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Abstract

Background: Influenza A virus (IAV) infection-induced inflammatory regulatory networks (IRNs) are extremely
complex and dynamic. Specific biological experiments for investigating the interactions between individual
inflammatory factors cannot provide a detailed and insightful multidimensional view of IRNs. Recently, data from
high-throughput technologies have permitted system-level analyses. The construction of large and cell-specific IRNs
from high-throughput data is essential to understanding the pathogenesis of IAV infection.

Results: In this study, we proposed a computational method, which combines nonlinear ordinary differential
equation (ODE)-based optimization with mutual information, to construct a cell-specific optimized IRN during IAV
infection by integrating gene expression data with a prior knowledge of network topology. Moreover, we used the
average relative error and sensitivity analysis to evaluate the effectiveness of our proposed approach. Furthermore,
from the optimized IRN, we confirmed 45 interactions between proteins in biological experiments and identified 37
new regulatory interactions and 8 false positive interactions, including the following interactions: IL1β regulates
TLR3, TLR3 regulates IFN-β and TNF regulates IL6. Most of these regulatory interactions are statistically significant by
Z-statistic. The functional annotations of the optimized IRN demonstrated clearly that the defense response,
immune response, response to wounding and regulation of cytokine production are the pivotal processes of
IAV-induced inflammatory response. The pathway analysis results from the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) showed that 8 pathways are enriched significantly. The 5 pathways were validated by
experiments, and 3 other pathways, including the intestinal immune network for IgA production, the cytosolic
DNA-sensing pathway and the allograft rejection pathway, are the predicted novel pathways involved in the
inflammatory response.

Conclusions: Integration of knowledge-driven and data-driven methods allows us to construct an effective IRN
during IAV infection. Based on the constructed network, we have identified new interactions among inflammatory
factors and biological pathways. These findings provide new insight into our understanding of the molecular
mechanisms in the inflammatory network in response to IAV infection. Further characterization and experimental
validation of the interaction mechanisms identified from this study may lead to a novel therapeutic strategy for the
control of infections and inflammatory responses.
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Background
Influenza A virus (IAV) infection is a worldwide public
health threat [1,2]. IAV causes respiratory tract infec-
tions and leads to inflammatory responses. Controlling
the inflammatory response resulting from an IAV infec-
tion is of great significance in reducing associated tissue
damage. However, many biological experiments have
demonstrated that IAV infection-induced inflammatory
responses are extremely complicated and regulated by
dynamic networks [3-5]. Specific biological experiments
investigating the mechanisms of interactions among in-
dividual inflammatory factors have not provided a suffi-
ciently detailed and insightful multidimensional view of
inflammatory regulatory networks (IRNs). We need to
investigate the mechanisms at a system-level and from
the network dynamics. Therefore, the construction of
large and cell-specific inflammatory regulatory networks
(IRNs) based on high-throughput data is essential for
investigating the molecular mechanisms of inflamma-
tory responses during IAV infection.
Biological experiments have found that IAVs induce

the expression of a number of inflammatory molecules
and inflammatory cytokines and chemokines, such as
IL27, IL32, IL6, TNF, IFNG, CXCL10, CCL3, NOS2 and
IL8 [6-9]. Furthermore, a number of studies have shown
that the H5N1 viruses can induce increased gene tran-
scription of pro-inflammatory cytokines, including
CXCL10, IFN-β, IL6, COX-2 (Cyclooxygenase-2) and
CCL5 [9-12]. In particular, COX-2 is the primary medi-
ator in protection against IAV infection [4] and has been
shown to play a regulatory role in the induction of the
H5N1-mediated pro-inflammatory cascade [10,11]. It is
important to further investigate the mechanisms of the
inflammatory cascade downstream of COX-2 regulation
that may be involved in H5N1 infection [13]. To our
best knowledge, the studies on constructing a cell-specific
IRN after IAV infection are limited, and an integrated and
systematic analysis of the inflammatory cascade mediated
by COX-2 that incorporates microarray data has not
yet been reported.
A number of different methods for inferring gene

regulatory networks (GRNs) from high-throughput data
have been proposed [14-20]. However, there are a few
studies on the construction of dynamic signaling net-
works based on stoichiometric approaches, discrete
Boolean models, the fuzzy logic models, the integer pro-
gramming method and the ordinary differential equa-
tion (ODE)-based method [15,21-27]. No study has
reported combining a prior knowledge of network topology
with nonlinear optimization algorithms to identify the dy-
namic regulatory network. In the process of reconstructing
networks from expression data based on a priori knowledge
of network topology, the most important steps are converting
familiar network maps into mathematical models and fitting
the available data into the network’s structural para-
meters. Recently, the rough topological structure of
inflammatory networks with 2361 nodes and 63276
edges in humans have been obtained, which provides
a prelude to more detailed network analysis and
mathematical modeling for an inflammatory network
[28]. By combining information theory-based MI and
nonlinear ODE-based optimization, in this study, we
proposed a computational method to construct a cell-
specific IRN mediated by COX-2 during IAV infec-
tion. A differential evolution (DE) algorithm was used
to optimize the network so that it best fits the experi-
mental data. Furthermore, we performed a Kyoto En-
cyclopaedia of Genes and Genomes (KEGG) pathway
and gene ontology (GO) terms enrichment analysis on
the optimized IRN to identify the underlying mecha-
nisms during IAV infection.

Methods
The flowchart of our work is presented in Figure 1
and mainly consists of six steps: constructing an initial
IRN, simplifying the initial network, building a math-
ematical model, estimating parameters in the model
with the DE algorithm, significance test and sensitivity
analysis for the regulations, and performing an enrich-
ment analysis.

Data collection and construction of the initial
inflammatory regulatory network
To construct a cell-specific IRN and investigate the
mechanisms of the inflammatory cascade mediated by
COX-2 in IAV infection, we selected 59 proteins, which
are listed in Table 1, that are associated with the inflam-
matory responses regulated by COX-2 based on the pub-
lished literature [3,9,13,29,30]. The microarray data were
retrieved from the Gene Expression Omnibus (GEO)
database under the GEO accession number GSE28166
[31,32]. This dataset contains 36 samples in total, with 3
mock and infected replicates for each time point. In this
study, the expression levels of complexes were the ave-
rage of the gene expression levels of the members of the
complex from the dataset. The expression level of IAV
was obtained from the literature [32].
Network construction based on these 59 proteins was

performed using Ingenuity Pathway Analysis (IPA) soft-
ware (Ingenuity Systems, www.ingenuity.com ). The offi-
cial symbol of each protein was imported into the IPA
software. Through IPA analysis, we identified a total of 7
networks based on functional connectivity. Three of
these networks shared common proteins, and it was pos-
sible to generate a merged network (data not shown).
The merged network is very complicated and includes a
few proteins that are not on our protein list. We pruned
the network by removing the proteins that were not on

http://www.ingenuity.com/


Figure 1 The flowchart of our work.
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our list except for some common and important mole-
cules, such as NFκB, IL12 (complex), p38 MAPK, JAK,
STAT, IFN-α and IFN-β. In addition, we integrated two
molecules, IAV and COX-2, into the merged network.
IL32, IL29, IL27, IL1β and IFN-α/β/γ have been
reported to inhibit viral replication [3,33-37]. Therefore,
we obtained our initial IRN comprising 51 proteins (or
complexes) and 198 interactions. The network is
depicted in Additional file 1. The full name of each pro-
tein in the initial IRN is listed in Additional file 2.
Simplifying the initial IRN based on conditional mutual
information
PCA-CMI, which was originally proposed by Zhang
et al. for inferring GRNs from gene expression data,
considers the nonlinear dependence and topological
structure of GRNs by employing a path consistency
algorithm (PCA) based on conditional mutual infor-
mation (CMI) [20]. In this study, we used the PCA-
CMI method to distinguish direct (or causal) interac-
tions from indirect associations.
For a discrete variable X, the entropy H(X) is the

measure of average uncertainty of variable X and can be
defined by:

H Xð Þ ¼ −
X
x∈X

p xð Þ logp xð Þ; ð1Þ

where p(x) is the probability of each discrete value x in X.
Mutual information (MI) measures the dependency

between two variables (genes or proteins). For discrete
variables X and Y, MI is defined by the following equa-
tion:

I X;Yð Þ ¼ −
X

x∈X;y∈Y

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ: ð2Þ

CMI measures conditional dependency between two
variables given other variable(s). The CMI of variables X
and Y given Z is defined as:

I X;Y jZð Þ ¼ −
X

x∈X;y∈Y ;z∈Z

p x; y; zð Þ log p x; yjzð Þ
p xjzð Þp yjzð Þ: ð3Þ

With the widely adopted Gaussian kernel probability
density estimator, the equations (1), (2) and (3) can be
easily calculated using the following equivalent equations
[15,20].

H Xð Þ ¼ 1
2
log 2πeð Þn Cj j; ð4Þ

I X;Yð Þ ¼ 1
2
log

C Xð Þj j⋅ C Yð Þj j
C X;Yð Þj j ; ð5Þ

I X;Y jZð Þ ¼ 1
2
log

C X;Zð Þj j⋅ C Y ;Zð Þj j
C Zð Þj j⋅ C X;Y ;Zð Þj j ; ð6Þ

where C is the covariance matrix of variable X, |C | is
the determinant of matrix C, and n is the number of va-
riables in C.
A high MI value indicates that there is a close rela-

tionship between the variables, while a low MI value
implies variable independence. Similarly, a high CMI



Table 1 Total 59 proteins selected from the published
literatures

Gene
symbol

Description Type

BPIFA1 BPI fold containing family A, member 1 Other

CCL16 Chemokine ligand 16 Cytokine

CCL2 Chemokine (C-C motif) ligand 2 Cytokine

CCL22 Chemokine (C-C motif) ligand 22 Cytokine

CCL5 Chemokine (C-C motif) ligand 5 Cytokine

CCR9 Chemokine (C-C motif) receptor 9 G-protein
coupled receptor

CD14 CD14 molecule Transmembrane
receptor

CD27 CD27 molecule Transmembrane
receptor

CMKLR1 Chemokine-like receptor 1 G-protein
coupled receptor

CSF2RA Colony stimulating factor 2 receptor,
alpha

Transmembrane
receptor

CXCL10 Chemokine(C-X-C motif) ligand 10 Cytokine

CXCL12 Chemokine(C-X-C motif) ligand 12 Cytokine

CXCR3 Chemokine(C-X-C motif)receptor 3 G-protein
coupled receptor

CXCR4 Chemokine(C-X-C motif)receptor 4 G-protein
coupled receptor

CXCR5 Chemokine(C-X-C motif)receptor 5 G-protein
coupled receptor

ERBB2 V-erb-b2 erythroblastic leukemia viral
oncogene homolog 2

Kinase

FADD Fas (TNFRSF6)-associated via death
domain

Other

FGF23 Fibroblast growth factor 23 Growth factor

FGFRL1 Fibroblast growth factor receptor-like 1 Transmembrane
receptor

HGF Hepatocyte growth factor (hepapoietin A;
scatter factor)

Growth factor

HRG Histidine-rich glycoprotein Other

IFNB1 Interferon, beta 1, fibroblast Cytokine

IFNG Interferon, gamma Cytokine

IL12B Interleukin 12B Cytokine

IL15RA Interleukin 15 receptor, alpha Transmembrane
receptor

IL16 Interleukin 16 Cytokine

IL18BP Interleukin 18 binding protein Other

IL1β Interleukin 1, beta Cytokine

IL20RA Interleukin 20 receptor, alpha Transmembrane
receptor

IL22RA2 Interleukin 22 receptor, alpha 2 Transmembrane
receptor

IL25 Interleukin 25 Cytokine

IL27 Interleukin 27 Cytokine

IL29 Interleukin29(interferon, lambda 1) Other

Table 1 Total 59 proteins selected from the published
literatures (Continued)

IL2RA Interleukin 2 receptor, alpha Transmembrane
receptor

IL32 Interleukin 32 Other

IL6 Interleukin 6 (interferon, beta 2) Cytokine

IL6R Interleukin 6 receptor Transmembrane
receptor

IL7 Interleukin 7 Cytokine

KIT V-kit Hardy-Zuckerman 4 feline sarcoma
viral oncogene homolog

Kinase

LTA Lymphotoxin alpha (TNF superfamily,
member 1)

Cytokine

LTBP1 Latent transforming growth factor beta
binding protein 1

Other

MET Met proto-oncogene Kinase

MMP19 Matrix metallopeptidase 19 Peptidase

NGF Nerve growth factor Growth factor

NOS2 Nitric oxide synthase 2, inducible Enzyme

NRG2 Neuregulin 2 Growth factor

PECAM1 Platelet/endothelial cell adhesion
molecule

Other

SAA1 Serum amyloid A1 Transporter

SELL Selectin L Other

SMAD9 SMAD family member 9 Transcription
regulator

TGFB1 Transforming growth factor, beta 1 Growth factor

TIMP4 TIMP metallopeptidase inhibitor 4 Other

TLR3 Toll-like receptor 3 Transmembrane
receptor

TMEFF2 Transmembrane with EGF-like and two
follistatin-like domains 2

Other

TNF Tumor necrosis factor Cytokine

TNFSF10 Tumor necrosis factor (ligand) superfamily,
member 10

Cytokine

TNFSF12 Tumor necrosis factor (ligand) superfamily,
member 12

Cytokine

TNFSF14 Tumor necrosis factor (ligand) superfamily,
member 14

Cytokine

The gene symbol, description and type corresponding to each protein
are given.
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indicates that there is a close relationship between the
variables X and Y given variable Z, while a low CMI
value represents independence between genes. If the MI
or CMI value is smaller than a given threshold θ, the
edge between the two proteins is deleted for the inde-
pendence (See the detailed procedure of PCA-CMI in
[20]).
We simplified the initial IRN based on PCA-CMI. We

deleted the edges of the initial IRN with independent
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correlations recursively (i.e., from low to high order of
independent correlation until no edge can be deleted).
The threshold value θ of MI and CMI was set to 0.1,
which was statistically tested by Z-statistic [15,20,38]
(Figure 2). The simplified network, which contains 50
nodes and 142 directed edges, is depicted in Figure 3.

Mathematical model of the network
To further obtain the more simplified IRN, we built
nonlinear ordinary differential equations (ODEs) to
model the reaction kinetics of the regulatory network.
The ODEs describe the relationship between the reac-
tion rate and the concentrations of the reactants. The
change in concentration of a reactant is characterized
by a function that takes the regulatory influence (acti-
vation or inhibition) of other reactants into account.
The general form of nonlinear ODEs is described as
follows:

dxi
dt

¼ f i x1; x2;…; xm; ki j
� �

−dixi;

where xi is the concentration of species i, fi is a nonlinear
function, m is the number of species in the system, ki_j is
the kinetic parameter with i, j∈{1, 2, … , m} and di is the
degradation rate of species i.
Based on the law of mass action and Hill functions,

the nonlinear ODEs including 50 equations and 192 kin-
etic parameters were built. All equations and their expla-
nations and the initial concentrations of proteins are
listed in Additional file 3.
Figure 2 The significance test for the selected threshold value
of the MI and CMI. The x-axis is the Z-statistic values of the deleted
edges when the threshold value of MI and CMI is set to be 0.1. The
y-axis represents the number of edges whose Z-statistic fall into the
corresponding bins. The blue dashed line is the inverse cumulative
distribution function of N(0,1) when using significant level α=0.1.
Estimation of the kinetic parameters in the model with
the DE algorithm
The parameters in our ODEs can be classified into
two categories of regulatory parameters: parameters
representing activation or inhibition relations and deg-
radation parameters representing the degradation of
individual biomolecular species.
The problem that identifies the kinetic parameters in

the model can be converted into the following nonlinear
optimization problem, which is the minimization of the
error between the simulation values in our model and
the experimental data.

min
K

XN
i¼1

XM
j¼1

ωi xi
sim tj;K

� �
−xi exp tj

� �� �2
;

where xi
exp(tj) and xi

sim(tj, K) are the experiment data and
simulation value of the species i at tj time point respec-

tively. ωi ¼ 1=
�
max

j
xi exp tj

� ��2 , K is the parameter set

consisting of all the parameters in the model, N is the
number of species and M is the number of time points
in the biological experiments.

A wide variety of global optimization techniques have
been developed to address nonlinear optimization prob-
lems [39-42]. The DE algorithm, proposed by Storn and
Price [42], is a very successful and powerful population-
based stochastic search technique for solving global
optimization problems and has been widely applied in
many scientific and engineering fields [43,44]. The DE
algorithm is described as follows:
Step 1. Initialization: Generate random initial popula-

tion XG={ X1,G , X2,G ,…, XN,G }, where Xi,G={ Xi1,G , Xi2,
G ,…, XiD ,G }. N is the population size , G is the gene-
ration, Xi,G is a rate constant set and D is the amount of
the kinetic parameters.
Step 2. Genetic operation:

1) Mutation: Vi,G+1=Xr1,G+F(Xr2,G- Xr3,G), r1, r2,
r3∈{1,…,N}\{i}, F∈ [0,2].

2) Crossover: Ui,G+1=(U1i,G+1,…,UDi,G+1)

Uji;Gþ1 ¼
(
V ji;Gþ1; if rand b jð Þð Þ≤CRð Þ or j ¼ rnbr ið Þ
Xji;Gþ1; if rand b jð Þð Þ > CRð Þ or j≠rnbr ið Þ ;

j ¼ 1; 2;⋯;D;

where rand(b(j)) is the jth evaluation of a uniform
random number in [0,1], CR is the crossover con-
stant in [0,1] and rnbr(i) is a random indexes in
{1,…,D}.
Step 3. Selection: If f(Ui,G) ≤ f(Xi,G), then Xi,G + 1 =Ui,G,

else Xi,G + 1 = Xi,G, where f is the objection function.



Figure 3 The simplified inflammatory regulatory network based on mutual information. The lines ended with arrows and bars denote
positive and negative regulatory interactions, respectively. The lines without arrows or bars represent binding interactions.
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Average relative error
The average relative error (ARE) is defined as follows.

ARE ¼ 1
n

Xn
i¼1

Y sim tið Þ−Y exp tið Þ�� ��
Y exp tið Þ ;

where Ysim(ti) and Yexp(ti) are the simulation and experi-
ment values of the protein at time point ti and n is the
number of samples. In this study, n=6.

Sensitivity analysis
Sensitivity analysis is a useful way to investigate the ef-
fects of parameters variations on changes in the model
outputs. We formulate the sensitivity si(t) of parameter
P at time t as follows:

si tð Þ ¼ ∂Oi tð Þ
Oi tð Þ =

∂P tð Þ
P tð Þ

≈ Oi P þ ΔP; tð Þ−Oi P; tð Þj j=Oi P; tð Þð Þ= ΔP=Pð Þ;

where Oi(t) is the i-th model output at time t, P is the
parameter, ΔP is a small perturbation of P.
Then we define the sensitivity Si of the i-th model out-

put with respect to parameter P blow.

Si ¼ 1
n

Xn
t¼1

si tð Þ;

where n is the number of samples (time points).

Enrichment analysis
We conducted a functional enrichment analysis for the
network based on GO Biological Processes (BP) terms
and the KEGG pathway with the DAVID bioinformatics
database [45]. The enrichment significance was deter-
mined by the DAVID tool. The P-values were then
corrected for the false discovery rate (FDR). In this
study, all the proteins other than IAV in the network are
mapped with the DAVID database. For the complex, one
member of the complex was mapped. The criterion for
statistically significant enrichment was an FDR adjusted
p-value less than 0.002.

Results
The optimized IRN based on the experimental data
The initial and simplified IRNs (Figure 3) were
constructed using IPA software and the PCA-CMI algo-
rithm (See the Methods), respectively. To further
optimize the network according to the experimental data,
we first estimated all parameters in our nonlinear ODEs
by the DE algorithm (See the Methods). The DE algo-
rithm was carried out ten times, and the best parameter
set was obtained, which is listed at Additional file 4:
Table S2.
Second, we further deleted some nodes and edges to
simplify the IRN according to the following rules. If the
optimal value of the kinetic parameter ki_j was zero, we
deleted the directed edge, which indicates that biomole-
cular j does not regulate biomolecular i in the network.
Furthermore, if there was no edge to connect with biomo-
lecular i, we deleted the node i in the network. Finally, if
the node i has been deleted in the network, the degra-
dation rate di was set to zero in the numerical simulation.
The optimized IRN is shown in Figure 4.
Based on the optimal parameters, we performed a nu-

merical simulation for all nodes in the network for com-
parison with the experimental data. The dynamical
processes of 8 key proteins are plotted in Figure 5 and
those of other proteins are displayed in Additional file 5.
The average relative errors (AREs) of the 98% proteins are
less than 0.3, and those of the 2% proteins are within the
interval [0.3, 0.7] (Figure 6). These results indicated the fi-
delity of the obtained IRN. In addition, from the dynam-
ical viewpoint, sensitivity analysis of the ODE models is
very important to quantify the reliability of the parameters
(regulatory strength between two genes) in the model (See
the Methods). The results of the sensitivity analysis
showed that the concentrations of the proteins are not
sensitive to the perturbation of parameters (Figure 7),
which indicating the reliability of the obtained IRN.

Prediction of regulatory interactions in IRN
Among the regulatory interactions in the optimized net-
work, 45 interactions have been reported in the literature
and are represented by red lines in Figure 4. In addition, 37
new regulatory interactions have been predicted from the
network and are denoted by black lines in Figure 4. Fur-
thermore, the statistical significance of these regulations
between paired proteins was tested using the method
presented in the literature [15,20]. The significant and
non-significant regulations were denoted by thick and thin
lines in Figure 4, respectively. The number of significant
and non-significant regulations was summarized in Table 2.
The results demonstrated that most of the predicted regu-
latory interactions, which are the same as the validated
experimental interactions, are statistically significant.
The presence of false positive interactions is a common

problem in inferring a network. One source of false posi-
tive interactions is indirect effects (i.e., in a cascade A→
B→ C and A→ C, protein A regulates C and may be me-
diated by B, so the direct regulatory interaction A→ C
may be a false positive interaction). Comparing the opti-
mized IRN with the initial IRN, we have also identified 8
false positive interactions, which are shown by dashed
lines in Figure 3. For example, the interactions involving
the regulation of IFN-β by TLR3 and IL6 by TNF take ef-
fects during IAV infection through other chemical mole-
cules. In our work, we have found that TLR3 regulates



Figure 4 The optimized inflammatory regulatory network. The lines ended with arrows and bars denote positive and negative regulatory
interactions, respectively.The lines without arrows or bars represent binding interactions. The dashed lines indicated the false positive interactions
identified by the proposed method. The red and black lines stand for the regulatory interactions which have been validated by biological
experiments and are predicted by the proposed method, respectively. The significant and non-significant regulations are denoted by thick and
thin lines, respectively.
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IFN-β through NFκB signaling, which is consistent with
previous findings. The TLR3-induced NFκB signaling
pathway is triggered by the virus, and NFκB regulates
expression of the proinflammatory molecule IFN-β in the
immune responses [46]. We have also found that TNF reg-
ulates IL6 mediated by the activation of CCL2 or CD14.
The interactions in the optimized network are further
classified, and detailed descriptions are presented in
Additional file 6: Table S3.

Identification of the important biological processes and
pathways
To gain further insight into the biological interpretation
of the optimized IRN during IAV infection, we have
performed Biological Process (BP) terms and a KEGG
pathway enrichment analysis of all the species other than
IAV in the optimized IRN (See the Methods). Functional
enrichment analysis of the species was conducted using
DAVID [45]. The annotation analysis shows enrichment
in BP involved in the defense response, inflammatory re-
sponse, immune response and regulation of cytokine
production. The top 10 enriched BP are listed in Table 3,
and all detailed lists of the significantly enriched BP
terms (FDR<0.002) are available in Additional file 7. In
addition, network ontology analysis (NOA) which anno-
tates biological networks [47], was used to analyze the
enriched functions of the optimized IRN. The results of
NOA are shown in Additional file 7. The functions of the



Figure 5 Comparisons between the numerical simulation results and experimental data of IAV, IL32, IFN-β, TLR3, CCL16, CD40, TNF, NFκB.
The blue and red lines denote the experiment and simulation results, respectively. The stars represent experimental data at each time point. The
experimental errors are also plotted as short bars at each time point.

Figure 6 The distribution of the average relative errors (AREs)
for the numerical simulation of the proteins in the optimized
network. The y-axis represents the number of proteins whose AREs
fall into the corresponding bins.

Figure 7 The sensitivity analysis for the parameters in the ODE
models. The x-axis is the outputs (proteins) in the model and the
y-axis is the calculated sensitivity.
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Table 2 The number of significant and non-significant
regulations

Validated Predicted

Significant 24 21

Non-significant 21 16

The second and third columns are the number of regulations validated by
biological experiments and predicted by our proposed method, respectively.

Table 4 Significantly enriched KEGG pathways

KEGG pathway term Count FDR References

Hsa04060:Cytokine-cytokine receptor
interaction

23 2.49e-19 [49,50]

Hsa04620:Toll-like receptor signaling
pathway

14 5.11e-12 [47,50,52]

Hsa04672:Intestinal immune network for
IgA production

8 1.07e-05 Predicted

Hsa04630:Jak-STAT signaling pathway 11 1.30e-05 [36,49,50]

Hsa04622:RIG-I-like receptor signaling
pathway

8 1.51e-04 [47,53-55]

Hsa04623:Cytosolic DNA-sensing
pathway

7 7.10e-04 Predicted

Hsa04621:NOD-like receptor signaling
pathway

7 0.001461 [47,48,50]

Hsa05330:Allograft rejection 6 0.001944 Predicted

The second column is the number of proteins from our protein list in the
corresponding GO term. In the last column, the corresponding references of
the pathways involved in influenza A virus infection are given, and the terms
”predicted” indicate that the pathways have not been reported by
previous literatures.
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optimized IAV-induced IRN are enriched in the response
to stimulus, immune system process, inflammatory re-
sponse, response to wounding and positive regulation of
cellular processes, which are similar to the results by
employing DAVID. The functional annotations of the op-
timized IRN reveal that the reconstructed IRN functions
reasonably well and they reflect the defense response,
immune response, response to wounding and regulation
of cytokine production are the important processes of
IAV-induced inflammatory response.
The KEGG pathway enrichment analysis have identified

a total of 8 pathways significantly enriched in this network
(FDR<0.002). These pathways are shown in Table 4.
Among them, the Toll-like receptors, the RIG-I-like recep-
tors and the NOD-like receptors have been shown to be
the main pattern-recognition receptors (PRR) by which
the innate immune system recognizes the influenza virus
infection [48]. Moreover, the NOD-like receptors play a
primary role in host defence against invading pathogens
and regulating NFκB signalling, IL1β production, and cell
death, indicating that they are crucial to the pathogenesis
of a variety of inflammatory human diseases [49]. The
Table 3 Top 10 significantly enriched GO terms

GO term (Biological Processes) Count FDR

GO:0006952~defense response 24 7.01e-
20

GO:0006954~inflammatory response 18 9.38e-
16

GO:0009617~response to bacterium 15 2.53e-
14

GO:0006955~immune response 21 2.65e-
14

GO:0009611~response to wounding 18 3.56e-
12

GO:0006935~chemotaxis 12 2.35e-
10

GO:0042330~taxis 12 2.35e-
10

GO:0002684~positive regulation of immune system
process

13 6.24e-
10

GO:0051240~positive regulation of multicellular
organismal process

13 8.39e-
10

GO:0001817~regulation of cytokine production 12 9.18e-
10

The second column is the number of proteins from our protein list in the
corresponding GO term.
cytokine-cytokine receptor interaction and Jak-STAT sig-
nalling pathway are also well known antiviral response
pathways [50,51].
Three additional identified pathways have not been

demonstrated to be associated with IAV infection. The
intestinal immune network for IgA production signifi-
cantly enriched (FDR=1.07e-05). Some researchers have
reported that serum IgA is an inflammatory antibody
that interacts with FcαRI on effector immune cells and
may function as a second line of defence by eliminating
pathogens that have breached the mucosal surface
[56,57]. The detection of cytosolic DNA is related to the
induction of IFN-α/β and other pro-inflammatory cyto-
kines [58-61]. Cytosolic DNA has also been shown to ac-
tivate the TBK1, IRF3 and the caspase-1-dependent
maturation of IL-1β and IL-18 [58,62]. Allograft rejec-
tion is also enriched significantly. Some authors have
reported that influenza infections are associated with
allograft rejection, but there is no evidence that IAV trig-
gers the acute allograft rejection episodes [63-65]. In our
results, under the stimulation of IAV, the allograft rejec-
tion pathway is significantly enriched. These three path-
ways lack literature support but may be promising novel
pathways and need the experimental validation.

Discussion
The induction of pro-inflammatory cytokines such as
COX-2, TNF, IFNs, IL27 and CXCL10 is essential for
the host immune response during virus infection, but
inappropriately sustained induction causes cytokine-
storms, which are associated with a wide variety of infec-
tious diseases [66,67]. Because of the complexity of the
inflammatory response, it is necessary to study the
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underlying mechanisms of inflammatory response based
on a network approach. In this study, we proposed a
nonlinear ODE-model based computational method to
construct a cell-specific IRN during IAV infection. The
main contributions of this study include three aspects.
First, we built the large-scaled nonlinear ODE model of
the network including 50 equations and 192 kinetic pa-
rameters. Most of model-based studies for inferring net-
works are based on linear ODE models or discrete
models [14-16], and these linear ODEs are approximated
by difference equations or the steady-state assumption,
which are easily solved by classical optimization algo-
rithms or software. However, the regulatory interactions
in real biological networks are often non-linear. There-
fore, the non-linear ODE model can better describe the
complicated regulatory networks. The comparison study
for the advantage of involving nonlinear items in the
model was also performed by using linear ODE model
to describe the regulatory network. The AREs in the
linear model exhibited significantly higher values than
those in the nonlinear model (Additional file 8: Figure S1,
P-value<0.001). These results indicated that the non-linear
ODE model can better describe the complicated regulatory
networks. Second, we combined the DE algorithm with
a priori knowledge to refine the nonlinear ODEs and
solve the nonlinear optimization problem derived from
constructing the network. This nonlinear optimization
problem is difficult to solve using classical optimization
algorithms because of high nonlinearity and no explicit
expression. Although DE algorithm is a published stochas-
tic search technique, it is a repeated process from the
model to optimization and then from improved model to
optimization. If the model is not correct, the best
optimization algorithm is also useless. Our nonlinear ODE
model has been repeatedly adjusted. Finally, global errors
that reflect the effectiveness of fitting the reconstructed
network to experimental data are presented. In most stu-
dies based on the linear model systems, they did not pro-
vide the errors or only gave the residual errors (local
errors) that cannot quantify the real error between the
networks and the experimental data.
Because our proposed method integrated gene expres-

sion data with a priori knowledge of topological struc-
ture from literature and IPA software, it cannot compare
with the published purely data-driven methods to evalu-
ate the predictive results. However, these published ex-
cellent works may help us to find a more appropriate
way to evaluate the approaches that combined the ex-
perimental data and a priori knowledge in the future.
An increasing number of researchers have focused on

the gene expression profile of host cells infected by in-
fluenza virus [68-70]. However, most reports involve a
single gene or pathway [52,53,71]. Few studies have fo-
cused on the systematic analysis of the regulation of the
cell-signaling cascade by IAV. To understand the global
regulatory mechanisms of the inflammatory response
during IAV infection, we conducted a pathway en-
richment analysis of the optimal IRN with the KEGG
database. From our results, a few host cellular signaling
pathways stimulated by IAV infection have been identified.
Some of these signaling pathways are critical to the innate
immune response of the host cell against influenza virus,
such as the Toll-like receptor, the RIG-I-like receptor and
the NOD-like receptor pathways [48,54]. The activation of
the TLR signaling pathway results in the stimulation of
both innate and adaptive immune responses, and TLR
agonists may represent an effective and broad-spectrum
antiviral strategy to combat influenza viruses [71]. Several
virus-encoded components that antagonize RLR signalling
interact with and inhibit the IFN-α/β activation pathway
using both RNA-dependent and RNA-independent me-
chanisms [55,72].
Among the three novel pathways identified in our study,

the functions of IgA have been studied [56,57]. Secretory
immunoglobulin A (SIgA) is the major antibody isotype
present in mucosal secretions and has many functional at-
tributes, both direct and indirect, serving to prevent in-
fective agents such as bacteria and viruses from breaching
the mucosal barrier [42]. Many DNA-sensors have been
reported, such as IFI16, RNA Polymerase III, DAI, AIM2,
NLRP3, LRRFIP1 and DDX9/36. They play an important
role in IFN-α/β and cytokine production [54,58,73]. For
example, IFI16 can induce the inflammasome in response
to Kaposi’s sarcoma-associated herpesvirus infection and act
as a mediator of the anti-inflammatory actions of type I IFNs
[73-76]. AIM2 triggers the assembly of the inflammasome,
culminating in caspase-1 activation, IL-1β maturation and
pyroptotic cell death [77]. LRRFIP1 has been shown to
contribute to the production of IFN-β induced by vesicu-
lar stomatitis virus (VSV) and Listeria monocytogenes in
macrophages [78]. This evidence indicates that DNA
sensors play an important role in virus infection.
However, these results need further biological experimental
verification.
It should be noted that the protein activity profiles are

substituted with the corresponding gene expression levels
in the computation in the study because the protein ac-
tivity profile data have not been easily obtained thus far.
Therefore, there may be some discrepancy when mo-
delling the network. In addition, the network we
constructed does not involve RNA components, such as
target mRNAs, micro-RNAs (mi-RNAs) or other non-
coding RNAs, which may also modulate signals at many
steps. Recent studies have provided evidence of a poten-
tial role for long non-coding RNAs (lncRNAs) in regula-
ting inflammatory gene expression [79,80]. Emerging
evidence shows that mi-RNAs have been clearly impli-
cated in the regulation of inflammatory responses
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[81-85]. To better understand the molecular mechanisms
of the inflammatory response during IAV infection, it
requires the challenging process of constructing inflam-
matory regulatory networks by integrating different types
of data, such as gene expression data, protein activity
profiles, mi-RNAs expression profiles and Chip-seq data.
Conclusions
A cell-specific IRN in IAV infection has been cons-
tructed based on the proposed method. Furthermore,
37 new regulatory interactions were predicted and 8
false positive interactions of IRN and 3 novel pathways
were identified in the study. These new findings pro-
vide insight into our understanding of the mechanism
of inflammatory response in IAV infection. Under-
standing the pivotal role of signaling pathways during
IAV infection may provide new insight into therapeutic
strategies for the control of virus infection and inflam-
matory response. Our findings also have significant
implications on the development of biomarkers for in-
fectious disease.
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