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Demonstration of Shor’s factoring 
algorithm for N = 21 on IBM 
quantum processors
Unathi Skosana* & Mark Tame 

We report a proof-of-concept demonstration of a quantum order-finding algorithm for factoring the 
integer 21. Our demonstration involves the use of a compiled version of the quantum phase estimation 
routine, and builds upon a previous demonstration. We go beyond this work by using a configuration 
of approximate Toffoli gates with residual phase shifts, which preserves the functional correctness and 
allows us to achieve a complete factoring of N = 21 . We implemented the algorithm on IBM quantum 
processors using only five qubits and successfully verified the presence of entanglement between the 
control and work register qubits, which is a necessary condition for the algorithm’s speedup in general. 
The techniques we employ may be useful in carrying out Shor’s algorithm for larger integers, or other 
algorithms in systems with a limited number of noisy qubits.

Shor’s  algorithm1 is a quantum algorithm that provides a way of finding the nontrivial factors of an L-bit odd 
composite integer N = pq in polynomial time with high probability. The crux of Shor’s algorithm rests upon 
Quantum Phase Estimation (QPE)2, which is a quantum routine that estimates the phase ϕu of an eigenvalue 
e2π iϕu corresponding to an eigenvector |u� for some unitary matrix Û  . QPE efficiently solves a problem related 
to factoring, known as the order-finding problem, in polynomial time in the number of bits needed to specify 
the problem, which in this case is L = ⌈log2 N⌉ . By solving the order-finding problem using QPE and carrying 
out a few extra steps, one can factor the integer N. There is no known classical algorithm that can solve the same 
problem in polynomial  time2,3.

A large corpus of work has been done with regards to the experimental realization of Shor’s algorithm over 
the years. The pioneering work was performed with liquid-state nuclear magnetic resonance, factoring 15 on a 
7-qubit quantum  computer4. The considerable resource demands of Shor’s original algorithm were circumvented 
by using various approaches, including adiabatic quantum  computing5 and in the standard network model using 
techniques of  compilation6 that reduced the demands to within the reach of single-photon  architectures7–9 and a 
super-conducting phase qubit  system10. In 2012, a proof-of-concept demonstration of the order-finding algorithm 
for the integer 21 was carried out with photonic qubits using, in addition to the aforementioned compilation 
technique, an iterative  scheme11, where the control register is reduced to one qubit and this qubit is reset and 
 reused12,13. However, factoring was not possible in this demonstration due to the low number of iterations. Later, 
the iterative scheme was demonstrated for factoring 15, 21 and 35 on an IBM quantum processor by splitting up 
the iterations and combining the  outcomes14. Recently, building on previous schemes of hybrid  factorization15,16, 
a quantum-classical hybrid scheme has been implemented on IBM’s quantum processors for the prime factori-
zation of 35. This hybrid scheme of factorization alleviates the resource requirements of the algorithm at the 
expense of performing part of the factoring  classically17.

In this paper, we build on the order-finding routine of Ref.11 and implement a version of Shor’s algorithm for 
factoring 21 using only 5 qubits—the work register contains 2 qubits and the control register contains 3 qubits, 
each providing 1-bit of accuracy in the resolution of the peaks in the output probability distribution used to 
find the order. This approach is in contrast to the iterative  version18 used in Refs.11  and14, which employs a single 
qubit that is recycled through measurement and feed-forward, giving 1-bit of accuracy each time it is recycled. 
The advantage of the iterative approach lies in this very reason; through mid-circuit measurement and real-
time conditional feed-forward operations, the total number of qubits required by the algorithm is significantly 
reduced. At the time of writing, IBM’s quantum processors do not yet support real-time conditionals necessary 
for the implementation of the iterative approach, so we use 3 qubits for the control register, one for each effec-
tive iteration. Thus, our compact approach is completely equivalent to the iterative approach. In future, once the 
capability of performing real-time conditionals is added, a further reduction in resources will be possible for 
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our implementation, potentially improving the quality of the results even more and opening up the possibility 
of factoring larger integers.

As it stands, the controlled-NOT ( CX ) gate count of the standard  algorithm19 exceeds 40 and in preliminary 
tests we have found that the output probability distribution is indistinguishable from a uniform probability 
distribution (noise) on the IBM quantum processors. Our improved version reduces the CX gate count through 
the use of relative phase Toffoli gates, reducing the CX gate count by half while leaving the overall operation of 
the circuit unchanged and we suspect this technique may extend beyond the case considered here. We have gone 
further than the work in Ref.11, where full factorization of 21 was not achieved as with only two bits of accuracy 
for the peaks of the output probability distribution continued fractions would fail to extract the correct order. On 
the other hand, in the work in Ref.14, where 21 was factored on an IBM processor, a larger number of 6 qubits was 
required and the iterations were split into three separate circuits, with the need to re-initialise the work register 
into specific quantum states for each iteration. Our approach is thus more efficient and compact, enabling algo-
rithm outcomes with reduced noise. To support our claims, we successfully carry out continued fractions and 
evaluate the performance of the algorithm by (i) quantitatively comparing the measured probability distribution 
with the ideal distribution and noise via the Kolmogorov distance, (ii) performing state tomography experiments 
on the control register, and (iii) verifying the presence of entanglement across both registers.

The paper is organized as follows. In “Background”, we give a brief review of the order-finding problem and 
its relation to Shor’s algorithm. In “Compiled Shor’s algorithm” we expound on the compiled version of Shor’s 
algorithm, where we consider the specific case of the factorization of N = 21 . We construct the quantum circuits 
that realize the required modular exponentiation unitaries and proceed to optimize their CX gate count through 
the introduction of relative phase Toffoli gates. We report our results from executing our compact construction 
of the algorithm on IBM’s quantum computers in “Experiments”. Finally, we provide concluding remarks of our 
study in “Concluding remarks”. Supplementary information is included.

Background
Order finding. The order-finding problem is typically stated as follows. Given positive integers N and 
a ∈ {0, 1, . . . ,N − 1} that share no common factors, we seek to find the least positive integer r ∈ {0, 1, . . .N} 
such that ar mod N = 1 . The integer r is said to be the order of a and N, and the order-finding problem is that 
of finding r for a particular a and N. There exists no classical algorithm that can solve the order-finding problem 
efficiently, that is, with operations (elementary gates) that scale polynomially in the number of bits needed to 
specify N, i.e. L ≡ ⌈log2 N⌉2,3.

Shor’s algorithm. The order-finding problem can be efficiently solved on a quantum computer with O(L3) 
operations; the cost being mostly due to the modular exponentiation operation which requires O(L3) quantum 
 gates2. The problem of prime factorization is the subject of Shor’s algorithm, which is equivalent to the order-
finding problem: for an L-bit positive odd integer N = pq and randomly chosen positive integer a ≤ N co-prime 
to N, the order r of a and N can be used to find the non-trivial factors of N. The algorithm is probabilistically 
guaranteed, with probability greater than a half that the greatest common divisor gcd(ar/2 ± 1,N) gives the 
prime factors of N2. Shor’s algorithm uses two quantum registers; a control register and a work register. The con-
trol register contains n qubits, each for one bit of precision in the algorithmic output. The work register contains 
m = ⌈log2 N⌉ qubits where m is the number of qubits to encode N. The measurement of the control register 
outputs a probability distribution peaked at approximately the values of 2ns/r , where s is associated with the 
outcome of the measurement and thus randomly assigned. The details of how the peaked probability distribu-
tion comes about are given in the order-finding routine outlined below. One can determine the order r from the 
peak values of the distribution using continued fractions, with a number of operations that scales polynomially 
in ⌈log2 N⌉ . The procedure, or routine, for order finding is summarized below.

Order‑finding routine. 

1. Initialization
  Prepare |0�⊗n|0�⊗m and apply H⊗n on the control register and X on the mth qubit in the work register to 

create a superposition of 2n states in the control register and |1� in the work register: 

2. Modular exponentiation function (MEF)
  Conditionally apply the unitary operation Û  that implements the modular exponentiation function 

ax mod N on the work register whenever the control register is in state |x� : 

|0�⊗n|0�⊗m → 1

2n/2

2n−1
∑

x=0

|x�|1�.

1

2n/2

2n−1
∑

x=0

|x�|1� → 1

2n/2

2n−1
∑

x=0

|x�|ax mod N�

= 1√
r2n

r−1
∑

s=0

2n−1
∑

x=0

e2π isx/r |x�|us�.
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 In the second line, |us� is the eigenstate of Û : Û |us� = e2π is/r |us� and 1√
r

r−1
∑

s=0

|us� = |1� has been used for 

the work register. The MEF operation is equivalent to applying Ûx to the work register when the state |x� is 
in the control register, as shown in Fig. 1, with Û |y� = |ay mod N� for a given state |y� (the subscript a in Û is 
suppressed for notational convenience). This provides an alternative way to write the output state and allows 
a connection between the MEF operation and the QPE algorithm for the unitary operation Û .

3. Inverse Quantum Fourier Transform (QFT)
  Apply the inverse quantum Fourier transform on the control register: 

4. Measurements
  Measure the control register in the computational basis, yielding peaks in the probability for states where 

ϕs ≃ 2ns/r due to the inverse QFT. Thus, the outcome of the algorithm is probabilistic, however, there is a 
high probability of obtaining the location of the ϕs peaks after only a few runs. The accuracy of ϕs to 2ns/r is 
determined by the number of qubits in the control register.

5. Continued fractions
  Apply continued fractions to ϕ = ϕs/2

n (the approximation of s/r) to extract out r from the convergents 
(see Supplementary information VII for details).

Compiled Shor’s algorithm
A full-scale implementation of Shor’s algorithm to factor an L-bit number would require a quantum circuit with 
72L3 quantum gates acting on 5L+ 1 qubits for the order-finding  routine20, i.e. factoring N = 21 would require 
9000 elementary quantum gates acting on 26 qubits. The overhead in quantum gates comes from the modular 
exponentiation function part of the algorithm, while the overhead in qubits comes from the level of accuracy 
needed to successfully carry out the continued fractions part of the algorithm. Such an overhead obviously puts 
a full-scale implementation beyond the reach of current devices. However, compilation techniques such as the 
one described in Ref.20, bridge this gap and allow for small-scale proof-of-concept demonstrations, where the 
quantum circuit is tailored around properties of the number to be factored. This significantly simplifies the 
controlled-operations that realize the MEF operation (see previous section), which is the most resource-inten-
sive part of the order-finding routine. The resource demands of the compiled quantum circuit are significantly 
reduced, making it suitable for quantum devices with low connectivity.

From Ref.11, we extend the compiled quantum order-finding routine for the particular case of factoring 
N = 21 with a = 4 to accommodate another iteration for better precision in the resolution of the peaks for the 
value of 2ns/r . For the case of N = 21 , other choices of a give 2, 4 or 6 for r. The cases for r = 2 or r = 4 have 
been demonstrated for N = 154,7–10 and would bear a similar circuit structure in the present case. With only 
three iterations, r = 6 would be out of reach as continued fractions would fail. For a = 4 we have r = 3 , which 
is a choice that does not suffer from the aforementioned reasons. Despite r being an odd integer, the algorithm 
is successful in finding it from a = 4 . This is the case for certain choices of perfect square a and odd r, and a = 4 
and r = 3 is such a  case11.

In contrast to Ref.11, our implementation is not iterative and uses three qubits for the control register rather 
than one qubit recycled on every iteration. The iterative version is based on the recursive phase estimation, made 
possible by the use of the semi-classical  QFT12. However, we have used the traditional QFT because mid-circuit 
measurements with real-time conditionals are not possible yet on IBM’s quantum processors. The traditional 
QFT for 3 qubits  (see2—Box 5.1) that we implemented is equivalent to Fig. 1A and Fig. 1B in Ref.13. The latter 
is the semi-classical QFT that makes possible the implementation of the iterative version of Shor. If mid-circuit 
measurements with real-time conditionals were possible, the 3-qubit semi-classical QFT would be possible and 
may improve the quality of the results we present here through the use of only 1 qubit for the control register, 
as in Ref.11. IBM has suggested that the behaviour of real-time conditionals can be reproduced through post 

1√
r2n

r−1
∑

s=0

2n−1
∑

x=0

e2π isx/r |x�|us� →
1√
r

r−1
∑

s=0

|ϕs�|us�.

Figure 1.  Schematic of the routine used for the period finding part of Shor’s algorithm. The first (control) 
register has n qubits. The number of qubits in the control register determines the bit-accuracy of the value of 
2ns/r . The bottom (work) register has the m qubits required to encode N. First, the control and work registers 
are initialized, then conditional modular exponentiation is performed, indicated by the controlled unitary and 
an inverse quantum Fourier transform is applied to the control register followed by a standard computational 
basis measurement. The circuit is essentially the QPE algorithm applied to the unitary matrix Ûa—see text for 
details.
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selection of the mid-circuit measurements. However, in the present case the speed up gained would be lost using 
this post selection method (see Supplementary information I).

In Ref.11, a step that is unique among the compilation steps of previous demonstrations, and central to their 
demonstration is mapping the three levels |1� , |4� and |16� accessed by the possible 2L = 25 levels of the work-
register to only a single qutrit system. In our demonstration we also use this step, however IBM processors 
consist of qubits and so we represent the work register by three basis states from a two-qubit system and discard 
the fourth basis state as a null state. The states encoding the three possible levels of the work register; |1� , |4� and 
|16� are mapped to |q0q1� according to

Therefore instead of evaluating 4x mod 21 in the work register as described in step 2 of “Shor’s algorithm”, the 
compiled version of Shor’s algorithm effectively evaluates log4[4x mod 21] in its place for x = 0, 1 . . . 23 − 120,  
which reduces the size of the work register to 2 qubits in comparison to the 5 qubits required in the standard 
construction. Note the ordering of quantum bits in the work register is |q� = |q0�|q1� , where the rightmost qubit 
is associated with the least significant bit. Similarly, with the control register we have |c� = |c0�|c1�|c2� . In total 
the algorithm requires 5 qubits: 3 for the control register and 2 for the work register. Implementing the controlled 
unitaries Ûx that perform the modular exponentiation |x�|y� → |x�Ûx |y� = |x�|axy mod N� reduces to effectively 
swapping around the states |1� , |4� and |16� in the work register controlled by the corresponding bit of the integer 
x in the control register, which is given by x = c22

0 + c12
1 + c02

2 . In other words, Ûx = Ûc02
2
Ûc12

1
Ûc22

0 . Thus, 
depending on the control qubit ci , one of the following maps is applied:

The next simplification step comes from the fact that these operations on the work register need not be con-
trolled SWAP (Fredkin) gates, they can be as simple as CX gates, as we show next.

Modular exponentiation. Implementing Û1 on the two-qubit work register is simplified considerably by 
noting that the states |4� and |16� initially have zero amplitude, and thus the operation |1� �→ |4� alone is suffi-
cient. This operation can realized with a CX gate controlled by |c2� targeting the second work qubit |q1�.

Similarly, the implementation of Û2 can be simplified by noting that the states |1� and |4� are the only non-
zero amplitude states in the work register after Û1 may have been applied, thus prompting us to only consider 
|1� �→ |4� and |4� �→ |16� . A CX gate controlled by |c1� targeting |q1� followed by a Fredkin gate, swapping |q0� 
and |q1� realizes this simplified Û2.

In the above, the Fredkin gate has been decomposed into a Toffoli gate ( CCX ) and two CX gates. The sub-
sequent implementation of Û4 admits no simplifications as all the possible states in the work register may have 
non-zero amplitude at this point. This operation is implemented with a Toffoli and a Fredkin gate with single-
qubit X gates.

The full circuit diagram is shown in Fig. 2—note that before simplification the order of application of the 
controlled unitaries is interchangeable, Û2(n−1) or Û21 could be applied first. Interchanging the order only has the 

(1)
|1� �→ | log4 1� = |00�,
|4� �→ | log4 4� = |01�,
|16� �→ | log4 16� = |10�.

(2)

Û1 : {|1� �→ |4�, |4� �→ |16�, |16� �→ |1�},
Û2 : {|1� �→ |16�, |4� �→ |1�, |16� �→ |4�},
Û4 : {|1� �→ |4�, |4� �→ |16�, |16� �→ |1�}.

|c2〉 • •

|q0〉
U20

=

|q1〉

(3)

|c1〉 • • •

|q0〉
U21

= •

|q1〉 • •

(4)

|c0〉 • • •

|q0〉
U22

= •

|q1〉 X • X • •

(5)
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effect of interchanging the order of the outcome bits at the end of the computation. This is the reason the order 
of application of the controlled unitaries here is in reverse order to that in Ref.11.

Modular exponentiation with relative phase Toffolis. In total, the modular exponentiation routine 
requires three Toffoli gates; traditionally a single Toffoli gate can be decomposed into six CX gates and several 
single-qubit  gates2 as follows

Taking into account a given processor’s topology and the constraints it poses, as well as other parts of the 
circuit (the inverse QFT), further increases the tally of CX gates. This becomes undesirable as it is understood 
that there is an upper limit on the number of CX gates that can be in a circuit with the guarantee of a successful 
computation. The number of CX gates from the decomposition of the Toffoli gate can be cut in half if we permit 
the operation to be correct up to relative phase shifts. Margolus constructed a gate that implements the Toffoli 
gate up to a relative phase shift of |101� �→ −|101� that only uses three CX gates and four single qubit  gates21. 
This construction has been shown to be  optimal22.

Maslov showed the advantages of using a relative phase Toffoli gate when the gate is applied last or when rela-
tive phases do not matter for certain configurations of Toffolis, resulting in no overall change to the functionality 
in any significant  way23. The configuration in the circuit shown in Fig. 2 is one such configuration that permits 
a replacement of Toffoli gates with Margolus gates without changing the overall functionality. All the Margolus 
gates in the circuit in Fig. 3 (which is the circuit in Fig. 2 with the Toffoli gates replaced by Margolus gates) never 
encounter the basis state |101� , thus leaving the operation of the circuit unchanged. See Supplementary informa-
tion II for details. This further compacting reduces the number of CX gates considerably and puts the algorithm 
within reach of current IBM processors with a limited number of noisy qubits.

Experiments
Physical qubit mapping. The proposed compiled circuit in Fig.  3 was mapped onto 5 physical qubits 
(3 control qubits and 2 work qubits) and executed on a sub-processor of IBM’s 7-qubit quantum processor 
ibmq_casablanca and 27-qubit quantum processor ibmq_toronto, which we will refer to as 7Q and 27Q, and 
whose topologies are shown in Fig. 4. When mapping the compiled circuit a few considerations can be taken into 
account. First, as can be seen from Eq. (7), the Margolus gate can be implemented on a collinear set of qubits, as 
the first control qubit need not be connected to the second control qubit. On the other hand, mapping the three-
qubit inverse QFT onto physical qubits without incurring additional SWAP gates is not possible, as the three 
controlled-phase gates require all three qubits to be interconnected in a triangle and the aforementioned quan-
tum processors do not have such a topology. Additionally, more SWAP gates are introduced to the transpiled cir-
cuit, as the processor topologies do not permit the topology required by the compiled circuit, as shown in Fig. 5.

• • • • T •

• = • • T T †

H T † T T † T H

(6)

• •

• = • •

R
+π

4
y R

+π
4

y R
−π

4
y R

−π
4

y

(7)

Figure 2.  Compiled quantum order-finding routine for N = 21 and a = 4 . This circuit uses five qubits in total; 
3 for the control register and 2 for the work register. The above circuit determines 2ns/r to three bits of accuracy, 
from which the order can be extracted. Here, up to a global phase, S = Rz(

π
2
) and T = Rz(

π
4
) are phase and π/8 

gates, respectively.
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The only possible five-qubit mappings on the quantum processors are all isomorphic to either a collinear 
set of qubits or a T-shaped set of qubits, as shown in Fig. 6a,b. Choosing the mapping in Fig. 6b over the one in 
Fig. 6a is motivated by the fact that the former is slightly more connected than latter and thus in effect would 
reduce the number of SWAP gates in the mapped and transpiled circuit.

Figure 3.  Approximate compiled quantum order-finding routine implemented with Margolus gates in place of 
Toffoli gates in the construction in Fig. 2.

Figure 4.  Qubit topology of IBM Q experience processors.

Figure 5.  Qubit connections required by the compiled circuit in Fig. 3.

Figure 6.  The two possible 5-qubit processor mappings on the architectures shown in Fig. 4.
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Performance. To evaluate the performance of the algorithm, we first transpiled the circuit in Fig. 3 down to 
the chosen quantum processor with the mapping below

Through the transpiler’s optimization, with the mapping above it is possible to have a circuit that has 25 CX 
gates and a circuit depth of 35. Figure 7 shows the results of measurements on the control register qubits from 
the two processors, where measurement error mitigation has been applied to results and mitigates the effect of 
measurement errors on the raw results (see Supplementary information III). The outcomes |101� and |110� occur 
with probability ∼ 14% and ∼ 16% respectively. The theoretical ideal probability is ∼ 25% , as can be seen from 
the simulator results in Fig. 7. However, the amplification of the peaks |000� , |101� and |110� is clearly visible from 
the processor outcomes.

We quantify the successful performance of the algorithm by comparing the experimental and ideal probability 
distributions via the trace distance or Kolmogorov  distance2, which measures the closeness of two discrete prob-
ability distributions P and Q and is defined by the equation D(P,Q) ≡

∑

x∈X |P(x)− Q(x)|/2 , where X  repre-
sents all possible outcomes. This measure shows an agreement between measured and ideal results—the trace 
distance between the measured distribution and the ideal distribution is 0.1694 and 0.1784 for ibmq_toronto 
and ibmq_casablanca, respectively. On the other hand, the trace distance between the ideal distribution and a 
candidate random uniform distribution is 0.4347. Furthermore, we evaluate the performance of the algorithm by 
characterizing the measured output state in the control register, this is achieved via state tomography yielding the 
density matrix of the measured state. The measured state and ideal state on the output register are quantitatively 
compared using the fidelity for two quantum states ρ and σ , and is defined to be F(ρ, σ) ≡ tr

√

ρ1/2σρ1/22. We 
measured a fidelity of F(ρid, ρ27Q) = 0.6948± 00650 and F(ρid, ρ7Q) = 0.70± 0.0275 on the 27 qubit and 7 
qubit quantum processors respectively, as shown in Fig. 8. In Fig. 9 we show the estimated density matrices in 
the computational basis for each respective device. 

Factoring N = 21. The measured probability distributions in Fig. 7 are peaked in probability for the out-
comes 000 (ϕs = 0) , 101 (ϕs = 5) and 110 (ϕs = 6) , with ideal probabilities of 0.35, 0.25 and 0.25, respectively. 
Here we are using the integer representation of the binary outcomes. The outcome 000 corresponds to a failure of 
the  algorithm11. For the outcome 101, computing the continued fraction expansion of ϕ = ϕs/2

n = 5/23 = 5/8 
gives the convergents {0, 1, 1/2, 2/3, 5/8} (see Supplementary information VII for details), so that the third 
convergent 2/3 in the expansion can be identified as s/r and correctly gives r = 3 as the order when tested 
with the relation ar mod N = 1 , while the other convergents do not give an r that passes the test. On the other 
hand, the continued fraction expansion of ϕ = 6/8 gives {0, 1, 3/4} and incorrectly gives r = 4 as the order 
(see Supplementary information VII for details). This failure can be avoided in principle by adding further 
qubits to the control register so that the peak in the probability distribution becomes narrower and more well 

(8)

0  → c0,

1  → c2,

4  → c1,

2  → q1,

3  → q0.

Figure 7.  Results of the complete quantum order-finding routine for N = 21 and a = 4 . On each processor, 
the circuit was executed 8192× 100 times with measurement error mitigation. The error bars represent 95% 
confidence intervals around the mean value of each histogram bin (see Supplementary information IV). The 
simulator probabilities show the ideal case.
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 defined11. Another option is to simply apply continued fractions to all peaked outcomes and test if the value of 
r found satisfies the order relation for a and N. It is interesting to note that from the results of Ref.11, success-
fully finding the order r = 3 was not possible to achieve, as with only two bits of accuracy in the experiment 
the continued fractions would always fail due to the peaked outcomes of 10  (2) and 11  (3) giving the con-
vergents of {0, 1/2} and {0, 1, 3/4} , respectively. In our case, we successfully find r = 3 , from which we obtain 
gcd(ar/2 ± 1, N) = gcd(8± 1, 21) = 3 and 7. Thus, with our demonstration, extending the number of outcome 
bits to three has allowed us to fully perform the quantum factoring of N = 21.

Figure 8.  Boxplot of a sample ( ν = 50 ) of state fidelities from the respective two devices showing the spread of 
the values around the sample mean and 95% confidence intervals.

Figure 9.  Ideal and measured density matrices after the inverse QFT, estimated via a maximum-likelihood 
reconstruction from measurement results in the Pauli-basis. (a) The ideal state |����| (only the real parts are 
shown, imaginary parts are less than 0.04). (b) A matrix plot of the real part of |����| . (c) A matrix plot of the 
imaginary part of |����| . These plots are compared with the measured states ρ27Q and ρ7Q in panels (d,g), and 
the corresponding matrix plot of their real parts in panels (e,h), and imaginary parts in panels (f,i), respectively. 
We observe there is a resemblance between the ideal state and the measured states, but noise in both real and 
imaginary parts is notable.
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Verification of entanglement. The presence of entanglement between the control and work registers is 
known to be a requirement for the algorithm to gain any advantageous speedup over its classical counterparts in 
 general6,24,25. For detecting genuine multipartite entanglement around the vicinity of an ideal state |ψ� , one can 
construct a projector-based witness such as the one below:

where α is the square of the maximum overlap between |ψ� and all biseparable states. In other words, tr(Ŵψρ) ≥ 0 
for biseparable states and tr(Ŵψρ) < 0 for states with genuine multipartite entanglement in the vicinity of |ψ�
26. For the ideal state after modular exponentiation (but before the inverse QFT) in both the control and work 
registers, α = 0.75 was found using the method described in the appendix of Ref.26. This was implemented using 
the software package  QUBIT4MATLAB27. Therefore ideally the state in both registers after modular exponentia-
tion has genuine multipartite entanglement.

In order to check whether the output state from the IBM processors is close to the ideal state and has genuine 
multipartite entanglement, full state tomography would normally be needed to characterize the state ρexp in both 
the control and work registers. This would require 35 measurements, making it impractical to gather a sufficiently 
large data set within a meaningful time frame. However, we need not measure the full density matrix, the quantity 
tr(|����|ρexp) suffices. To measure this, we can decompose ρ = |����| into 293 Pauli expectations as

where σi = {I ,X,Y ,Z} are the usual Pauli matrices plus the identity. However, the number of measurements 
needed to obtain all 293 expectation values can be  reduced28. This is because the measured probabilities from a 
measurement of a single Pauli expectation value, i.e. 〈ZZZZZ〉 , can be summed in various combinations to derive 
other Pauli expectations values, i.e. 〈ZIZZZ〉, 〈IZZZZ〉 , etc. The values derived are nothing but the marginalization 
of the measured probabilities over the outcome space of some set of qubits (see Supplementary information V 
for details). We can do the same for each term in the set of terms from the Pauli decomposition of ρ , calling it 
Sd , forming a set of other Pauli terms that can be derived from the same counts. Taking the union of these sets 
to be Su , the complement Sd\Su gives the 79 terms we only need to measure (see Supplementary information 
V). We measure the 79 Pauli expectation values of the terms above with respect to the state in both registers after 
modular exponentiation and from this we compute/derive the 293 terms in Sd and therefore tr(|����|ρexp) . 
The measured probabilities for each term, some of them shown in Fig. 10, result in an expectation value of 
tr(|����|ρ7Q) = 0.677± 0.00365 and tr(|����|ρ27Q) = 0.626± 0.00304 , which leads to

(9)Ŵψ = αI− |ψ��ψ |,

(10)|����| =
∑

ijklm

pijklmσ
(1)
i σ

(2)
j σ

(3)
k σ

(4)
l σ (5)

m ,

(11)
tr(Ŵ�ρ7Q) = 0.0729± 0.00365,

tr(Ŵ�ρ27Q) = 0.124± 0.00304.

Figure 10.  A subset of 9 of the 79 measurement settings required for each term in: (a) tr(|����|ρ7Q) and (b) 
tr(|����|ρ27Q) . The x-axis from left to right shows the labels from p00000 to p11111.
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The results obviously fail to detect genuine multipartite entanglement, however, this does not mean entangle-
ment is entirely absent. Consider the square of the maximum overlap between the ideal state |�� and all pure 
states |θ� that are unentangled product states with respect to some bipartite partition (bipartition) B of the qubits,

Thus, any other state |ξ� for which

cannot be a product state with respect to the bipartition B , implying that there is non-separability, or entangle-
ment, across this bipartition. The above result extends to mixed states ρξ due to the convex sum nature of mixed 
quantum  states27. We compute Eq. (12) for all possible bipartitions of our ideal state |�� (see Supplementary 
information VI for more details).

For the experimental state ρ7Q we find, with the exception of the bipartition B = (c0c1c2q1)(q0) , that it is 
non-separable with respect to all other bipartitions, i.e. the square of the overlap between ρ7Q and |�� ( ∼ 0.677 ) is 
greater than the maximal square overlap between |�� and all product states in each of these bipartitions. Similarly 
for ρ27Q , with the exception of bipartitions B = (c0c1c2q1)(q0) and B = (c0c1c2q0)(q1) , the state is non-separable 
with respect to all other bipartitions. Most notably, both ρ7Q and ρ27Q are non-separable with respect to the 
bipartition B = (c0c1c2)(q0q1) , which is a bipartition between the control and work registers. This implies that 
non-separability or entanglement is present between the registers, as required for the algorithm’s speedup in 
 general6,24,25. Furthermore, the maximum (not necessarily global but a good proxy of it) expectation value of the 
operator |����| for product states, is found via a greedy search  algorithm27 to be around 0.30, further asserting 
that indeed the qubits are entangled with each other in some way.

Concluding remarks
In summary, we have implemented a compiled version of Shor’s algorithm on IBM’s quantum processors for the 
prime factorization of 21. By using relative phase shift Toffoli gates, we were able to reduce the resource demands 
that would have been required in the standard compiled and non-iterative construction of Shor’s algorithm 
(with regular Toffoli gates), and still preserve its functional correctness. The use of relative phase shift Toffoli 
gates has also allowed us to extend the implementation in Ref.11 to an increased resolution. Moreover, while the 
latter implementation used only 1 recycled qubit for the control register, in contrast to our three qubits, it falls 
one iteration short of achieving full factoring for the reasons already mentioned. It is not clear what additional 
resource overheads (single and two-qubit gates) would be needed in implementing another iteration in their 
scheme and it is likely that these overheads are what prevented the full factoring of 21 in the photonic setup used. 
Furthermore, we note that in principle there is no real advantage in using three qubits for the control register as 
we have done here instead of one qubit recycled, as in Ref.11. However, in practice it is not possible at present to 
recycle qubits on the IBM processors and so we used three qubits instead. In future, once this capability is added, 
a further reduction in resources will be possible for our implementation, potentially improving the quality of 
the results even more.

We have verified, via state tomography, the output state in the control register for the algorithm, achieving 
a fidelity of around 0.70. For the verification of entanglement generated during the algorithm’s operation, the 
resource demands of state tomography were circumvented by measuring a much reduced number of Pauli meas-
urements to uniquely identify a quantum  state28. However, this method is quite specialized and cannot be easily 
generalized to larger systems. In scaling up Shor’s algorithm to higher integers beyond 21 using larger quantum 
systems, other methods of quantum tomography can be used to characterize the performance. These include 
compressed  sensing29 and classical  shadows30, which give theoretical guarantees, and improved scaling in the 
number of Pauli measurements and classical post-processing than standard methods. In the case when the state 
belongs to a class of states with certain symmetries, such as stabilizer states, only a few measurements are required 
for measuring the fidelity and detecting multipartite  entanglement31. However, not all entangled states are neatly 
housed within these well-studied classes. Ref.32 introduces a device-independent method for multipartite entan-
glement detection which scales polynomially with the system size by relaxing some constraints. Another scheme 
constructs witnesses that require a constant number of measurements of the system size at the cost of robustness 
against white noise. This provides a fast and simple procedure for entanglement  detection33. Many fundamental 
questions on the subjects of quantum tomography and multipartite entanglement still remain to be  answered34 
and advances will help in efficiently quantifying the performance of algorithms in larger quantum processors.

Our demonstration involves a two-fold reduction of the resource count from the full circuit in Fig. 2 via the 
replacement of regular Toffoli gates with relative phase variants, which is an approach that is in the spirit of the 
NISQ era; tailoring quantum circuits to circumvent the shortcomings of noisy quantum processors. In addition, 
we suspect that we can further reduce the resource count through the use of the approximate  QFT35, while still 
maintaining a clear resolution of the peaks in the output probability distribution. A possible avenue of future 
research derived from what we have reported here is the investigation and identification of scenarios where one 
can replace Toffoli gates with relative phase Toffoli gates while preserving the functional correctness, in a wide 
range of algorithms including Shor’s algorithm, as seen here. In the present case, whether such an approach is 
special to the case of N = 21 or extendable to other N is not known. Ref.23 has performed some work in this 
regard, however a proper analysis and systematic composition of relative phase Toffoli gates for such purposes is 
still an open problem. In future, a similar approach may make possible the factorization of larger numbers with 
adequate accuracy in resolution of the algorithm’s outcomes and their characterization.

(12)max
θ∈B

|�θ |��|2 = β� .

(13)|�ξ |��|2 > β�
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