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1 Department of Clinical Sciences, Oncology, Lund University, Skåne University Hospital, Lund, Sweden, 2 Department of Clinical Sciences, Urology, Skåne University
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Abstract

Background: Urothelial carcinoma (UC) is characterized by frequent gene mutations of which activating mutations in FGFR3
are the most frequent. Several downstream targets of FGFR3 are also mutated in UC, e.g., PIK3CA, AKT1, and RAS. Most
mutation studies of UCs have been focused on single or a few genes at the time or been performed on small sample series.
This has limited the possibility to investigate co-occurrence of mutations.

Methodology/Principal Findings: We performed mutation analyses of 16 genes, FGFR3, PIK3CA, PIK3R1 PTEN, AKT1, KRAS,
HRAS, NRAS, BRAF, ARAF, RAF1, TSC1, TSC2, APC, CTNNB1, and TP53, in 145 cases of UC. We show that FGFR3 and PIK3CA
mutations are positively associated. In addition, we identified PIK3R1 as a target for mutations. We demonstrate a negative
association at borderline significance between FGFR3 and RAS mutations, and show that these mutations are not strictly
mutually exclusive. We show that mutations in BRAF, ARAF, RAF1 rarely occurs in UC. Our data emphasize the possible
importance of APC signaling as 6% of the investigated tumors either showed inactivating APC or activating CTNNB1
mutations. TSC1, as well as TSC2, that constitute the mTOR regulatory tuberous sclerosis complex were found to be mutated
at a combined frequency of 15%.

Conclusions/Significance: Our data demonstrate a significant association between FGFR3 and PIK3CA mutations in UC.
Moreover, the identification of mutations in PIK3R1 further emphasizes the importance of the PI3-kinase pathway in UC. The
presence of TSC2 mutations, in addition to TSC1 mutations, underlines the involvement of mTOR signaling in UC.
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Introduction

Urothelial carcinoma (UC) of the bladder, the most common

type of bladder cancer, is characterized by several gene mutations

of which the most frequent is activating mutations in the FGFR3

receptor protein. FGFR3 mutations show a biased distribution of

UC pathological subtypes in which low grade non-invasive tumors

(Ta) shows the highest frequencies, close to 70%, whereas high

grade and muscle invasive tumors ($T2) show considerably lower

frequencies, in the range of 10 to 15%. On the other hand, TP53

mutations show an opposite pattern with high frequencies in

muscle invasive tumors (,50%) and low in non muscle invasive

tumors (,15%). This biased distribution of FGFR3 and TP53

mutations has led to the hypothesis that UC develops along two

different pathways, a FGFR3 and a TP53 pathway, respectively

[1,2]. Alternative explanations for the frequent TP53 mutations in

muscle invasive tumors have however been put forward [3].

Several genes acting downstream of receptor tyrosine kinases

(RTKs) have also been reported to be mutated in UC, e.g. PIK3CA

[4], members of the RAS family [5], BRAF [6], and AKT1 [7].

Another characteristic of UC is the frequent LOH on chromo-

some 9 and this chromosome is believed to harbor more than one

tumor suppressor gene of importance for UC development. At

least two such loci have been established, CDKN2A and TSC1.

CDKN2A shows homozygous deletions in up to 30% of UC [8]

whereas inactivating sequence mutations is seen to a lesser extent.

TSC1, on the other hand, has been reported to be mutated in 16%

of UC [4]. TSC1 is a negative regulator of the mTOR pathway,

which is important for cell proliferation and frequently found

activated in tumors [9] including UC [10,11]. Notably, TSC1 is

regulated by AKT1 and is therefore a potential downstream target

of the FGFR3 signaling pathway. Additional proteins in this

pathway include PIK3R1, PTEN and TSC2. PIK3R1 is a

negative regulator of PIK3CA while PTEN is a negative regulator

of AKT1. TSC2 forms a complex with TSC1 that functions as a

negative regulator of the mTOR pathway. So far no mutation data

on PIK3R1 or TSC2 in UC is available. Recent reports have also

implicated the APC/CTNNB1 pathway in UC [12,13,14]. In the
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present investigation we aimed to further characterize the

mutational landscape of UC. In a series of 145 tumors we

performed mutation analyses of 16 genes, FGFR3, PIK3CA,

PIK3R1, PTEN, AKT1, KRAS, HRAS, NRAS, BRAF, ARAF, RAF1,

TSC1, TSC2, APC, CTNNB1, and TP53.

Methods

Tumors and isolation of nucleic acids
Urothelial tumors were collected by cold-cup biopsies from the

exophytic part of the bladder tumor from 145 patients undergoing

transurethral resection at the University Hospital of Lund,

Sweden, between 2001 and 2005. For detailed patient information

see Table S1. To increase the statistical power, the 145 series of

samples were extended with 73 samples analyzed for FGFR3,

PIK3CA, TP53, HRAS, KRAS, and NRAS mutations only (Table

S1). Tumor pathology, including transurethral and cystectomy

specimens, were reviewed by one pathologist (GC). Written

informed consent was obtained from all patients and the study

was approved by the Local Ethical Committee of Lund University.

Genomic DNA was extracted using the DNeasy Tissue kit

(Qiagen). Genomic DNA was amplified using the Illustra

GenomiPhi V2 DNA Amplification Kit (GE Healthcare) before

further processing.

Mutation analysis
Coding regions in FGFR3, PIK3CA, PIK3R1, PTEN, AKT1,

KRAS, HRAS, NRAS, BRAF, ARAF, RAF1, TSC1, TSC2, APC,

CTNNB1, and TP53 were selected and PCR-amplified using

oligonucleotide primers (Table S2). All reactions were carried out

in 96-well plates in a 40 ul mixture containing PCR buffer,

1.5 mM MgCl2, 0.2 mM DNTP, 0.5 mM each of the forward

and reverse primers and 1 U TrueStart Taq polymerase

(Fermentas, Helsingborg, Sweden) or Platinum Taq polymerase

(Invitrogen, Carlsbad, CA). The reactions were heated to 94uC
for 5 min, and subjected to 38–41 amplification cycles, followed

by a final elongation step of 10 min at 72uC. Each cycle consisted

of a denaturation step of 30 seconds at 94uC, an annealing step of

30 seconds, and an elongation step of 1 min at 72uC. The

different annealing temperatures used in the different PCRs, as

well as any deviations from the standard reaction mixture are

listed in Table S2. All PCR-amplifications were carried out in a

MBS Satellite Thermal Cycler (Thermo Scientific, Waltham,

MA). Three ml of each PCR product were run on a precast 2%

agarose gel (E-Gel 96 2% agarose GP, Invitrogen) and the

remaining volume was purified on AcroPrep 96 filter plate

Omega 10K (Pall, Ann Arbor, MI), according to the manufac-

turers protocol. The purified PCR products were then sequenced

using the BigDye terminator v1.1, or 3.1 cycle sequencing kit

(Applied Biosystems, Foster City, CA) on a 31306l Genetic

Analyzer (Applied Biosystems). Sequence traces were analyzed

using the SeqScape v2.5 software (Applied Biosystems), and all

sequence variations were validated by re-sequencing independent

PCR products. A change in the DNA sequence was considered to

be a mutation when it changed the amino acid sequence of the

encoded protein or affected a known splice acceptor or donor

site. Sequence changes reported as single nucleotide polymor-

phisms (SNPs) according to Database of Single Nucleotide

Polymorphisms (dbSNP) at NCBI, were omitted from the

analysis. All gene mutations not previously described were

validated by sequencing of blood samples obtained from the

same patient when available (Table S3). Previously not described

mutations were analyzed using the PolyPhen 2 predictor tool

[15].

Statistical analysis
Chi-2 analyses were used to establish significant differences in

proportions between groups. A hypergeometric test was used to

determine if the observed numbers of double mutations was

significantly different from what is expected from a resample

distribution assuming independence.

Results

We screened 145 UCs for sequence mutations in a total of 16

genes, FGFR3, PIK3CA, PIK3R1, PTEN, AKT1, KRAS, HRAS,

NRAS, BRAF, ARAF, RAF1, TSC1, TSC2, APC, CTNNB1, and

TP53. In Figure 1 the results are summarized and the cases are

grouped according to tumor grade. The same data organized

according to tumor stage is provided as Figure S1. Mutation

frequencies are also summarized in Figure 2, along with possible

interactions between the investigated genes. Detailed information

on all identified mutations is given in Table S3.

For FGFR3 we sequenced exons 7, 10, and 15. Mutations in

these exons correspond to 96% of the FGFR3 mutations seen in

tumors of the urinary tract according to the COSMIC database

(www.sanger.ac.uk/genetics/CGP/cosmic). We detected muta-

tions at 7 different amino acid positions, all previously described.

Mutations were seen in 65% of low grade (G1/G2) and in 22% of

high grade tumors (Table 1), and in 63%, 39%, and 22% of Ta,

T1, and $T2, respectively (Figure S1). As expected, the FGFR3

mutation frequency was significantly higher in low grade tumors

(p,0.0001, Chi2 test,) and in non-muscle invasive (NMI)

compared to muscle invasive (MI) cases, 55% and 22%

respectively, (p,0.0002). These results are in line with previous

investigations [16,17,18] and clearly show that FGFR3 mutations

are associated with low grade low stage tumors and with NMI

tumors in particular.

We next performed mutation analysis of TP53 and a total of 52

TP53 mutations (36%) were detected. As expected, we found a

significant difference in frequency between high grade (51%) and

low grade tumors (19%) (p,0.0001). We then tested for possible

negative or positive associations between TP53 and FGFR3

mutations. To increase the power we included mutation data for

an additional 73 cases increasing the number of cases from 145 to

218 and a negative association was observed (p = 0.0085,

hypergeometric test). This association is however lost when G1/

G2 and G3 cases are tested separately, p = 0.39 and p = 0.43,

respectively.

PIK3CA was screened for mutations in exons 9 and 20 that

contain the hotspot positions in which close to all activating

mutations occur [19]. A total of 37 (17%) mutated cases were

detected in the extended series of tumors (n = 218). A significantly

higher proportion of PIK3CA mutations was seen in Ta cases

compared to T1 (p,0.05, Chi-2 test), but not between T1 and

$T2, or between NMI and MI cases. PIK3CA mutations was also

associated with low grade (p,0.01). The data also indicated a

possible association between FGFR3 and PIK3CA mutations, with

23 detected double mutations and 14 expected. To further

investigate this we added data for 92 UCs previously published by

Platt et al. [4], 87 published by Lopez-Knowles et al. [20], and 257

by Kompier et al. [18]. In this combined dataset (n = 654) a

significant association between FGFR3 and PIK3CA mutations

could be established (hypergeometric test, p,261027, 95

observed double mutants and 68 expected). We then tested for

possible negative or positive associations between PIK3CA and

TP53 mutations but no significant association was observed

(p = 0.066, hypergeometric test, n = 218). We also performed

mutation analyses of two modulators of PIK3CA activity, PTEN

Gene Mutations in Bladder Cancer
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and PIK3R1. All exons of PTEN were sequenced in the 145

tumors but no mutations were identified. For PIK3R1 we

sequenced exons 12, 14, and 15 and found one case with

mutation.

We next sequenced the exons covering codons 12, 13, and 61 in

HRAS, KRAS, and NRAS and detected a total of six mutations in

HRAS, four in KRAS, and none in NRAS (n = 218). The overall

frequency of RAS mutations was 5%, which is somewhat lower

than what has been reported in recent investigations using DNA

sequencing [4,18,21]. We further tested for a possible negative

association between RAS and FGFR3 mutations but only found

borderline statistical support for such an association (p = 0.059,

hypergeometric test, n = 218).

BRAF has been shown to be activated by point mutations in

several different tumor types [22] with the most frequent

mutations located in exons 11 and 15. BRAF belongs to a gene

family that also includes ARAF and RAF1, which mediates signals

from RAS to downstream targets. As RAF mutations, in analogy

with RAS mutations, may show tumor type specificity, we

sequenced exons 11 and 15 in BRAF and the equivalent exons

in ARAF (exons 10 and 13) and RAF1 (exons 11 and 14). In

addition, RAF1 exon 7 was sequenced since activating mutations

in this exon has been described in the Noonan Syndrome [23].

The equivalent exon was also sequenced in ARAF. No mutations

were however detected in any of the RAF genes.

AKT1 is a major downstream target of PIK3CA and is known

to play a key role in the regulation of cell cycle progression,

survival, and mTOR signaling. AKT1 was recently shown to have

activating mutations in exon 4 in UC [7]. We sequenced the

complete exon 4 of AKT1 in our series of 145 tumors and found 2

tumors with an E17K mutation (1%) (Figure 1), associated with

increased and constitutive kinase activity of AKT1 under

conditions of growth factor withdrawal [7].

We screened all 21 coding exons of TSC1 and detected a total of

17 mutations (13%) including truncating, missense, and splice site

mutations. In two additional tumors a substitution of asparagine to

serine was seen at amino acid position 762. Both changes were

however also detected in blood DNA from the respective patients

and hence were considered to be naturally occurring polymor-

phisms. There was no difference in frequency between low and

high grade tumors and TSC1 mutations were seen in FGFR3,

PIK3CA, and in TP53 mutated cases. TSC1 functions together

with TSC2 as an inhibitor of mTOR by maintaining the mTOR

activator RHEB in an inactive state. We therefore sequenced all

coding exons of TSC2 and found a total of 5 mutations in 145

samples (3%). The possible impacts of these mutations on protein

function were investigated by the PolyPhen software. The software

predicted a damaging effect for all four missense mutations, the

fifth being a 1 bp frame shift deletion. TSC2 mutations were seen

in both high and low grade tumors and none of the TSC2 mutated

cases showed concomitant TSC1 mutations. We also tested for

possible associations between TSC1 mutations, or TSC1 and TSC2

combined, and mutations in FGFR3 or TP53. No such association

was however found (p.0.25 in all comparisons, hypergeometric

test, n = 145).

We sequenced exon 16 in APC, known to harbor the majority of

APC mutations [24], and exon 3 of CTNNB1 covering the

phosphorylation sites that control ubiquitination and degradation

of CTNNB1. We detected 6 APC mutations in 145 cases (4%),

with no difference between low and high grade tumors. CTNNB1

mutations were seen in 3 cases (2%). We found APC/CTNNB1

mutations in both FGFR3 and TP53 wild type and mutated cases,

indicating that activation of the APC/CTNNB1 signaling pathway

occur independent of FGFR3 and TP53 mutations. All detected

APC mutations were missense mutations. This is in line with

Kastritis et al. [12], who also noted an underrepresentation of

Figure 1. Distribution of identified mutations. In A) low grade (G1/G2) tumors and in B), high grade (G3) tumors. Red squares indicate
inactivating mutation. Green squares indicate activating mutation. For PIK3CA, dark green squares indicate kinase domain mutations and light green
helical domain mutations. At the right, mutation frequencies are given for each gene in the respective tumor grades.
doi:10.1371/journal.pone.0018583.g001
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truncating mutations compared to the mutation spectrum in

colorectal cancer. In fact the difference is highly significant. Our

data combined with the data of Kastritis et al. show a significantly

lower frequency of truncating mutations when compared with

data obtained for colorectal cancer from the COSMIC database

(p,0.0001, Chi-2).

Discussion

The aim of the present investigation was to further establish

mutation frequencies for genes commonly mutated in UC, and to

investigate possible positive or negative associations between

mutations. To accomplish this we sequenced 14 genes, previously

shown to be mutated in UC, in 145 cases. FGFR3, PIK3CA, HRAS,

KRAS, NRAS, and TP53 were sequenced in an additional 73 cases.

In addition, we sequenced PIK3R1 and TSC2 as no mutation data

has been published for these two genes in UC. The observed high

frequencies of FGFR3, TP53, and PIK3CA mutations were as

expected. We detected a positive association between FGFR3 and

PIK3CA activating mutations as reported [18,20], and by combing

our data with previously published data we could confirm that this

association is highly significant. Two of our cases showed double

mutations in PIK3CA; one case with a HD and a KD domain

mutation, and one case with two mutations in the HD domain

(E542K E545K). If these double mutations had occurred in

separate alleles could not be determined as the electropherograms

indicated heterozygous mutations. Irrespectively, the repeated

observations of PIK3CA double mutated tumors and cell lines

[4,18,25,26] indicate an additive effect of multiple PIK3CA

mutations.

PTEN acts as negative modulator of PIK3CA and is mutated in

many tumor types as well as in UC [27,28]. No PTEN mutations

were however detected in the present set of tumors, a finding in

line with previous reports of a low PTEN mutation frequency in

UC (2%, n = 88) [29,30]. This does however not exclude PTEN as

an important factor in bladder cancer development since PTEN

frequently shows reduced expression [31] as well as homozygous

deletion in UC [29]. As mentioned, PIK3R1 also acts as a negative

modulator of PIK3CA and has been shown to have tumor

suppressor activity [32]. We found one case with a mutation after

sequencing exons 12, 14, and 15, the most frequently mutated

regions in this gene [33]. These exons cover the major part of the

PIK3R1 iSH2 domain that interacts with PIK3CA. The frequent

down regulation of PTEN expression and the here reported

mutational inactivation of PIK3R1 further emphasized the

importance of PIK3CA activity in UC.

Published data on RAS mutation is highly variable with respect

to frequency, the distribution of codon 12 and 13 vs. codon 61

Figure 2. Schematic representation of relationships and
mutation frequencies among the investigated genes. Arrow-
heads, positive regulation; filled circles, negative regulation; gene
names in green, genes showing activating mutations; gene names in
red, genes showing inactivating mutations; gene names in black, genes
with no detected mutations in the present investigation; gene names in
gray, genes not investigated. TP53 is not included in the graph. The
mutation frequencies (%) given are based on the 145 samples
investigated for each gene.
doi:10.1371/journal.pone.0018583.g002

Table 1. Mutation frequencies.

Ta (%)
(n = 54)

T1 (%)
(n = 36)

$T2 (%)
(n = 54)

G1/G2 (%)
(n = 68)

G3 (%)
(n = 77)

Total
(n = 145) Total (%)

Extended
(n = 218)

FGFR3 63.0 38.8 22.2 63.2 22.1 61 42.1 82 (37.6%)

PIK3CA 22.2 16.6 9.3 22.1 11.7 24 16.6 37 (17.0%)

PIK3R1 0 2.8 0 1.5 0 1 0.7

RAS 3.7 11.1 1.9 7.4 2.6 7 4.8 10 (4.6%)

AKT1 0 2.8 1.9 1.5 1.3 2 1.4

TSC1 11.1 16.7 9.3 11.8 11.7 17 11.7

TSC2 1.9 8.3 1.9 5.9 1.3 5 3.4

APC 1.9 0 9.3 2.9 5.2 6 4.1

CTNNB1 1.9 5.6 0 2.9 1.3 3 2.1

TP53 14.8 47.2 51.9 19.1 50.6 52 35.9 73 (33.5%)

doi:10.1371/journal.pone.0018583.t001
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mutations in HRAS, and the proportion between HRAS, KRAS,

and NRAS mutations [5,34,35,36]. The divergent results may

partly be attributed to differences in methods used and partly to

differences in sample selection. In the present investigation HRAS

mutations dominated over KRAS mutations and HRAS codon 61

mutations were much more frequent than codon 12 mutations,

which is in line with most previous investigations.

It has been suggested that RAS mutations may substitute for

FGFR3 mutations and that RAS and FGFR3 mutations therefore

are mutually exclusive [21]. This hypothesis is however weakened

by the fact that samples with concomitant FGFR3 and RAS

mutations were identified in the present investigation as well as in

the studies by Platt et al. and Kompier et al. [4,18]. These findings

may either be explained by intra-tumor heterogeneity as suggested

by Platt et al., or that the biological consequences of activating

FGFR3 and RAS mutations do not overlap completely and

therefore double mutants may result in an additive but small

selective advantage. Irrespective if these mutations are mutually

exclusive or not, the evidence for a strong negative association

between these two genes is compelling [4,18,21]. BRAF operates

downstream of the RAS proteins and has been shown to be

mutated in several tumor types [22]. We did not detect any

mutations in any of the RAF gene family members. Hence, our

data show that the previously reported low frequency or absence of

BRAF mutations is not substituted for by frequent mutations in

either ARAF or RAF1. Consequently, RAF mutations are not as

central for UC development as FGFR3, PIK3CA, and RAS

mutations.

Few and highly divergent mutation frequencies of APC and

CTNNB1 have been reported for UC [12,13,37,38]. Stoehr et al.

found no APC or CTNNB1 mutations in 99 investigated cases,

which is in stark contrast to Kastritis et al. who found 11 APC

mutations in 70 cases (16%), but no CTNNB1 mutations in 35

investigated cases. Shiina et al., on the other hand, identified a

total of 4 CTNNB1 mutations in 64 UC cases (6%). Our results

showing APC mutations in 4% and CTNNB1 mutations in 2% of

the cases are fully compatible with the combined published data

resulting in overall mutation frequencies of 6.5% for APC and

2.0% for CTNNB1. As APC and CTNNB1 mutations were not seen

together the frequency of APC/CTNNB1 pathway alteration was

6% in our data. As Kastritis et al. [12], we found a strong bias

towards missense mutations, in contrast to truncating mutations, in

APC and we could show that the mutation spectrum in UC differs

significantly from the spectrum seen in colorectal cancer.

We detected a total of 17 cases (12%) with TSC1 mutations in

our data, which is close to the previously reported frequency of

16% [4]. TSC1 is an established tumor suppressor gene in UC [4]

that exert most of its regulatory function in a complex with TSC2.

Consequently, we also screened TSC2 for mutations and detected

5 mutations in 145 cases (3%). This is a slightly higher frequency

than what has been reported for other investigated solid tumors;

CNS tumors 0.6%, lung cancers 0.9%, ovarian carcinomas 0.6%

(COSMIC database). TSC2 acts as a dimer together with TSC1

by regulating mTOR through RHEB. The activity of TSC1/2 is,

in turn, regulated by input from several upstream regulators [39]

making the TSC1/2 a hub for upstream signals funneled to

mTOR. The combined frequency of TSC1/TSC2 mutations of

15% indicates that a substantial proportion of UC tumors may

show activation of mTOR through TSC1 or TSC2 mutational

inactivation.

All in all, the present investigation emphasizes FGFR3,

PIK3CA/AKT1, and TSC1/TSC2 as important nodes in

intracellular signaling of transformed urothelial cells. To what

extent FGFR3 activation may be directly linked to mTOR

activation remain to be elucidated; we note that FGFR3 and

PIK3CA mutations show a strongly skewed distribution between

low and high grade tumors whereas TSC1/TSC2 mutations were

seen in both categories at almost equal frequencies. Importantly,

the detected alterations in the APC/CTNNB1 signaling pathway

may also influence mTOR activity since GSK3B, an important

member of the APC/CTNNB1 signaling pathway, is one of many

modulators of TSC1 [40,41]. There is further evidence for a

crosstalk between APC/CTNNB1 and TSC1/TSC2 since wild

type, but not inactive or mutated TSC2, regulates CTNNB1

negatively at the level of the CTNNB1 degradation complex [42].

In conclusion our data underscore the possible importance of

mTOR activity in the development of UC. As mTOR activity is

tractable for drug treatment [43,44], and may be a possible target

for various treatment regimes [43,45,46,47], future investigations

should be directed specifically towards mTOR activity in UC.

Supporting Information

Figure S1 Distribution of mutations in non-invasive Ta
tumors (A), in T1 tumors (B) and in (C) muscle-invasive
tumors ($T2). Red squares indicate inactivating mutation.

Green squares indicate activating mutation. For PIK3CA, dark

green squares indicate kinase domain mutations and light green

helical domain mutations. At the right mutation frequencies are

given for each gene in the respective tumor stages.

(TIF)

Table S1 Clinical features and mutation data.

(XLS)

Table S2 Primers and PCR conditions.

(XLS)

Table S3 Mutation details.

(XLS)
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