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Abstract: Ractopamine (RAC) is a synthetic phenethanolamine, β–adrenergic agonist used as a feed
additive to develop leanness and increase feed conversion efficiency in different farm animals. While
RAC has been authorized as a feed additive for pigs and cattle in a limited number of countries,
a great majority of jurisdictions, including the European Union (EU), China, Russia, and Taiwan,
have banned its use on safety grounds. RAC has been under long scientific and political discussion
as a controversial antibiotic as a feed additive. Here, we will present significant information on
RAC regarding its application, detection methods, conflicts, and legal divisions that play a major
role in controversial deadlock and why this issue warrants the attention of scientists, agriculturists,
environmentalists, and health advocates. In this review, we highlight the potential toxicities of RAC
on aquatic animals to emphasize scientific evidence and reports on the potentially harmful effects of
RAC on the aquatic environment and human health.

Keywords: ractopamine; feed additive; toxicity; aquatic animals

1. Introduction

Feed additives are nonnutritive products added to the basic feed mix to enhance pro-
ductive function and growth, preserve feeds, increase the efficiency of feed utilization, or
benefit metabolism and animal health [1,2]. Numerous studies and individual experiences
gained by livestock owners have shown that the comprehensive feeding of animals, espe-
cially for high-yielding cattle, is impossible without highly effective feed additives such as
antibiotics [3,4]. The beneficial effect of antibiotics as a growth stimulant was discovered
in the 1940s [1,2]. Their uses in aquaculture for disease control, prevention, and growth
promoters have been practiced for a long time. However, the unrestricted and widespread
use of prophylactic antibiotics in aquaculture has caused a series of developments harmful
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to human health and the environment [2]. The consumption of antibiotics as feed additives
in large amounts increases the tendency of their residual products to settle in aquaculture
ecosystems, accumulate in fish meat that compromises their immunity, and cause the
emergence of antibiotic-resistant bacteria in aquatic environments [5,6].

RAC is a popular growth promoter extensively used as a feed additive for muscle
leanness in cattle. RAC stimulates lipolysis, redirects nutrients from adipose tissue, and
increases protein synthesis [7–9]. RAC and other β-adrenergic agonists were traditionally
used to treat respiratory disorders and premature birth in human beings [10]. Before RAC
was approved for use as an additive in some countries, it already passed an extensive ap-
proval process through the FDA to determine the no-observed-adverse-effect level (NOEL
or NOAEL; 0.125 mg/kg/day) and the acceptable daily intake (ADI; 1.25 mg/kg/day) was
completed in December of 1999 (FDA, 1999). Although RAC use as a growth stimulant was
allowed in 2000, its use has always remained controversial [11]. RAC passed the approval
processes from the FDA that are similarly applied for the approval of anabolic implants.
This process was administered by FDA veterinarians, animal scientists, biologists, and
toxicologists. This strict process leaves a convincing impression that RAC is safe for the
health of the aquatic environment.

In this article, we have summarized the significant information on RAC’s potential
benefits, toxicities as a feed additive, evidence on bioaccumulation, and the variation
in methods used in quantifying its levels in Figure 1. This information is essential to
understand why RAC’s use as a feed additive remains contentious and why this challenge
will remain over the years. We highlight the prevailing scientific findings on the physiologic
and toxicological effects of RAC on different fish species to understand the concerns of
environmentalists advocating for the use of safe feed additives.
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beneficial and adverse effects are summarized in the bottom panel. The upper right panel summarizes
the benefits and adverse effects of RAC administration in aquatic animals.
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2. Applications of RAC in Livestock and Poultry Sectors

RAC, a phenethanolamine β–adrenergic agonist, is used as a feed additive to develop
leanness, enhance growth performance, and increase feed conversion efficiency in different
farm animals, including poultry in some countries [12–14]. Presently, RAC is being used as
a feed additive in livestock rations to decrease the fat contents in carcasses without chang-
ing their quality [15]. Consumers nowadays have a high demand for quality carcasses
with minimal fat content, leanness, and tenderness, which can be achieved by adding RAC
to the animal ration diet [16]. Numerous studies revealed improved feedlot performance
and carcass composition when RAC is fed to poultry animals (Table 1). Previous studies
suggest that adding RAC to an animal diet can lower feed intakes, but it improves the
feed efficiency in swine when 10–20 ppm (parts per million) of RAC is added [16–18].
The introduction of RAC in rations also improves carcass protein and decreases the fat
percentage in swine [18–20]. The addition of RAC in the finishing diet of pigs can reg-
ulate animal metabolism by optimal carcass muscle production and decrease the lipid
concentration [21,22]. Adding RAC in the finishing ration of swine also enhances growth,
feed conversion ratio, and carcass dressing percentage [23]. Several studies assessed the
additive effects of RAC feeding in poultry animals. In the Parr et al. study (2011), a higher
dose of trenbolone acetate combined with 17-β estradiol improved steer performance and
hot carcass weight [24]. Bryant et al. (2010) compared the results of ractopamine and
steroidal implants with varying trenbolone acetate and 17-β estradiol concentrations in
finishing steers. They found out that the addition of one anabolic implant in holding days
on feed constant resulted in an increase in the average daily gain (ADG) by 21%, 27% with
two anabolic implants; and an additional 2% ADG increase with two anabolic implants
and dietary administration of RAC for the last 28 days of feeding [25]. Aside from the
positive effects on growth performance and carcass traits, RAC efficiently increased feed
efficiency (gain-to-feed ratios) and carcass weight, with carcass weight increased by more
than 100 pounds compared to control cattle [25]. In a meta-analysis of research data from
more than 50 studies for both RAC and zilpaterol, dietary supplementation of RAC in cattle
presented an increase in weight gain, hot carcass weight, longissimus muscle area, and
efficiency of gain to feed [26].

Table 1. Summary of the physiological effects of ractopamine administration in livestock animals.

Feed Additives Animals Concentration Physiological Effects References

Ractopamine Crossbred gilts
and barrows 0 and 20 ppm

Improved feed efficiency, average
daily gain (ADG), and decreased

cooking loss of loin
[27]

Ractopamine Pigs 20 mg/kg
Increased ADG, decreased feed

conversion ratio (FCR), higher carcass
lean proportion

[28]

Ractopamine Pigs 0, 5, 10, and 20 mg/kg
Increased growth (p < 0.001), better

efficiency (p < 0.001), and intensified
muscular profile (p < 0.001)

[29]

Ractopamine Dogs 1 mg/kg Acute myocardial activity [30]

Ractopamine and
clenbuterol

Roundworm
(Caenorhabditis elegans) 10 µg/L Decreased brood size, alteration in

locomotion behavior, reduced lifespan [31]

Ractopamine Cattle 200 to 350 gm/animal

Increased protein deposition and
decreased lipogenesis, increased feed

efficiency, increased ADG, and
increased carcass weight

[26]

Ractopamine Cattle 200 mg/animal/day
for 28 to 42 days

Increased incidence of death (from
0.59 to 1.129/10,000 cattle) [32]
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Table 1. Cont.

Feed Additives Animals Concentration Physiological Effects References

Ractopamine Pigs 0 mg/kg to 7.4 mg/kg

Increased ADG (18.8%), improved
gain-to-feed efficiency (23.7%),

increased carcass yield (0.7% units),
and reduced backfat depths (6.3%) as

compared to control (0 mg/kg)

[33]

Ractopamine + CON
basal diet Pigs CON basal diet, CON +

1% ractopamine

Increased lean meat in the RAC group,
fecal score, and growth performance

was nonsignificant
[34]

The significant improvement in carcass quality due to RAC feeding is considered
by meat producers as a looming economic benefit of hundreds of dollars, potentially
overshadowing the perceived environmental problems of RAC uses. Despite the great
potential of RAC as a growth stimulant, conflicting research results began to question the
efficiency of RAC for the meat industry. Previous studies showed that growth performance
declines as the duration of RAC feeding is prolonged, but an improvement in muscular
growth continues with the increasing duration of RAC use [26,35–38]. Outputs from
various studies also showed that including RAC in the finishing ration for swine improved
ADG (p < 0.001) compared to untreated groups. Experiments from 1990 to 2005 showed
an almost similar ADG improvement pattern when swine were given rations containing
5, 10, and 20 mg/kg RAC in the finishing diet [35,39–42]. However, two studies showed
that pigs fed with RAC in the finishing ration had reduced ADG by about 0.9% [43] and
1.9%, respectively [44]. Feed intake of swine improved when the ration inclusion level was
about 5 mg/kg for 34 days [35]. Carcass weight was increased by 2.3% when the finishing
ration of pigs contained 5 mg/kg of RAC compared to 0 mg/kg RAC [35,42]. In similar
studies, the addition of 10 mg/kg RAC in the dietary ration resulted in a decrease in hot
carcass weight [17,45]. The addition of 20 mg/kg RAC can either reduce [27,46] or increase
the carcass weight from 0.3% to 5.1% [42,47]. An increase from 4.4% to 10.7% in carcass
weight was also reported when the pig was fed with 20 mg/kg RAC in the finishing ration
before slaughter [35]. Other studies also reported 1.9% to 5.2% and 5.5% increases in carcass
weight when the finishing ration included about 20 mg/kg RAC, respectively [39,41].

3. Biological Basis of the RAC Response in Animal Tissues

For more than 20 years, the potential for beta-adrenergic receptor (βAR) agonists to
modify growth rate and body composition has been investigated. RAC is the first βAR
ligand to be cleared for use in pigs in the United States. RAC is structurally similar to the
natural catecholamines epinephrine and norepinephrine and binds with high affinity to
βAR in pig adipose and muscle tissue. Primary attention has been given to understanding
how βAR might mediate increased growth and protein accretion [48]. Catecholamines
(CAs) are a group of organic compounds consisting of a hydroxyl group and an amine
side chain. Most CAs are used by dopamine, norepinephrine, and epinephrine receptors
in the nervous system [49,50]. CAs have received the attention of researchers because of
their early recognized involvement in different neurological disorders [51]. The biolog-
ical effect of CAs is mediated by two receptors, namely α- and β-adrenergic receptors,
and sometimes they are collectively called adrenoreceptors. Alpha- and beta-adrenergic
receptors have different locations in animal tissues and respond differently and often
oppositely to catecholamines [52]. An adrenoreceptor stimulated by an α-agonist leads
to intracellular effects mediated by adenylate cyclase inhibition. This stimulates smooth
muscle contraction in blood vessels that supply peripheral organs such as skin and kid-
neys, smooth muscle relaxation in the gastrointestinal tract, and blood platelet aggregation.
However, stimulating β-adrenergic receptors by β-agonists activates adenylate cyclase,
leading to increased glycogenolysis and gluconeogenesis in the liver and skeletal muscle
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and increased lipolysis in adipose tissue [53]. Increased blood flow to the brain activates
the catecholamine, making animals cope with stressful conditions such as reducing feed
during the dry period, mixing animals in unfamiliar groups, transportation, and rough
handling [54]. However, the measurement of CAs in urine and the brain cannot provide
a clear picture of stress, fear, and temperament. Some scientists consider CAs a coping
hormone as they provide energy to the brain and help reduce deficiency, leading to “energy
deficiency syndrome” of the brain [55].

It is reported that RAC can steer the fat accumulation in the body of cattle and
pigs via a prime metabolic channel through adipocyte accumulation and liberation by
energizing β-adrenergic receptors because of similarities with catecholamine. As a result,
minimal fat is deposited in the carcass. Animals fed with varying levels of RAC have
improved carcass development and a lower percentage of adipose tissue compared to
control animals [42,56]. Accumulating a lower percentage of fat in carcasses resulted as
RAC directly affected adipocytes by increasing the rate of lipolysis and inhibiting the
transformation of glucose to triglyceride [56–59]. Beta-adrenergic agents such as RAC
orchestrate the cellular reaction via β-adrenergic receptors and trigger adenylate cyclase
and protein kinase A, affecting the lipogenic activity by two mechanisms. The first one
is protein kinase A, which directs the phosphorylation of existing proteins, decreasing
their functional activity [60–62]. The second one is increased protein kinase A activity that
reduces the rate of gene transcription and cell content of the main protein [63,64]. However,
previous experiments revealed that swine fed with a RAC diet had decreased lipogenic
enzyme activity in fat tissues [57–59]. The β-adrenergic agents affect the metabolism of
adipose tissue through activation of β-receptors of protein kinase A. Increased protein
kinase A activity results in increased lipolysis through activation of hormone-sensitive
lipase [65]. Moreover, increased protein kinase A activity inhibits glucose conversion to
triglycerides, which is considered increased serine phosphorylation. Lipoprotein lipase is
an important enzyme that controls the triacylglycerol between the muscle and adipocyte
tissue, improves lipid storage, and provides energy or muscle growth. Therefore, including
RAC in diet changes lipid metabolism, inducing lipolysis rather than inhibiting lipogenesis
in the animal. In summary, strong science supports the use of RAC as feed additives. RAC
is an energy repartitioning agent that diverts nutrients by increasing protein synthesis
ratio and decreasing protein degradation, promoting muscle growth by inducing muscle
hypertrophy, reducing fat deposition, improving feed conversion, and increasing average
daily weight gain that improves carcass yield and meat quality.

4. Potential Benefits of RAC Feeding on Fishes

The fast development in aquaculture systems is managed by different factors, includ-
ing the growing consumption of formulated aqua-feeds and a massive improvement in the
culture systems [66,67]. Phenethanolamines (PEOHs) act as a nutrient dissemination agent
in intermediary metabolism by transferring nutrients from adipocytes to muscle protein
unification [56,68,69]. The rationing of PEOH in fishes is not a common practice as fishes
have lower energy demand and thus respond to diets with a higher protein–energy ratio
than birds and mammals [70]. Previous data showed that RAC supplementation in channel
catfish (Ictalurus punctatus) promoted weight gain and reduced fat deposition [71]. RAC
feeding at 20 mg/kg or lower resulted in a 17% increase in weight gain and a 24% reduction
in muscle fat in catfish [72]. In combination with dietary protein supplements in catfish,
RAC yielded higher weight gain than when RAC was only combined with restricted protein
supplementation [73]. In varying concentrations, RAC has been found to increase the feed
efficiency in rainbow trout (Oncorhynchus mykiss) (walbaum) while maintaining normal
hepatosomatic and viscerosomatic indices throughout the feeding weeks [74]. However,
this RAC efficiency was not observed in small rainbow trout and channel catfish fed with
RAC-supplemented dietary protein [75]. The same authors also reported that RAC is inef-
fective in bigger fish as rearing temperature plays a major role in growth and development.
In another study, the combined effect of RAC at 0 and 10 mg/kg and l-carnitine at three
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levels (0, 1, and 2 g/kg) showed that 1 g/kg l-carnitine and 10 mg/kg RAC improved
growth performance, feed efficiency, and protein efficiency ratio in juvenile rainbow trout.
The combined use of l-carnitine and RAC in trout diets increased body protein, reduced
body fat, and altered the fatty acid profile of muscle tissue [76]. Increasing levels of RAC
in the diet of juvenile pacu (Piaractus mesopotamicus) for 60 days did not improve body
growth or composition but only altered the hematological and biochemical parameters [77].
Pacu (Piaractus mesopotamicus) fed with 33.75 ppm of RAC in the finishing phase developed
less fat content in its meat and improved antioxidant status inside the freezer [78]. On the
other hand, the inclusion of RAC in the feed diet of Nile tilapia (Oreochromis niloticus) and
tambaqui (Colossoma macropomum) for 31 days at varying inclusion rates did not alter the
body composition, metabolism rate, and fat content [79,80].

5. RAC Level Detection in Wastewater Systems

Veterinary drugs in water bodies have become an alarming issue for nontargeted
species and human populations [81–83]. The excessive use of veterinary drugs and steroidal
hormones in animal feeding systems is viewed as one factor that negatively affects the
health of aquatic species. RAC could be introduced into aquatic systems from water
overflow areas rich in toxic waste from ruminants and is the most commonly detected drug
(130–500 ng/L) in pond wastewater at pig farms [84]. RAC was also seen at 50 ng/L in
groundwater due to run-offs from ruminants’ waste control facilities [84]. In China, another
β-agonist, clenbuterol, used in treating respiratory illness and premature birth in humans,
was identified at a concentration of 11 ng/L in abattoir wastewater [85]. Hospital sewage is
one of the aquatic system’s major sources of β-agonists. In Taiwan rivers, the presence of
four β-agonists from hospital discharge was reported, and RAC, at 70% prevalence, is the
most common antibiotic present in the collected samples [86]. Due to the frequent detection
of β-agonists in environmental water samples, researchers from various fields have initiated
investigations to determine toxic compounds such as RAC. The occurrences of β-agonists
in our environment are at a lower concentration under parts per million or parts per billion.
Their intractable chemical behaviors made their detection very difficult, and their detection
always poses analytical challenges. Due to the diversity of their physio-chemical features
and continuing occurrence of β-agonists in our water, devastating consequences on both
human and aquatic lives are expected in the near future.

6. RAC Poses Physiological and Toxicological Effects on Fishes

Data on the potential toxicity of RAC are limited. However, most research on aquatic
toxicology evaluates the acute and chronic effects of RAC in nontargeted aquatic animals
such as fishes such as medaka and zebrafish (Table 2). One study in medaka fish (Oryzias
latipes) showed that chronic exposure to RAC did not affect the growth pattern, hatching
time, and body parameters. However, it disturbed the endocrine system, altered transcrip-
tion of genes related to the HPG axis pathways, and affected the antioxidative ability of
female fishes [87].

Table 2. Summary of the physiological and toxicological effects of RAC administration in fishes.

Feed Additives Animals Concentration Physiological or Toxicological
Effects/Findings References

Potential beneficial effects

Ractopamine Channel catfish
(Ictalurus punctatus) 0, 20, and 100 mg/kg Increased weight gain and reduced

fat deposition [71]

Ractopamine and
dietary proteins

Channel catfish
(Ictalurus punctatus)

RAC = 0 and 20 mg/kg
Protein = 240 and

360 g/kg

Increased weight gain and less fat deposition
are more functional when surplus protein

is ingested
[73]
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Table 2. Cont.

Feed Additives Animals Concentration Physiological or Toxicological
Effects/Findings References

Ractopamine
Rainbow trout

(Oncorhynchus mykiss)
(walbaum)

0, 5, 10, 20, and 40 ppm

Higher feed efficiency in average treatment
weeks No effect of RAC on growth, feed intake,

and efficiency after 8–12 weeks of trial. No
effect of RAC on hepatosomatic index (HIS)

[74]

Ractopamine and
dietary proteins

Rainbow trout
(Oncorhynchus mykiss)

(walbaum)

RAC = 0 and 10 ppm
CP = 25%, 35%, and 45%

Protein level more significantly affects growth,
carcass composition, and pigmentation

than ractopamine
[75]

Ractopamine and
L-carnitine

Rainbow trout
(Oncorhynchus mykiss)

RAC = 0 and 10 mg/kg
L-carnitine = 0, 1, and

2 g/kg−1

1 g/kg L-carnitine and 10 mg/kg RAC
enhanced the specific growth rate, feed

efficiency, FCR, protein efficiency of fish,
increased serum albumin level, total protein,

and globulin

[76]

Ractopamine Juvenile pacu
(Piaractus mesopotamicus) RAC = 0, 10, 20, and 40 mg

Feeding RAC for 60 days did not improve
growth and body composition at any tested
concentration but altered hematology and

biochemical parameters

[77]

Ractopamine Pacu
(Piaractus mesopotamicus)

RAC = 11.25, 22.50, 33.75,
and 45 ppm

RAC at 11.25 ppm reduced the fat content in
fillets of pacu but improved the peroxide

formation in samples kept in the freezer for
60 days. At 33.75 ppm, RAC was potent in

preventing oxidation during storage in
the refrigerator

[78]

Ractopamine Nile tilapia
(Oreochromis niloticus)

RAC = 0, 4, 8, 12, and
16 mg/kg

RAC showed a limited effect in changing body
composition, lowering fat contents, and no

changes in growth parameters when fed
for 31 days

[80]

Ractopamine Tambaqui
(Colossoma macropomum)

RAC = 0, 2.5, 5, 10, and
20 mg/kg

RAC showed a limited effect on changing
metabolism and reducing fat content. However,

using a 20 mg/kg RAC dose for 30 days
induced a slight decrease in visceral fat

[79]

Potential adverse effects

Ractopamine Japanese medaka
(Oryzias latipes) 5, 25, 125, and 625 ppb

Disruption of the endocrine system and
antioxidative/detoxification genes

were affected
[87]

Ractopamine Zebrafish
(Danio rerio)

0.1, 0.2, 0.85, 8.5, and
85 ppb

Behavioral alteration and oxidative
status imbalance [88]

Ractopamine Zebrafish
(Danio rerio)

0.1, 0.2, 0.85, 8.5, and
85 ppb

Increased cardiac rate, induced exploratory
behavior, no influence on hatching and

survival rate
[89]

Ractopamine Zebrafish
(Danio rerio)

250, 350, and 450 ppm for
21 days

Behavioral alteration compromised the
reproduction ability of adult zebrafish. Heart
edema, granular formation, delayed hatching,

and abnormalities in embryos

[90]

Ractopamine Zebrafish
(Danio rerio)

0.1, 1, 2, 4, and 8 ppm
for 24 h

Induced hyperactivity in zebrafish larval
locomotory behavior, increased cardiac, blood

flow, and oxygen consumption rates, beta-
blocker (propranolol), after co-incubating with

RAC, tends to normalize the induced
hyperactivity at 8ppm, lowered the cardiac rate

as a “rescue agent”

[91]

The utility of the zebrafish model for evaluating RAC toxicity is very well recognized
because the manifestations of toxicity are widely demonstrated in this model [92]. For
instance, RAC exposure of zebrafish at different concentrations for seven days exhibited
altered behavior and imbalanced oxidative status [88]. Zebrafish larvae acutely exposed to
RAC displayed altered heart rate and locomotory and exploratory behavior but maintained
their survival rate [89]. In addition, adult male zebrafish exposed to RAC for 21 days
revealed poor reproduction and breeding capability and altered behavior [90]. In the



Biomolecules 2022, 12, 1342 8 of 16

same study, the mating of RAC-fed male adult zebrafish with non-RAC-fed female adult
zebrafish resulted in delayed hatching (72 hpf) and a significant number of abnormal
embryos with stunted development, edema of the heart, granule formation, degenerated
yolk, and yolk deformities.

Our previous study reported that RAC triggered the locomotory behavior of zebrafish
larvae and induced hyperactivity in terms of the totality of distance covered, rotational
movements, and burst count [91]. The same paper showed that RAC at 8 ppm affected
cardiac physiology and output physiology, increased the oxygen consumption rate, and am-
plified blood flow velocity and heart rate. In addition, in silico molecular docking revealed
that RAC has more binding affinity with ten β-adrenergic receptor subtypes in zebrafish
than β-blocker propranolol which was used as a “rescue agent” in reversing the behav-
ioral and physiological changes that were induced in zebrafish larvae before ractopamine
feeding. Although these findings are in silico, they potentially suggest the harmful effects
of RAC on the cardiovascular, respiratory, and locomotory physiology of aquatic animals
other than zebrafish. To summarize, it is evident that different fish species’ potential
physiological and toxicological responses after acute and chronic exposures to RAC are
well documented. Multiple endpoints such as locomotor activity, oxygen consumption,
cardiovascular performance, reproductive performance, and growth performance are used
as parameters to assess the effects of RAC on various fish species in consideration of age,
weight, size, and maturity. These data provide solid in vivo evidence to support that RAC
plays a vital role in modulating cardiovascular, locomotory, and respiratory physiology
in fishes.

7. RAC Levels Detected in Poultry Animals and Products

Different scientific procedures have been used to determine and quantify RAC and other
β-agonists in human body fluids, animal tissues, and products (Table 3). Amendola et al. uti-
lized a GC-ion trap to select precursor and product ions in monitoring the clenbuterol spike
in human urine [93]. Nanoparticles were also utilized to extract and detect RAC and salbu-
tamol by an electrochemical process. Rajkumar et al. used glassy carbon electrode-modified
poly taurine/zirconia nanoparticles (ZrO2) to identify RAC and salbutamol in swine muscle
and human urinary samples [94]. With an additional derivatization procedure, HPLC-UV
was a popular method to detect RAC in porcine muscle and urine samples [95–97]. For fast
screening and monitoring of β-agonists, enzyme-linked immunosorbent assay (ELISA) is a
convenient technique to quantify RAC [98,99]. An online stacking capillary electrophoresis
method was also developed to quantify RAC due to a positive amine functional group in
its structure [100].

Table 3. Summary of the methods used to measure ractopamine content in animals.

Specimen Instrumentation No. of β-agonists/Internal
Standards Linear Range LOD/LOQ References

Urine GC–MS3 (electron
impact–ion trap)

Clenbuterol/
methyltestosterone (IS) 0.5–5 ppb 0.2 ppb [93]

Pig muscle and
human urine

Electrochemical
detection

Ractopamine and
salbutamol/–

1–28 µM
(ractopamine)

5–220 µM
(salbutamol)

– [94]

Pig muscle and
urine HPLC-UV Ractopamine/ephedrine

hydrochloride 0.01–2 ppm LOD: 0.003 ppm
LOQ: 0.01 ppm [97]

Pig samples HPLC-UV Ractopamine, clenbuterol,
and salbutamol

0.5–50 ppb
0.5–50 ppb
0.2–20 ppb

LOD: 0.1, 0.1,
and 0.05 ppb [96]

Pork HPLC-UV Derivatized ractopamine 0.15–100 µg/g LOD: 0.078 µg/g [95]
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Table 3. Cont.

Specimen Instrumentation No. of β-agonists/Internal
Standards Linear Range LOD/LOQ References

Pork ELISA Salbutamol and
ractopamine/– 0–1.0 ppb LOD: 0.5 ppb [98]

Swine meat/
animal feed ELISA Salbutamol/– 0.05–1.0 ppb LOD: 0.3–1.5 ppb

LOQ: 0.6–3.0 ppb [99]

Porcine meat MEKC Ractopamine 10–300 ng/g LOD: 5 ng/g [100]

Animal feeds HPLC-MS Ractopamine, clenbuterol,
and salbutamol 0.5–500 mg/kg LOD: 0.01 mg/kg

LOQ: 0.05 mg/kg [101]

Goat, various
tissues UPLC–MS/MS Salbutamol/SAL-d3 0.5–100 ppb LOD: 0.2 ppb

LOQ: 0.5 ppb [102]

Animal feeds UPLC–MS/MS

Ractopamine, salbutamol,
terbutaline, fenoterol,

metaproterenol, clenbuterol,
formoterol, tulobuterol,

phenylethanolamine
A/d3-salbutamol,
d6-ractopamine,
d6-clenbuterol

5–100 ppb LOD: 0.01–0.05 ppb
LOQ: 0.03–0.20 ppb [95]

Goat, various
tissues UPLC-Q-Orbitrap RAC/[d6]-RAC 0.5–500 ppb LOD: 0.15 ppb

LOQ: 0.5 ppb [103]

Pork, beef, mutton,
and chicken UPLC-Q-Orbitrap

Salbutamol, cimaterol,
bromchlorbuterol,

ractopamine, isoxsuprine,
mapenterol, terbutaline,
cimbuterol, clenbuterol,
brombuterol, mabuterol,

clorprenaline/clenbuterol-d9,
salbutamol-d3

0.01–50 ppb LOD: 0.0033–0.01 ppb
LOQ: 0.01–0.03 ppb [104]

Abbreviation: LOD, limit of detection; LOQ, limit of quantitation; GC–MS, gas chromatography–mass spectrome-
try; HPLC-UV, high-performance liquid chromatography—ultraviolet; ELISA, enzyme-linked immunosorbent
assay; MEKC, micellar electrokinetic chromatography; UPLC, ultra-performance liquid chromatography.

Nowadays, RAC levels can be estimated by high-performance liquid chromatography
(HPLC) coupled with MS detection or HPLC coupled with tandem MS (MS/MS) [101].
Ultra-pressure liquid-phase chromatography (UPLC) coupled with triple-quadrupole MS
was utilized to detect RAC within 5 min [95,102]. In addition, the mass analyzer, invented
in 2002, provided excellent mass resolution and higher sensitivity qualities for detecting
RAC levels [103,104].

The absence of a global standard method for RAC detection is one of the major
issues for accepting RAC as a feed additive. This issue is due to several factors, and one
major factor is economics. Some meat industries can cover the costs of mass spectrometry
offered at reduced prices per unit by some testing laboratories. However, the high costs
of the imported ELISA kits for the confirmatory test are still a burden [105]. At this
point, the approval of confirmatory monitoring of animal products and techniques for
RAC detection could be a strategic decision point. We emphasize the benefits, potential,
and limitations of different state-of-the-art analytical procedures and their performance
characteristics for RAC detection. The most obvious observation is that (reversed-phase)
liquid chromatography combined with tandem mass spectrometric detection—either triple-
quadrupole or ion-trap multi-stage—is the preferred technique in most cases, and member
countries could adopt this to standardize their MRL or limit of tolerance.

8. RAC Regulations and Feed Fights

Different regulatory organizations such as the United States Food and Drug Ad-
ministration (US FDA) and the European Medicinal Agency (EMA) and independent
organizations such as the Joint World Health Organization/Food and Agricultural Orga-
nization Expert Committee on Feed Additives (JECFA) have determined tolerances and
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maximum residue limits (MRLs) of antimicrobials and growth stimulants such as RAC,
respectively, for muscle, liver, kidney, and fat contents [106]. The MRLs derived by JECFA
are recommended to the Codex Alimentarius Commission (Codex), which determines
whether to establish international standards for residues of veterinary drugs in terms of
MRLs. The US FDA uses the term tolerance, while other countries and organizations use
MRLs. Other developed countries that are not part of the EU develop their own MRLs,
while most developing countries adopt EU or Codex MRLs [107].

At present, RAC is the most controversial food additive in the world. It is well accepted
that RAC has been authorized as a feed additive in many countries for the pig and cattle
industry. The acceptability of RAC as a feed additive was based on the joint FAO/WHO
Expert Committee on Food Additives and Scientific Evidence recommendations. However,
it did not achieve a satisfactory judgment result between the European Union (EU) and the
United States by the World Trade Organization (WTO) about the residual dosage of RAC,
which could cause personal injury. Most jurisdictions, including the European Union (EU),
China, Taiwan, Korea, and Russia, have disallowed its use for safety reasons [108]. This
legal division reflects the long-standing disagreement between countries supporting the
establishment of maximum residue levels and those who oppose it within the Codex. The
Codex, an intergovernmental food standard-setting body with more than 180 members,
ratified an MRL for RAC at 10 parts per billion (ppb) in pork and beef muscle meat [109].
Specifically, the Codex has recognized RAC maximum residue limits of 90, 40, 10, and
10 µg/kg for kidney, liver, fat, and meat, respectively [50]. The levels agreed upon were
significantly higher than what many countries wanted. Countries such as the United States
and Canada favored this decision with higher tolerances. However, the policy made it
significantly difficult for China, Taiwan, and the European Union, which have a zero-
tolerance policy. Meanwhile, the FDA set the MRL of ractopamine at 50 ppb for pork and
30 ppb for beef, significantly higher than the levels set by the Codex [110]. Currently, there
is no evidence in the scientific community to prove that RAC is safe.

In 1998, the European Third-Country Directive included RAC in the list of banned
substances. This ban is one of the most fiercely contested issues in the world. [111]. This
directive prohibits using synthetic anabolic agents and importing implant-treated animals
and meat parts to which implants were administered [112]. This ban was implemented de-
spite conclusions published in several reports by a Scientific Working Group of 22 notable
European scientists formed by the Commission of the European Communities that dis-
proved any human health consequences of using anabolic growth stimulants in livestock
production. The continuing international debate over RAC prohibitions, limits, and maxi-
mum residue level standards has deepened over the years, and a trade war may be possible
in the near future [113].

The use of RAC also faces challenges posed by animal welfare organizations. Trade
organizations for the meat industry contend the drug is proven scientifically to promote
growth safely. In contrast, animal welfare groups argue that the drug harms both animals
and humans. Animal welfare organizations contend that the FDA approved the higher
MRL of RAC in livestock feed as a regulatory opportunity that favors the meat industry,
not in the interest of animal health.

The international trade issue of RAC meat appeared as early as 2007 [107]. Undeniably,
various barriers to trade, such as banning the use of growth compounds, unfavorably
affect export markets and generate disputes among other countries. International trade
continues to dominate how much RAC is used in livestock production. For example,
Taiwan requires the United States to purchase electronic products, and the United States
requires Taiwan to open the import of RAC meat in exchange. Issues on RAC importation
could greatly affect the international relationship between these countries. It poses new
problems and local disputes due to citizens’ protests and local governments’ resistance to
the central government’s import decision on American pork containing RAC. Therefore,
the relationships among central governments exist, which allow import, but local self-
government formulates rules (or regulations) to reject central government order, and local
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government cooperates with citizens protesting import. In conclusion, this issue will
remain problematic unless the legislative basis between the central government and local
self-government is reconciled. The risk is adequately communicated to the citizen to
minimize the opposing opinion about meat import, and inspection results are published
and disclosed truthfully to citizens.

Another reason for deepening the opposition is that the exporting countries are un-
willing to take responsibility for marking RAC upon meat products, labeling warnings, or
building up the compensation mechanism for personal injury, leaving customers who may
become victims with no way to claim.

At present, the RAC controversy persists, and countries worldwide are divided on
whether to allow or ban the use of RAC in meat production. In the United States, RAC is
approved for swine, turkeys, and cattle [11,114]. RAC is also approved for Brazil, Canada,
South Korea, and Mexico, but RAC has been banned in China, Taiwan, and the European
Union. Despite an international CAC standard, there have been occasions in which exports
from the United States to countries with zero-tolerance policies were rejected due to RAC
levels under the global MRL [42]. One of the major arguments is the lack of consistency in
how countries set their tissue RAC residue limits and which residue limits are applied to
various tissues, specifically edible noncarcass [115]. The testing results from such countries
can be contentious because they employ varying sample handling and testing methods
that may impact the results. As presented in Table 2, diversities in technologies used to
detect RAC reflect the inconsistency around how residue limits are established and which
residue limits are applied to various tissues in different countries [115]. The CDC has not
yet decided on the standards for the residues of RAC. It means that controversy still exists
on the residual dosages of RAC meat, especially of the side effects of the cumulative doses
of long-term intake of RAC meat in the human body.

So, we learn from these conflicts considering that regulations governing RAC vary
among countries and that the residues of RAC in animals can be exploited for risk as-
sessment and monitoring illegal usage. It is highly suggested that exporting countries
should guarantee food safety and use accurate methods to detect the negative result of
RAC from cattle or swine before exporting to importing countries. For instance, exporting
countries can guarantee food safety by utilizing Q-TOF/MS and LC-MS/MS assays of
RAC. RAC glucuronide metabolites were identified in plasma and urine by quadrupole
time-of-flight/mass spectrometry (Q-TOF/MS), and parent RAC residues were quantified
in plasma, urine, and various tissues by LC-MS/MS (liquid) under the FDA recommended
feed conditions, treatment days, and withdrawal days. This method detects oxolinic acid
and RAC below the MRL in actual beef samples [116]. Therefore, this method is suggested
for a surveillance system that reduces RAC usage and tracks its overuse for the future
health of humans and animals.

9. Conclusions

Despite the controversy surrounding the use of beta-agonists as growth stimulants, the
benefits to sustainability and animal production are apparent. However, the importance of
production technologies such as RAC to meet the demands for quality meat of the growing
global population cannot be overstated. RAC becomes a source of public concern and trig-
gers endless transatlantic trade disputes. The threatening trade issues and accompanying
abilities to detect extremely low concentrations of residues in tissues, variations employed
by each country, and unscientific import policies could impact future RAC use. All these
issues remain significant as RAC is still usually fed to livestock, and the potential toxicity
of this substance is continuously being reported. Despite the looming economic benefits of
RAC use, the potentially harmful and adverse effects on the environment and human health
should not be overlooked and must be given attention. There is a great need for medical,
scientific, pharmacological, and toxicological evidence from animal experiments to prove
the causal relationship between RAC and its toxic effects on humans and animals. The
present study emphasizes the urgent need to define a universal method of RAC monitoring
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at every stage of production, uniform or specific criteria on “level not limit,” toxicity tests,
and tissue samples for analysis. It also emphasizes the need for a strict legislative and
regulatory system in local and imported meat sectors where RAC is permitted and labeling
compliance to protect human public health.
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