerative colitis, J. Gastroenterol. 52 (4) (October 2016) 476–482. 

[19] Vinita Jacob, Carl Crawford, Shirley Cohen-Mekelburg, Monica Viladomiu, 
G. Gregory, Putzel, Yecheskel Schneider, Fatiha Chabouni, Sarah O’Neil, Brian 
Bosworth, Viola Woo, and et al. Single delivery of high-diversity fecal microbiota 
preparation by colonoscopy is safe and effective in increasing microbial diversity in 
active ulcerative colitis, Inflamm. Bowel Dis. 23 (6) (Jun 2017) 903–911. 

[20] Abbas Kazerouni, Lawrence M. Wein, Exploring the efficacy of pooled stools in 
fecal microbiota transplantation for microbiota-associated chronic diseases, PLoS 
One 12 (1) (Jan 2017), e0163956. 

[21] Karen S.W. Leong, Justin M. O’Sullivan, José G.B. Derraik, Wayne S. Cutfield, Gut 
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