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Abstract: Identifying compound-protein (drug-target, DTI) interactions (CPI) accurately is a key
step in drug discovery. Including virtual screening and drug reuse, it can significantly reduce the
time it takes to identify drug candidates and provide patients with timely and effective treatment.
Recently, more and more researchers have developed CPI’s deep learning model, including feature
representation of a 2D molecular graph of a compound using a graph convolutional neural network,
but this method loses much important information about the compound. In this paper, we propose
a novel three-channel deep learning framework, named SSGraphCPI, for CPI prediction, which is
composed of recurrent neural networks with an attentional mechanism and graph convolutional
neural network. In our model, the characteristics of compounds are extracted from 1D SMILES string
and 2D molecular graph. Using both the 1D SMILES string sequence and the 2D molecular graph can
provide both sequential and structural features for CPI predictions. Additionally, we select the 1D
CNN module to learn the hidden data patterns in the sequence to mine deeper information. Our model
is much more suitable for collecting more effective information of compounds. Experimental results
show that our method achieves significant performances with RMSE (Root Mean Square Error) = 2.24
and R2 (degree of linear fitting of the model) = 0.039 on the GPCR (G Protein-Coupled Receptors)
dataset, and with RMSE = 2.64 and R2 = 0.018 on the GPCR dataset RMSE, which preforms better than
some classical deep learning models, including RNN/GCNN-CNN, GCNNet and GATNet.

Keywords: deep learning; compound-protein interactions; compound properties; protein preperties;
IC50 value

1. Introduction

The effective identification of compound-protein interactions (CPIs) plays an im-
portant role in drug design and phage biology [1]. The discovery of unknown CPIs,
namely drug repositioning or drug screening [2,3], contributes to the discovery of new
uses and potential side effects of drugs, which not only provides valuable insights for the
understanding of drug action and off-target adverse events, but also greatly reduces the
time-consuming and laborious process of traditional clinical trial methods [4]. Compounds
can be represented by a Simplified Molecular Input Line Entry Specification (SMILES)
string sequence [5] and 2D molecular graph with atoms as nodes and chemical bonds
as edges; proteins are represented by sequences of amino acids. CPI indicates that the
compounds have positive or negative effects on the functions performed by proteins, thus
affecting the development of diseases [6].

In order to predict the potential CPI, many researchers have proposed a number of
methods. The traditional structure-based and ligand-based virtual screening methods,
although having achieved great success, are not applicable when the 3D structure of
proteins is unknown or there are too few known ligand datasets. For this reason, Bredel and
Jacoby introduced a new idea called chemical genomics to predict the compound-protein
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interaction without considering the 3D structure of the protein [7]. From the perspective of
chemical genomics, the researchers then developed a prediction method based on machine
learning, which considered the chemical space, genomic space and their interactions within
a unified framework. The chemical space refers to the set of all possible molecules, and
the genomic space refers to the set of collective characterization, quantitative research
and comparative research of all genes of organisms. For example, Jacob and Vert [8]
applied the support vector machine with two nuclei and used the finite element analysis
based on tensor product between chemical substructures and protein families. Yamanishi
et al. [9] used a bipartite graph learning method to map compound proteins to a common
eigenvector space. Bleakley and Yamanishi [10] proposed a two-part local model (BLM)
using similarity measures between chemical structures and protein sequences.

Most traditional prediction methods use only simple characterization of labeled data
(such as known protein structure information and available CPI) to assess the similarity be-
tween the compound and the protein and infer unknown CPIs. For example, the similarity
kernel function [11] and the graphics-based SIMCOMP [12] method are used to compare
different drugs and compounds, which are used to describe the drug-protein interaction
spectrum. The normalized Smith Waterman score [9] was used to assess the similarity
between targets (proteins).

In the field of machine learning, representation learning (RL) and deep learning
(DL) are two popular methods for effectively extracting features and solving scalability
problems in large-scale data analysis. RL aims to automatically learn data representation
(features) from original data collected from reference and open platform, which can be
more effectively utilized by downstream machine learning models to improve learning
performance [13,14]. DL is a data-driven technique that has proven to be one of the best
models for predicting drug target binding affinity. DeepDTA [15] uses convolutional
neural network (CNNs) to extract the low-dimensional real value features of compounds,
which uses a vector having eight elements to represent the features of the proteins. Three
convolution layers were used for feature extraction of compounds and proteins, and finally
concatenates the two feature vectors to calculate the final output through the fully connected
layer. WideDTA [16] follows a similar line of thought, and it also takes advantage of two
additional features, ligand maximum common structure (LMCS) and protein domains
and motifs (PDM), to improve the model performance. The LMCS is obtained after the
pair comparison of 2k molecules [17]. PDM refers to the motifs and profiles of each
protein obtained from the PROSITE database. Multiple sequence alignment of protein
sequences reveals that specific regions within the protein sequence are more conserved
than others, and these regions are usually important for folding, binding, catalytic activity
or thermodynamics. These subsequences are called either motifs or profiles. A motif is
a short sequence of amino acids (usually 10–30 aa), while profiles provide a quantitative
measure of sequences based on the amino acids they contain. GraphDTA [18] uses neural
network graphs [19] for graph convolutional neural network [20] (GCN) instead of learning
representative compounds of CNN. In addition, the feature vectors of compounds and
proteins in DeepAffinity were extracted using recurrent neural networks (RNNs), where
protein feature vectors were encoded by protein structure attribute sequence (SPS) [21].
The main advantage of deep learning is that through nonlinear transformation in each
layer [22], they can better represent the original data and, thus, facilitate the learning of
hidden patterns in the data. DL are now being focused on many other fields, including
bioinformatics such as genomics [23] and quantitative structure-activity relationships in
drug discovery [24].

In this paper, a new deep learning framework is developed which combines the
local chemical environment of the sequence and the topological structure of the molecule
together to predict the compound protein interaction. Specifically, proteins are represented
by structural property sequence SPS (which have lower dimensions and more information
than protein Pfam domains), and compounds are represented by the SMILES string and
molecular graph. After that, we propose a deep learning model SSGraphCPI that combines
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recurrent neural networks and graph convolutional neural networks, using unlabeled data
and labeled data to predict CPI. Unlabeled data refer to a compound/protein characteristic
representation and are used in the pre-training section of RNN/RNN; Labeled data refer to
compound-protein interactions and are used during unity training (pretraining and unity
training refer to 2.2.1). The input of RNN/RNN is SPS sequence and SMILES string, and
the input of GraphCNN is 2D structure diagram. In the process of unified training, the
SPS/SMILES feature expressions were input into CNN to get protein and compound feature
vectors, and then compound feature vectors were combined with the vector obtained by
GraphCNN to get the final compound vector. The final protein vector and compound
vector were input into the full connection layer to predict CPI. The experimental results
show that the deep learning model proposed in this paper has a lower root mean square
(RMS) error than the previous model. Later, we refer to the pre-trained SPS/SMILES
model as RNN/RNN, SMILES combined with 2D structural diagrams as RNN/GCNN
and SMILES/SPS/ 2D structural diagrams as RNN/RNN/GCNN.

2. Results
2.1. Evaluation Index

RMSE: The calculation method of the root mean square error (RMSE) is shown in
Formula (1):

RMSE =

√
∑n

i=1(Xmodel,i − Xobs,i)
2

n
(1)

where i represents the ith test sample, Xobs,i and Xmodel,i represent the observed value and
the predicted value of the model, respectively, and n represents the total experimental data.
RMSE is used to represent the absolute error. The better the model effect is, the lower RMSE
the model has.

R2: R2 is used to evaluate the degree of linear fitting of the model. The greater R2 is,
the better the degree of fitting is. The calculation method of R2 is shown in Formula (2):

R2 = 1− SSresidual
SStotality

or R2 =
SSregression

SStotality
(2)

where SSresidual represents the total sample difference between the actual value and the
predicted value of the model, SSregression represents the sum of squares of the differences
between the predicted value and the mean value and SStotality represents the average sum
of the differences between the real value and the mean value.

2.2. Comparison of RMS Errors Values for Different Models

To assess the impact of our newly proposed SSGraphCPI model on compound-protein
interactions, we compared RMS errors in different datasets. The smaller the RMS errors
are, the better accuracy the prediction model has in describing the experimental data. In
addition, if SSGraphCPI and SSGraphCPI2 achieve the best or second best values, they are
shown in bold in the table. If one of the two models achieves the best value and the other
does not achieve the second best value, only the best value is shown in bold. Table 1 shows
that the RMS errors of our SSGraphCPI model are all lower than the most advanced model
in the test set, and the SSGraphCPI2 model even reaches the minimum value. As can be
seen from Tables 2 and 3, the SSGraphCPI model reaches the minimum value on the ER
and Channel dataset. As can be seen from Table 4, our model shows good performance
on the GPCR dataset. As can be seen from Table 5, although the Kinase dataset achieves
lower RMSE and higher R than other models, the RMSE of this dataset is significantly
improved compared with other datasets, indicating that the performance of the model
in data specificity needs further improvement. To sum up, the SSGraphCPI model can
effectively improve the accuracy of predicting compound-protein interactions, and the
SSGraphCPI2 model also shows better performance on several datasets.
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Table 1. RMS errors for different models on the Test dataset.

Models Representation of Compound Representation of Protein RMS Error R2

GRU/GCNN-CNN molecular graph (GCNN) SPS sequence 1.62 0.28
GCNNet molecular graph (GCNN) + SMILES Amino acid sequence 0.95 0.51

GATNet molecular graph (GCNN + Attention)
+ SMILES Amino acid sequence 0.91 0.57

SSGraphCPI molecular graph (GCNN + Attention)
+ SMILES SPS sequence 0.86 0.63

SSGraphCPI2 molecular graph (GCNN + Attention)
+ SMILES

SPS sequence + Amino acid
sequence 0.85 0.66

Table 2. RMS errors for different models on ER dataset.

Models Representation of Compound Representation of Protein RMS Error R2

GRU/GCNN-CNN molecular graph (GCNN) SPS sequence 2.33 0.036
GCNNet molecular graph (GCNN) + SMILES Amino acid sequence 2.29 0.048

GATNet molecular graph
(GCNN + Attention) + SMILES Amino acid sequence 2.14 0.044

SSGraphCPI molecular graph
(GCNN + Attention) + SMILES SPS sequence 2.06 0.053

SSGraphCPI2 molecular graph
(GCNN + Attention) + SMILES

SPS sequence + Amino acid
sequence 2.12 0.045

Table 3. RMS errors for different models on Channel dataset.

Models Representation of Compound Representation of Protein RMS Error R2

GRU/GCNN-CNN molecular graph (GCNN) SPS sequence 2.62 0.019
GCNNet molecular graph (GCNN) + SMILES Amino acid sequence 2.17 0.045

GATNet molecular graph
(GCNN + Attention) + SMILES Amino acid sequence 2.26 0.039

SSGraphCPI molecular graph
(GCNN + Attention) + SMILES SPS sequence 2.11 0.048

SSGraphCPI2 molecular graph
(GCNN + Attention) + SMILES

SPS sequence + Amino acid
sequence 2.23 0.041

Table 4. RMS errors of different models on the GPCR dataset.

Models Representation of Compound Representation of Protein RMS Error R2

GRU/GCNN-CNN molecular graph (GCNN) SPS sequence 2.44 0.026
GCNNet molecular graph (GCNN) + SMILES Amino acid sequence 2.45 0.026

GATNet molecular graph
(GCNN + Attention) + SMILES Amino acid sequence 2.37 0.035

SSGraphCPI molecular graph
(GCNN + Attention) + SMILES SPS sequence 2.24 0.039

SSGraphCPI2 molecular graph
(GCNN + Attention) + SMILES

SPS sequence + Amino acid
sequence 2.19 0.042



Int. J. Mol. Sci. 2022, 23, 3780 5 of 13

Table 5. RMS errors of different models on the Kinase dataset.

Models Representation of Compound Representation of Protein RMS Error R2

GRU/GCNN-CNN molecular graph (GCNN) SPS sequence 2.98 0.011
GCNNet molecular graph (GCNN) + SMILES Amino acid sequence 2.76 0.014

GATNet molecular graph
(GCNN + Attention) + SMILES Amino acid sequence 2.73 0.015

SSGraphCPI molecular graph
(GCNN + Attention) + SMILES SPS sequence 2.64 0.018

SSGraphCPI2 molecular graph
(GCNN + Attention) + SMILES

SPS sequence + Amino acid
sequence 2.47 0.024

2.3. Comparison of Loss Values of Different Models

We compared the loss values of different models during the training process, and
trained a total of 100 epochs. We took 10 epochs as one node and plotted the loss line
diagrams of different models. As shown in Figure 1, the loss value of SSGraphCPI model
at most epoch points was lower than that of the current most advanced model and the loss
value tended to 0.41. The loss value of the SSGraphCPI2 model is much lower than that
of the other models and finally tends to 0.35. It can be seen that the model proposed in
this paper can effectively improve the performance of previous models and predict the
compound protein interaction more accurately.
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2.4. Model Validation

In order to verify the validity of the SSGraphCPI model, we further used the model
to predict compounds with high interaction strength from the number of compounds for
a specific protein. Specifically, we selected the epidermal growth factor (EGF) receptor
protein, which is a heat-resistant single chain low molecular polypeptide composed of
53 amino acid residues. EGF receptor has a wide range of effects and plays an important
role in the estimation of tumor prognosis and selection of treatment regimens, as well as in
the treatment of gastric ulcer and liver failure.

In total, 145 compounds with different interaction intensities with this protein were
selected for prediction, and the first three predicted compounds were: C12H7N3, C11H6N2O
and C34H30N4O2S2. The top 30 compounds known to interact with EGF proteins are shown
in Table 6, with our predicted top three compounds highlighted in bold. BindingDB
database showed that the first two compounds were directly related to the EGF receptor.
The top three compounds we predicted ranked 2nd, 14th and 15th, respectively, among
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the 145 known compound-protein interaction strengths. The 2D molecular diagrams
of C12H7N3, C11H6N2O and C34H30N4O2S2 are arranged from left to right as shown in
Figure 2. The 3D structure of these three compounds is shown in Figure 3 from left to
right. Furthermore, we conducted molecular docking of these three groups of compounds
and proteins, and the docking results showed that the third compound reached a high
docking score of −7.1 with EGF protein, and this compound ranked 15th among known
interactions, as shown in Figure 4. This also shows that our model can effectively predict
compound-protein interactions.

Table 6. The first 30 compounds known to interact with EGF proteins.

id BindingDB_id PubChemCID Compound Molecular Formula

1 BDBM4343 736236 C11H9NO3
2 BDBM4282 5328751 C12H7N3
3 BDBM4279 37583 C11H5N3
4 BDBM4377 836 C9H11NO4
5 BDBM4320 746495 C12H10N2O3
6 BDBM4348 720879 C11H9NO4
7 BDBM4381 228618 C10H8N4O
8 BDBM4325 5614 C18H22N2O
9 BDBM4383 54212223 C10H7N3O

10 BDBM4012 5328588 C38H38N4O2S2
11 BDBM4013 5328589 C17H16N2OS
12 BDBM3320 5328066 C15H16N6
13 BDBM3972 5328551 C22H20N2O4S2
14 BDBM4337 5328787 C11H6N2O
15 BDBM3990 5328569 C34H30N4O2S2
16 BDBM3991 5328570 C20H14N4S2
17 BDBM4041 5328617 C30H24N6O2S2
18 BDBM4014 5328590 C11H12N2OS
19 BDBM4407 5328824 C16H15N3
20 BDBM3956 5328535 C10H9NO2S
21 BDBM3356 5328102 C20H18N4O2Se2
22 BDBM3971 5328550 C20H16N2O4S2
23 BDBM3333 5328079 C14H12N6O2
24 BDBM3258 5328015 C16H15N3O
25 BDBM3338 5328084 C15H12F3N5
26 BDBM3275 5328024 C15H12N4O2
27 BDBM3340 5328086 C15H12F3N5
28 BDBM4003 5328580 C38H34N4O6S2
29 BDBM4405 720610 C17H17N3
30 BDBM3964 5328543 C12H13NO2S
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3. Discussion

This model is the first three-channel model that includes protein SPS sequence, SMILES
string and 2D structure diagram of a compound. The input of the three channels contains
physicochemical properties, sequence information and structure information, which is a
very comprehensive input. Moreover, an attention mechanism is added in each channel,
which can extract compound protein characteristics more effectively.

The comparison model is different from the model in input or deep learning frame-
work, which is more conducive to the comparison of suitable input and deep learning
framework. In this paper, the random partition method is adopted in the division of
training set and verification set, and further research can be made on cross verification
and optimization of hyperparameters in the future. In this paper, RMSE and R2 were
used as measurement indexes to compare the differences of different models on different
datasets. It can be seen from the results that SSGraphCPI model can achieve better results
on the same dataset, but there are great differences in model performance between different
datasets, indicating that the sensitivity of the model on specific datasets needs to be studied.

4. Materials and Methods
4.1. Materials
4.1.1. Dataset

BindingDB [25] is an open, accessible, measurable binding affinity database that
focuses on the interactions between target proteins and small pharmaceutical molecules. In
this paper, the Root Mean Square (RMS) error of IC50 is used to evaluate the performance
of the whole model. IC50, also known as the half maximal inhibitory concentration, refers
to the concentration at which a drug has a 50% inhibitory effect on protein. IC50 values
are often used to measure cell resistance to drugs or cell tolerance to drugs. IC50 can
be calculated in a variety of ways. We used molecular data from three public databases,
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namely: the compound SMILES string sequence from STITCH database [26], the protein
amino acid sequence from UniRef [27] database and the compound-protein interaction data
from BindingDB database. In addition, Rdkit was used to convert the SMILES sequence
into a 2D molecular graph of compounds [28].

Starting with 489,280 IC50-labeled samples, we completely excluded four classes of
proteins from the training set, i.e., nuclear estrogen receptors (ER; 3374 samples), ion chan-
nels (14,599 samples), receptor tyrosine kinases (34,318 samples) and G-protein-coupled
receptors (GPCR; 60,238 samples), to test the generalizability of our framework. Moreover,
we randomly split the rest into the training set (263,583 samples including 10% held out
for validation) and the default test set (113,168 samples) without the aforementioned four
classes of protein targets. The label uses the IC50 value of the compound-protein interaction.

4.1.2. Feature Representation of Protein

Previously the most common protein representation for CPI classification was a 1D
binary vector whose dimensions correspond to thousands [29] of Pfam domains [30]
(structural units) and 1 s are assigned based on k-hot encoding [31,32]. Pfam entries include
the family, domain, motif, repeat, disorder and coiled-up coil of proteins.

In this paper, we used the protein structure property sequence (SPS) to represent
protein feature vectors [21]. SPS are encoded by the secondary structure, solvent accessi-
bility, physicochemical properties (acidic/basic, polar/non-polar) and amino acid residue
sequence length of proteins. The SPS sequence represents a protein, not an amino acid.
SSPro is used to predict the secondary structure of each residue [33]. SSPro is a detailed
study of sequence-based structural similarity, predicting secondary structure and solvent
accessibility of proteins at higher fractions than other predictive tools. The SPS method
identifies proteins in the same family and provides explicable protein fragments responsible
for predicting affinity. Taking into account the four properties of proteins, each of which is
represented by an English letter, we get 72 sets of properties, plus 4 sets of special words
(such as beginning, ending, padding and not-used ones) to make up 76 sets of “alphabet”.
Table 7 shows representations of these four properties. For example, the word “AEKM”
implies that the secondary structure of the protein is alpha type, solvent accessibility, al-
kalinity and medium length. The SPS sequence representation of proteins is 100 times
more compact than the amino acid sequence and overcomes the disadvantages based
on the Pfam domain representation: it provides greater discrimination between proteins
within the same family and provides greater interpretability of which protein segments are
responsible for predicting affinity. They provide higher sequence resolution and structural
detail for more challenging regression tasks. When RNN and LSTM train sequences greater
than 1000 [15], the convergence problem can be avoided.

Table 7. Representation of the protein SPS sequence.

Secondary Structure Solvent Exposure Property Length

Alpha Beta Coil Not Exposed Exposed Non-polar Polar Acidic Basic Short Medium Long

A B C N E G T D K S M L

4.1.3. Feature Representation of a Compound

In this study, we propose a new method to express compound eigenvectors using a
combination of two methods. This method considers both the local chemical environment
and the topological structure of the compound. The first representation is the compound
1D SMILES string sequence [5], which is a short ASCII string used to represent the chemical
structure of a compound based on bonds and rings between atoms, such as “C1=C2C
(C=C=C . . . )”, which is a sequence of atomic and covalent bonds. For the convenience of
expression, we take both atomic and covalent bonds as symbols. Therefore, the SMILES
sequence is a symbol sequence. A total of 64 symbols are used for SMILES strings in
our data. Additionally, 4 more special symbols are introduced for the beginning or the
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end of a sequence, padding (to align sequences in the same batch) or not-used ones.
Therefore, we defined a compound ‘alphabet’ of 68 ‘letters’. Compared to the baseline
representation which uses k-hot encoding, canonical SMILES strings fully and uniquely
determine chemical structures and are yet much more compact.

The second representation is a 2D molecular graph structure of the compound, which
is converted from the SMILES string by the Rdkit tool. In this paper, we used three layers
of GCNN (R = 3) and five different convolutional filters instead of one for atoms with
different number of neighbors (H1

1 , . . . , H5
R). For example, if an atom has n neighbors,

then Hn convolutional filter will be used for it in the CNN. The specific process is shown
in Algorithm 1.

Algorithm 1 Graph CNN.

Input: Molecule graph G = (V, E), radius R, hidden weights H1
1 . . . H5

R
Output: A vector ra for each atom a
Initialize: Initialize all the ra
For L = 1 to R do

For each node a ∈ V do
N = neighbors(a)
v← ra + ∑

u∈N
ru

ra ← σ(vH|N|L )
end for

end for

4.2. Methods
4.2.1. SSGraphCPI Model Framework

The SSGraphCPI model consists of three channels, one of which encodes the protein
SPS sequence, and the remaining two channels encode the SMILES string and the 2D
molecular graph of the compound, respectively. Two channels encoding a compound are
integrated and combined with the channel encoding a protein to predict the compound
protein interaction.

First, we use Graph Convolutional Neural Network (GCNN) to encode the 2D molec-
ular graph of compounds. The detailed process has been described in the second part.
Compound SMILES and protein SPS both used the recurrent neural network (RNN) model,
seq2seq [34], which has seen much success in natural language processing and was recently
applied to embedding compound SMILES strings into fingerprints [35]. A Seq2seq model is
an auto-encoder that consists of two recurrent units known as the encoder and the decoder.
The encoder maps an input sequence (SMILES/SPS in our case) to a fixed-dimension
vector known as the thought vector. Then, the decoder maps the thought vector to the
target sequence (again, SMILES/SPS here). We choose gated recurrent unit (GRU) [36] as
our default seq2seq model and treat the thought vectors as the representations learned
from the SMILES/SPS inputs. Our alphabets include 68 and 76 letters (including 4 spe-
cial symbols such as padding in either alphabet) for compound SMILES and protein SPS
strings, respectively. Based on the statistics of 95% CPIs in BindingDB, we set the maximum
lengths of SMILES and SPS strings to be 100 and 152, respectively. Accordingly, we used
2 layers of GRU with both the latent dimension and the embedding layer (discrete letter
to continuous vector) dimension being 128 for compounds and 256 for proteins. We used
an initial learning rate of 0.5 with a decay rate of 0.99, a dropout rate of 0.2 and a batch
size of 64.

By pre-training compound and protein features, nonlinear co-dependencies between
protein residues or compound atoms in the sequence can be captured. “Long-term” depen-
dence is important for compound-protein interactions because the corresponding residues
or atoms can be tightly bound in 3D structures and work together to facilitate molecular
interactions. The pre-training model includes embedding layer, encoder, attentional mecha-
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nism and decoder. This section uses unmarked SPS/SMILES data. The training time was
100 epochs with a learning rate of 0.001.

In the unified model, RNN/RNN part includes the embedding layer, encoder, attention
mechanism and a CNN is added after RNN/RNN, respectively. The pre-trained embedded
layer and encoder parameters will be used as the initialization of the unified model, and
will be co-trained with the attention mechanism, CNN and GCNN. This section uses labeled
compound protein interaction data. This is equivalent to the entire model being trained
with 200 epochs at a learning rate of 0.0001.

The entire SSGraphCPI pipeline is trained from end to end [37], with the pre-trained
RNN/RNN serving as warm initializations, for improved performance over two-step
training. The pre-trained RNN/RNN initializations prove to be very important for the
non-convex training process [38]. The specific model diagram is shown in Figure 5.
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4.2.2. Baseline Model

We compared the SSGraphCPI model presented in this paper with the following most
advanced baseline model.

RNN/GCNN-CNN [21]. In this model, the two-dimensional molecular graph of
the compound and the SPS sequence of the protein were used as inputs, and the one-
dimensional SMILES sequence of the compound was not considered. In this model,
recurrent neural network is used to encode the SPS sequence of proteins to obtain the
protein feature vectors, and the graph convolutional neural network is used to encode
the molecular graph of compounds to obtain the compound feature vectors. Finally, the
convolutional neural network was used to predict the protein-compound interactions.

GCNNet [39]. Similar to the method proposed in this paper, the model has three input
variables, which are the protein amino acid sequence, compound 2D molecular graph and
compound SMILES string. Different from this paper, GCNNet uses LSTM to encode the
protein amino acid sequence and SMILES string, and finally uses the convolutional neural
network to predict the compound-protein interaction. LSTM is a special RNN network,
which is mainly used to solve the problem of gradient disappearance and gradient explosion
in long sequence problems. In short, LSTM performs better in longer sequence problems
than normal RNN networks.

GATNet [39]. This model only adds the attention mechanism to the 2D molecular
graph of compounds in the GCNNet model, which then form Graph Attention Networks
(GATs). The attention mechanism is applied to the graph neural network, and the contri-
bution of each neighbor to the generation of new features at each layer of learning nodes



Int. J. Mol. Sci. 2022, 23, 3780 11 of 13

is aggregated according to the contribution of neighbor features, so as to generate new
features of nodes. GATNet has the characteristics of low computational complexity and
suitable for inductive learning task.

4.2.3. SSGraphCPI2 Model Framework

We developed the SSGraphCPI2 model, which added protein amino acid sequence
on the basis of the SSGraphCPI model. We also use the bidirectional GRU to extract the
features of the amino acid sequence of the protein, and then use the attention model to
strengthen the key sequence fragments, and enter it into the 1D convolutional neural
network to obtain the feature vectors of the protein. Then, it is combined with the feature
representation vector obtained from the SPS sequence of proteins to obtain the final protein
characterization. It combines with the compound feature vector into the fully connected
layer to predict the compound protein interaction. SSGraphCPI2 also adopts pre-training
and unified training methods. SMILES and SPS channels adopt pre-training parameters in
SSGraphCPI model. After the pre-training of SSGraphCPI2, the parameters of the channel
with amino acid as input can be obtained. In the unified training, the RNN parameters of
the above three channels were used as the initialization of the unified training, and finally
all the parameters of the model were obtained. The model extracted protein information in
a more comprehensive way, among which SPS sequence is about the structure and physical
and chemical properties of the protein, and the amino acid sequence is about the whole
context of the protein. The experimental results show that the model can effectively reduce
the predicted RMS errors. The network architecture of protein feature extraction is shown
in Figure 6.
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5. Conclusions

Accurately predicting CPI is an important and challenging task in drug discovery.
In this article, we present a new end-to-end deep learning framework, SSGraphCPI, for
CPI prediction. The framework combines GCNN model to extract molecular topological
information and BiGRU model to obtain local chemical background of SMILES/SPS. This
method can extract compound/protein related information more effectively and compre-
hensively, which is beneficial to CPI prediction. The results show that SSGraphCPI can
effectively improve the accuracy of the model and reduce the RMS error of the model on
most datasets.

Furthermore, we proposed a new deep learning model SSGraphCPI2, which added
protein amino acid sequence information on the basis of SSGraphCPI, and also used the
BiGRU model for feature learning. The results show that the RMS error and loss value
on most datasets are significantly reduced, indicating that this model can also effectively
improve the accuracy of CPI prediction.
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