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Abstract

Background: Ovarian cancer (OC) is a gynecological oncology that has a poor prognosis and high mortality. This
study is conducted to identify the key genes implicated in the prognosis of OC by bioinformatic analysis.

Methods: Gene expression data (including 568 primary OC tissues, 17 recurrent OC tissues, and 8 adjacent normal
tissues) and the relevant clinical information of OC patients were downloaded from The Cancer Genome Atlas
database. After data preprocessing, cluster analysis was conducted using the ConsensusClusterPlus package in R.
Using the limma package in R, differential analysis was performed to identify feature genes. Based on Kaplan-Meier
(KM) survival analysis, prognostic seed genes were selected from the feature genes. After key prognostic genes
were further screened by cluster analysis and KM survival analysis, they were performed functional enrichment
analysis and multivariate survival analysis. Using the survival package in R, cox regression analysis was conducted for
the microarray data of GSE17260 to validate the key prognostic genes.

Results: A total of 3668 feature genes were obtained, among which 75 genes were identified as prognostic seed
genes. Then, 25 key prognostic genes were screened, including AXL, FOS, KLF6, WDR77, DUSP1, GADD45B, and SLIT3.
Especially, AXL and SLIT3 were enriched in ovulation cycle. Multivariate survival analysis showed that the key
prognostic genes could effectively differentiate the samples and were significantly associated with prognosis.
Additionally, GSE17260 confirmed that the key prognostic genes were associated with the prognosis of OC.

Conclusion: AXL, FOS, KLF6, WDR77, DUSP1, GADD45B, and SLIT3 might affect the prognosis of OC.

Keywords: Ovarian cancer, Cluster analysis, Key prognostic genes, Functional enrichment analysis, Multivariate
survival analysis

Background
Ovarian cancer (OC), which ranks seventh in incidence
and eighth in mortality among tumors in women, is
characterized by pelvic pain, bloating, loss of appetite,
and abdominal swelling [1]. OC can mainly spread into
the lining of bowel and abdomen, and lymph nodes,
bladder, liver, and lungs [2]. Usually, the women with
more ovulation have higher risk of OC, especially those
who have not given birth, have earlier menstruation or
later menopause [3]. OC usually has a poor prognosis
and high mortality, and most cases are diagnosed at
advanced stages as there lacks effective detection means
[4]. In 2012, globally 239,000 women were diagnosed

with OC and nearly around 152,000 women died of the
disease. [3]. Thus, exploring the pathogenesis of OC and
developing novel therapies are urgent.
In recent years, several studies have reported the

molecular mechanisms of OC. For instance, Li et al.
declared that chemokine receptor 4 (CXCR4) plays a
critical role in cisplatin-based chemotherapy for patients
with epithelial ovarian cancer (EOC) and can be seen as
a prognostic factor [5]. Yes-associated protein 1 (YAP)
contributes to cell growth and formation of OC both in
vivo and in vitro, additionally, YAP and TEA domain
family member 4 (TEAD4) may serve as prognostic
markers and therapeutic targets for OC [6, 7]. Previous
studies demonstrated that high Beclin 1 expression in
protein level can be a prognostic factor of OC [8, 9].
Califano et al. deemed that obesity evaluated by Body
Mass Index combined with high mobility group A2
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(HMGA2) expression can be used for predicting poor
prognosis in patients suffered from OC [10]. Forkhead
box M1 (FOXM1) expression is reported to be partici-
pated in the development and progression of EOC, and
FOXM1 is a promising prognostic factor for overall
survival and progression-free survival [11, 12]. However,
there lacks a overall reveal of the key genes implicated
in OC.
To identify the key genes associated with prognosis of

OC, microarray data of primary OC tissues, recurrent
OC tissues and adjacent normal tissues were obtained.
Then, the samples were pre-classified into two groups,
and key prognostic genes were screened. Followed by
functional enrichment analysis, multivariate survival
analysis was carried out to examine the overall influence
of these genes on prognosis. Finally, the key prognostic
genes were validated by an independent microarray data.

Methods
Data source and data preprocessing
Gene expression data of OC patients (dataset ID:
TCGA_OV_exp_u133a) were downloaded from TCGA
(The Cancer Genome Atlas, http://cancergenome.nih.-
gov/) database [13], meanwhile, the relevant clinical in-
formation were also obtained. The gene expression data,
which were sequenced on the platform of Affymetrix
HT Human Genome U133a microarray, included 568
primary OC tissues, 17 recurrent OC tissues, and 8 adja-
cent normal tissues. The data is level 3 data downloaded
from TCGA, in which the expression level of all probes
has been normalized. Based on the annotation platform,
probes were then mapped into gene symbols. For mul-
tiple probes corresponded to a common gene symbol,
their values were averaged and defined as the gene
expression value.

Cluster analysis and differential analysis
The variance of gene expression levels for each gene in
the samples was calculated, and the gene with variance
less than 20% of the total variance of all genes was
removed. Meanwhile, the median of gene expression
level for each gene in each sample was used as the statis-
tical indicator, and then the gene with median less than
20% of the total median of all genes was eliminated. The
expression levels of the genes with potential expression
changes in each sample were performed centralization.
To pre-classify the samples into two groups, cluster ana-
lysis was conducted using the ConsensusClusterPlus
package [14] in R. Subsequently, the limma package
(Linear Models for Microarray Analysis, http://www.bio-
conductor.org/packages/release/bioc/html/limma.html)
[15] in R was utilized to perform differential analysis for
each gene in the pre-classified samples, and the genes
with p-value < 0.001 were identified as feature genes.

Screening of stable feature genes and key prognostic genes
To obtain novel sample classification and feature genes,
the expression levels of feature genes were iteratively
used for the above cluster analysis and differential
analysis. Then, the novel sample classification and
feature genes were separately compared with the previ-
ous sample classification and feature genes. If both of
them were inconsistent, the expression matrix of the
novel feature genes would be applied for the next
iteration. The stable feature genes were obtained until at
least one of the sample classification and the feature
genes was consistent. To further identify the stable
feature genes associated with prognosis, the expression
level of each gene in each sample was used to classify
the samples according to the average expression level of
the gene. Then, Kaplan-Meier (KM) survival analysis
[16] was carried out, and the feature genes with p-value
< 0.01 were taken as prognostic seed genes.
The prognostic seed genes were performed Euclidean

distance cluster to reclassify the samples. Then, the
reclassified samples were conducted KM survival
analysis [16]. Based on this sample classification, the dif-
ferential expression level of each prognostic seed gene
was calculated using the limma package [15] in R, with
p-value < 0.001 as the threshold. Log2 fold change (FC)
value (with fixed interval) was used as the cut-off criter-
ion for screening gene set. Then, cluster analysis and
KM survival analysis [16] successively were performed,
and the most significant gen were considered as the
ultimately key prognostic genes.

Functional enrichment analysis
Gene Ontology (GO, http://www.geneontology.org/) aims
to provide functions of genes and gene products from the
following aspects: biological process (BP), molecular func-
tion (MF), and cellular component (CC) [17]. Using the
clusterProfiler package (http://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html) [18] in R, the key
prognostic genes were performed GO functional enrich-
ment analysis. The terms with q-value < 0.05 were selected
as the significant functions.

Multivariate survival analysis
To examine the overall influence of the key prognostic
genes on prognosis, multivariate survival analysis was
conducted for the key prognostic genes. Besides,
Receiver Operating Characteristic (ROC) curve was
drawn using the survivalROC package [19] in R.

Validation of the key prognostic genes using an
independent microarray data
To confirm that the repeatability and portability of key
prognostic genes, microarray data of GSE17260 were
downloaded from Gene Expression Omnibus (GEO,
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https://www.ncbi.nlm.nih.gov/geo/) and used for survival
analysis. GSE17260, which was sequenced on the plat-
form of Agilent-014850 Whole Human Genome Micro-
array 4x44K G4112F, included a total of 110 serous OC
samples. Using the survival package [20] in R, cox
regression analysis was conducted for the microarray
data.

Results
Data preprocessing, cluster analysis and differential
analysis
Through data preprocessing, the expression values of a
total of 12042 genes were acquired. After screening the
primary OC tissues with clinical information, a total of
564 samples were obtained. The variance and median of
gene expression levels were calculated, and then the
genes with little expression changes among the samples
were removed. After that, a total of 8873 genes were
screened. The expression levels of the 8873 genes in the
564 samples were performed centralization. Then, the
564 samples were pre-classified into two groups (one
group had 195 samples and the other group had 369
samples) through cluster analysis to identify the progno-
sis difference among all samples. The heatmap of cluster
analysis showed that the 8873 genes could distinguish
different samples (Fig. 1). Subsequently, a total of
3668 genes were identified as feature genes using
differential analysis.

Screening of stable feature genes and key prognostic genes
Through the loop iteration of the expression levels of
feature genes, a total of 3393 stable feature genes were
obtained. The two clusters with different prognosis
status of the stable feature genes included 211 samples
and 353 samples, respectively. The samples under the
same cluster exhibited high correlation (Fig. 2). The clin-
ical features of the two sample groups were further ob-
served, and the result showed that the two group
(cluster 1 and cluster 2) samples had significant differ-
ences in both the stage (Table 1A) and the grade
(Table 1B).
Using KM survival analysis, a total of 75 prognostic

seed genes were identified. Afterwards, cluster analysis
was conducted for the prognostic seed genes, and the
cluster heatmap suggested that the samples could be
obviously divided into two groups (one group had 479
samples and the other group had 85 samples) (Fig. 3).
Using log-rank test, the survival analysis for the two
group samples showed that they had significant differ-
ences in prognosis (Fig. 4), indicating that the prognostic
seed genes could classify the samples in prognostic level.
The cluster heatmap showed that the expression levels

of some genes among the 75 prognostic seed genes were
not very obvious, thus the key prognostic genes were
further extracted. After trying different log2 FC value for
screening gene set, we found that |log2FC| > 0.7 was the
most optimal threshold. Under |log2FC| > 0.7, the gene
set containing 25 genes had the most significant influence

Fig. 1 The cluster heatmap for the 8873 genes Fig. 2 The cluster heatmap for the 3393 stable feature genes
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on prognosis, as they can distinguish patients with differ-
ent survival status. Thus, the 25 genes were selected as
the key prognostic genes, including AXL receptor tyrosine
kinase (AXL), FBJ murine osteosarcoma viral oncogene
homolog (FOS), Kruppel-like factor 6 (KLF6), WD repeat
domain 77 (WDR77), dual specificity phosphatase 1
(DUSP1), growth arrest and DNA damage inducible beta
(GADD45B), and slit guidance ligand 3 (SLIT3) (Table 2).

Functional enrichment analysis
With q-value < 0.05 as the threshold, the 25 key prog-
nostic genes were significantly enriched in 14 terms. The

enriched functions mainly included ovulation cycle (q-
value = 0.004227, which involved AXL and SLIT3), re-
productive structure development (q-value = 0.004227),
and regulation of reproductive process (q-value =
0.004227) (Table 3).

Multivariate survival analysis
The cluster heatmap of the 25 key prognostic genes sug-
gested that these genes could divide the samples into
two groups (Fig. 5). The multivariate survival analysis
for the key prognostic genes showed that the overall sur-
vival time of the patients in the two groups had signifi-
cant difference (p-value = 0.00226) (Fig. 6). Therefore,
the 25 key prognostic genes could effectively differenti-
ate the samples and were significantly associated with
prognosis.

Validation of the key prognostic genes using an
independent microarray data
The microarray data of GSE17260 were taken as valid-
ation dataset to confirm that the repeatability and port-
ability of the key prognostic genes. Multivariate survival
analysis showed that the 25 key prognostic genes also
had good classification effects for the validation dataset

Table 1 The stage and grade distribution of the two groups of
samples divided by the 3393 stable feature genes

A Cluster StageIII StageIV Total number
of samples

Fisher’s exact
p-value

Cluster1 144 53 197 4.699e-06

Cluster2 260 31 291

B Cluster G2 G3 Total number
of samples

Fisher’s exact
p-value

Cluster1 10 196 206 8.491e-06

Cluster2 59 279 338

Fig. 3 The cluster heatmap for the 75 prognostic seed genes

Li et al. Journal of Ovarian Research  (2017) 10:27 Page 4 of 8



Fig. 4 The result of survival analysis for the two groups of samples divided by the 75 prognostic seed genes

Table 2 The information of the 25 key prognostic genes

Gene symbol Gene Name

AXL AXL receptor tyrosine kinase

EHD2 EH domain containing 2

FOS FBJ murine osteosarcoma viral oncogene homolog

KLF6 Kruppel-like factor 6

MKS1 Meckel syndrome, type 1

PDLIM2 PDZ and LIM domain 2

RAB31 RAB31, member RAS oncogene family

TIMP3 TIMP metallopeptidase inhibitor 3

WDR77 WD repeat domain 77

ZFP36 ZFP36 ring finger protein

CSF2RB colony stimulating factor 2 receptor beta common subunit

DUSP1 dual specificity phosphatase 1

FMO2 flavin containing monooxygenase 2

GFPT2 glutamine-fructose-6-phosphate transaminase 2

GADD45B growth arrest and DNA damage inducible beta

GAS1 growth arrest specific 1

INHBA inhibin beta A

KIF26B kinesin family member 26B

MMP19 matrix metallopeptidase 19

GALNT10 polypeptide N-acetylgalactosaminyltransferase 10

RGS16 regulator of G-protein signaling 16

RGS2 regulator of G-protein signaling 2

STK3 serine/threonine kinase 3

SLIT3 slit guidance ligand 3

TUBB6 tubulin beta 6 class V

Table 3 The GO (Gene Ontology) functions enriched for the 25
key prognostic genes

Term Description Gene symbol Q-value

GO:0042698 ovulation cycle INHBA, MMP19,
SLIT3, AXL

0.004227

GO:0048608 reproductive structure
development

INHBA, MMP19,
WDR77, STK3,
SLIT3, AXL

0.004227

GO:2000241 regulation of reproductive
process

INHBA, WDR77,
STK3, DUSP1

0.004227

GO:0061458 reproductive system
development

INHBA, MMP19,
WDR77, STK3,
SLIT3, AXL

0.004227

GO:0046660 female sex differentiation INHBA, MMP19,
SLIT3, AXL

0.004227

GO:0001554 luteolysis MMP19, SLIT3 0.004227

GO:1901654 response to ketone KLF6, SLIT3, DUSP1,
FOS

0.009043

GO:0097305 response to alcohol INHBA, KLF6, SLIT3,
DUSP1, FOS

0.012039

GO:0022602 ovulation cycle process INHBA, MMP19,
SLIT3

0.024753

GO:0051591 response to cAMP MMP19, DUSP1,
FOS

0.025054

GO:0030728 ovulation INHBA, MMP19 0.027454

GO:0008585 female gonad development INHBA, MMP19,
SLIT3

0.027454

GO:0046545 development of primary
female sexual characteristics

INHBA, MMP19,
SLIT3

0.028787

GO:0007548 sex differentiation INHBA, MMP19,
SLIT3, AXL

0.030429
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(Fig. 7). This suggested that the 25 key prognostic genes
were key genes affecting the prognosis of OC.

Discussion
In this study, a total of 564 samples were obtained from
data preprocessing, which were pre-classified into two
groups. Afterwards, differential analysis identified 3668
feature genes. Besides, 3393 stable feature genes were
obtained through loop iteration, and 75 genes among
them were identified as prognostic seed genes. More-
over, 25 prognostic seed genes were selected as the key
prognostic genes (including AXL, FOS, KLF6, WDR77,
DUSP1, GADD45B, and SLIT3). Multivariate survival
analysis indicated that the 25 key prognostic genes could

effectively differentiate the samples and were signifi-
cantly associated with prognosis. In addition, the micro-
array data of GSE17260 further confirmed that the key
prognostic genes were key genes affecting the prognosis
of OC.
GADD45 proteins mediate many cellular functions

such as cell cycle control, genotoxic stress, DNA repair,
and senescence, additionally, GADD45 proteins func-
tions as tumor suppressors through their pro-apoptotic
activities [21, 22]. Overexpression of GADD45A may be
implicated in the pro-apoptosis effect of the synthetic
retinoid CD437 on ovarian cancer cells [23]. Oliveira-
Ferrer et al. deem that c-FOS may affect OC progression
through exerting pro-apoptotic effect and altering

Fig. 5 The cluster heatmap for the 25 key prognostic genes

Fig. 6 The Kaplan-Meier (KM) survival curve for the two groups of samples divided by the 25 key prognostic genes
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peritoneal adhesion of OC cells [24]. Mahner et al. find
that down-regulated c-Fos plays a role in tumor progres-
sion in OC and c-Fos may be used as prognostic factor
for the disease [25]. Furthermore, KLF6 and its alterna-
tive splicing isoform KLF6-SV1 are related to the main
clinical characteristics of EOC, thus they may serve as
therapeutic targets for changing the development and
dissemination of OC [26]. Above evidence declared that
GADD45B, FOS, and KLF6 might be correlated with the
prognosis of OC.
Ligr et al. find that p44/Mep50/WDR77 is associated

with hormone effects during ovarian tumorigenesis [27].
Via regulating the p38 MAPK-mediated p-glycoprotein
overexpression, DUSP1 may cause the resistance of hu-
man OC cells to paclitaxel [28, 29]. The glucocorticoid
administration to OC patients is correlated with in-
creased expression of map kinase phosphatase 1 (MKP1,
also known as DUSP1) and serum and glucocorticoid-
regulated kinase 1 (SGK1), indicating that glucocorti-
coids may weaken chemotherapy effect in OC patients
by promoting the expression of anti-apoptotic genes
[30]. Additionally, MKP1 can be induced by cisplatin via
ERK signaling-associated phosphorylation, and the ERK-
MKP1 signaling functions in overcoming cisplatin resist-
ance in OC patients [31]. Thus, WDR77 and DUSP1
might play roles in the development of OC.
Previous study find that Growth arrest-specific gene 6

(GAS6)/AXL pathway has an influence on the complex
events occurring during the early stage of OC [32].
GAS6/AXL targeting can be an effective mean for inhi-
biting the progression of metastatic OC, and the soluble
AXL receptor is a promising agent for treating the dis-
ease [33]. Since cortisol suppressing SLIT/Roundabout
(ROBO) pathway contributes to the regeneration of
ovarian surface epithelium, the pathway may be a target
for controlling the SLIT/ROBO system in OC [34, 35].
Qiu et al. demonstrate that SLIT2 can serve as tumor
suppressor in OC, thus it may be used as a promising

therapeutic target for the disease [36]. Functional enrich-
ment analysis showed that AXL and SLIT3 were
enriched in ovulation cycle, suggesting that AXL and
SLIT3 might also be involved in OC through affecting
ovulation cycle.

Conclusions
In conclusion, a total of 3668 feature genes and 25 key
prognostic genes were screened by bioinformatics ana-
lysis. Besides, several key genes (AXL, FOS, KLF6,
WDR77, DUSP1, GADD45B, and SLIT3) might be asso-
ciated with the prognosis of OC. However, the functions
of these key genes need to be confirmed by experimental
researches in future.
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