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Abstract

Motivation: Identifying sample mix-ups in biobanks is essential to allow the repurposing of genetic data for clinical
pharmacogenetics. Pharmacogenetic advice based on the genetic information of another individual is potentially
harmful. Existing methods for identifying mix-ups are limited to datasets in which additional omics data (e.g. gene
expression) is available. Cohorts lacking such data can only use sex, which can reveal only half of the mix-ups. Here,
we describe Idéfix, a method for the identification of accidental sample mix-ups in biobanks using polygenic scores.

Results: In the Lifelines population-based biobank, we calculated polygenic scores (PGSs) for 25 traits for 32 786
participants. We then applied Idéfix to compare the actual phenotypes to PGSs, and to use the relative discordance that
is expected for mix-ups, compared to correct samples. In a simulation, using induced mix-ups, Idéfix reaches an AUC of
0.90 using 25 polygenic scores and sex. This is a substantial improvement over using only sex, which has an AUC of
0.75. Subsequent simulations present Idéfix’s potential in varying datasets with more powerful PGSs. This suggests its
performance will likely improve when more highly powered GWASs for commonly measured traits will become avail-
able. Idéfix can be used to identify a set of high-quality participants for whom it is very unlikely that they reflect sample
mix-ups, and for these participants we can use genetic data for clinical purposes, such as pharmacogenetic profiles. For
instance, in Lifelines, we can select 34.4% of participants, reducing the sample mix-up rate from 0.15% to 0.01%.

Availabilityand implementation: Idéfix is freely available at https://github.com/molgenis/systemsgenetics/wiki/
Idefix. The individual-level data that support the findings were obtained from the Lifelines biobank under project ap-
plication number ov16_0365. Data is made available upon reasonable request submitted to the LifeLines Research
office (research@lifelines.nl, https://www.lifelines.nl/researcher/how-to-apply/apply-here).

Contact: l.h.franke@umcg.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biobanks systematically collect (human) biological samples and
associated data for research purposes. Enrichment of these bio-
banks is common through measurements on the collected samples,
for example by analyzing serum levels of biological compounds or
by genotyping. Repurposing of genetic data for clinical use has be-
come of increasing interest over the past decades (National
Academies of Sciences, Engineering, and Medicine et al., 2018).
Whereas some initiatives make use of existing diagnostic data (Lee
et al., 2020), there are great opportunities for clinical repurposing
of existing non-diagnostic data generated by biobanks. However,
quality control measures to prevent sample mix-ups (or sample

swaps) are commonly less stringent because of the research setting
this data was generated in. The existence of sample mix-ups can re-
sult in the reporting of results that don’t correspond with the indi-
vidual and could thereby harm this individual’s health (Ciszkowski
et al., 2009; Gasche et al., 2004; Heemskerk-Gerritsen et al.,
2019). The number of sample swaps that are expected in a research
setting varies, with an average having been reported of 3% in gen-
omics datasets, whereas the frequency of misidentification in la-
boratory diagnostics is estimated to be between 0.01% and 0.1%
(Lippi et al., 2017).

Identifying sample mix-ups in biobank data is a prerequisite to
allow it to be used clinically and helps to improve the quality of the
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data for scientific analyses that will benefit from improved statistical
power. For example, it is known from simulations that sample mix-
ups negatively affect the power of genome-wide association studies
(GWASs) and thereby hinder the detection of variants with smaller
effect sizes (Buyske et al., 2009; Ho and Lange, 2010; Samuels et al.,
2009; Zheng and Tian, 2005).

The most basic test for sample mix-up identification consists of
a comparison of the reported sex of individuals and the inferred
sex based on the genetic data of these individuals. A drawback of
this sex correspondence check is that it is unable to detect sample
mix-ups between samples of the same sex. Furthermore, the sex
concordance check is only applicable to datasets containing both
sexes and is only able to identify up to 50% of mix-ups given that
the dataset contains an equal number of males and females.
Pedigree information can also be utilized if family members are
included in the biobank and the family relationships are known.
In addition, self-reported ethnicities can potentially aid in the
identification of mix-ups, although self-reported or observer-
reported ethnicities are not always reliable, especially in the case
of mixed ancestry (Dumitrescu et al., 2010; Tzvetkov et al.,
2010). A variety of more complex methods have been developed
in the past that are able to detect and potentially correct sample
mix-ups reliably with the presence of omics datasets (Du et al.,
2017; Jiang et al., 2020; Westra et al., 2011). As with the sex cor-
respondence check, these methods rely on determining whether a
phenotype, for example, the expression of genes, corresponds to
the expected phenotype based on the individual’s genotype. An
observed mismatch adds evidence for the sample being a mix-up.
Drawbacks of the latter methods are that they either require spe-
cific data (such as gene expression or methylation data) that are
not commonly available.

In recent years, GWASs have been increasingly powerful, aid-
ing the power and reliability of polygenic scores (PGSs)
(Dudbridge, 2013). These PGSs can be used to predict the pheno-
types of individuals even if they were not part of the original
GWAS. Since PGSs represent an individual’s propensity to a
phenotype based on their genetic makeup, they may be useful for
identifying sample mix-ups as these PGSs provide an additional
method for determining whether the sample’s phenotype corre-
sponds to the sample’s genotype. Here, we describe a PGS-based
sample mix-up identification method (Idéfix) that combines PGSs
from multiple traits and determines per sample whether the pre-
dicted phenotypes conform to the observed phenotypes, enabling
the identification of sample mix-ups. We show our method has
predictive power for differentiating between correct samples and
sample mix-ups, and that through performing such quantification
for a sufficient number of phenotypes we can reliably identify and
remove sample mix-ups.

2 Materials and methods

2.1 Datasets
We used adult samples from the Lifelines prospective follow-up bio-
bank (Stolk et al., 2008). These samples were genotyped using the
Infinium Global Screening ArrayVR (GSA) MultiEthnic Disease
Version 1.0. Within these samples, we developed and implemented a
method to identify sample mix-ups. To do so, we selected 25 traits
for which large-scale GWASs have previously been performed, for
which the accompanying summary statistics are available, and for
which the specific phenotypes were measured in Lifelines (Demenais
et al., 2018, Evangelou et al., 2018, Hoffmann et al., 2018, Lee et
al., 2018, Mahajan et al., 2018, Van der Harst and Verweij, 2018,
Vuckovic et al., 2020, Wheeler et al., 2017, Wuttke et al., 2019,
Yengo et al., 2018). The selected traits and corresponding GWASs
are listed in Supplementary Table S1.

2.2 Calculating PGSs
For developing and executing the mix-up identification method,
PGSs had to be calculated first. A variety of methods and algo-
rithms have been developed over the past years. A recent addition

to this range of methods on polygenic prediction is PRS-CS, a tool
with superior reported accuracy that functions by inferring poster-
ior effect sizes of single nucleotide polymorphisms (SNPs) (Ge
et al., 2019). The method has been shown to equal or outperform
competing methods with various GWASs (Chun et al., 2020).
Therefore, this tool was chosen to calculate PGSs. GWAS summary
statics were processed to comply with the PRS-CS input format.
For this, we added reference SNP identifiers (RSIDs) to the sum-
mary statistics when these were not initially present. This was done
by matching the genomic locations of variants to variants from
dbSNP (build 137).

The genetic data was preprocessed using PLINK 2.0 (Chang
et al., 2015; Purcell and Chang), by excluding ambiguous SNPs and
converting the genotype data from VCF to the hybrid PLINK 2.0
bpgen format, maintaining allelic dosage information. Variants
were removed if either their minor allele frequency (MAF) was less
than 0.01, imputation score was below 0.3 or missing call rates
exceeded 0.25. Subsequently, PRS-CS was run to calculate effect
sizes given the GWAS summary statistics. We used the European ref-
erence linkage disequilibrium (LD) panel provided by the PRS-CS
authors. Other parameter settings were left as default. PLINK 2.0
was used to sum variant dosages weighted by the posterior effect
sizes as calculated by PRS-CS. The performance of PGSs for continu-
ous traits were assessed by calculating the proportion of the variance
in actual phenotypes that is explained by these PGSs (R2). For ordin-
al or binary phenotypes, we calculated the area under the ROC
curve (AUC). For testing the performance of PGSs all phenotypes
were corrected for age, sex and their interaction effects. R2-values
were compared with those reported by literature (Supplementary
Table S2).

2.3 Processing of phenotypes
The phenotypes were processed to match the design of the corre-
sponding GWAS, for example exclusion of samples with certain
comorbidities or log transformation. Exclusion criteria and transfor-
mations applied are presented in Supplementary Table S3.
Estimated glomerular filtration rate (eGFR) was calculated with the
CKD-EPI (Levey et al., 2009). Coronary artery disease was defined
as having had self-reported balloon angioplasty, bypass surgery or a
heart attack. Self-reported level of education of Lifelines participants
was converted to the number of years of US schooling according to
the mapping in Supplementary Table S4 (Okbay et al., 2016). The
characteristics of the processed study population is presented in
Supplementary Table S5.

2.4 Identifying sample mix-ups
Sample mix-up procedures rely on the (lack of) concordance of an
individual’s measured phenotype with their predicted phenotype
based on the individual’s genotype. Our method extends this con-
cept by using PGSs to predict an individual’s phenotype. The calcu-
lated PGSs are expected to be reasonably accurate for traits like
height, where a larger than expected deviance of the predicted
phenotype from the measured phenotype adds evidence for a sample
being mixed-up. Since the discordance between predicted and meas-
ured phenotypes is expected to be relatively high for mix-ups, and
relatively low for correct samples, adding additional traits will add
predictive power to identify sample mix-ups.

An overview of our method is illustrated in Figure 1. The first
steps are performed separately for every included trait. As indi-
cated in Figure 1A, initially, the relationship between PGSs and
actual phenotypes are modeled for the samples that are considered
to be correct. For binary traits, like red hair color or the presence
of a medical condition, this relationship is modeled using logistic
regression. An ordered logistic regression is applied to ordinal
traits, which for our set of phenotypes is limited to the spectrum
of hair colors ranging from black through brown to blonde. For
quantitative traits, a linear model is used. The summary statistics
that are used for calculating PGSs are not able to explain all vari-
ation in the phenotype. This is partly due to non-genetic effects.
Another cause is that in GWASs, variables that covary with
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phenotypes, such as age and sex, are often corrected for. The
effects of these covariates therefore are not reflected in the sum-
mary statistics. To account for the remaining variation that the

summary statistics are not able to explain, the predicted pheno-
types in our method are modeled using age, sex and their inter-
action effect as covariates.

Fig. 1. Method overview that indicates how PGSs and measured phenotypes are used to identify mix-ups. The steps A, B and C are performed separately for all traits. The scat-

terplot in A, and the distributions visualized in B, C and D are generated using a subset of 5120 samples from the Lifelines dataset of which 1% was introduced as a fake sam-

ple mix-up (shown in red). (A) The relationship between the input variables is modeled together in a linear model for a continuous trait. This is shown on the right. Introduced

fake mix-ups are shown in red. (B) Residuals are calculated using the previously fitted model for both the provided sample mappings (main diagonal of the plotted matrix) and

the permuted samples (off diagonal in the plotted matrix). The violin plots on the right indicate that permuted samples (grey) and mix-ups (red) are similarly distributed and

differ from the residuals for the provided sample mappings (green). (C) (left) For continuous traits, Gaussian functions are fitted to the permuted (grey) and provided sample

mappings (green) to calculate the likelihood of a residual fitting better in the correct or mix-up residual distributions. (middle) Dividing the likelihoods and log-transforming

the results in log likelihood ratios of a sample being a mix-up (LLRs). (right) A t-test is used to test if there is a significant difference between LLRs for permuted and provided

sample mappings. (D) The matrices on the left and middle indicate summing LLRs over significant traits, and that this aids the predictive power of LLRs. The densities on the

right indicate the predictive power of LLRs scaled per row of the LLR matrix
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In the following step, for every sample the residuals are calcu-
lated, both for the samples that are assumed to be correct—given the
provided sample mapping—and their permutations. Here, the resid-
uals are essentially the phenotypic variance that cannot be explained
by the PGS of a sample. It is therefore expected that the permuted
samples have higher residuals compared with correct phenotype-
genotype mappings. Permuted samples consist of all other combina-
tions of genotypes and phenotypes, as indicated in Figure 1B. In this
figure, the different sample mappings are illustrated in a matrix with
the measured phenotype part of the samples across the rows, and
genotype (PGS) part of the sample mappings across the columns.
The main diagonal herein represents the provided sample mappings,
with the off-diagonal representing permuted sample mappings. The
figure also shows that the residuals of the provided sample mappings
are differently distributed compared with those of both the provided
sample mappings and the introduced fake mix-ups.

In case a linear model was used to model the relationship be-
tween the PGSs, covariates and the measured phenotypes, residuals
are calculated as the deviations of the measured phenotypes from
the fitted function. For a logistic regression model, deviance resid-
uals are used to represent residuals which are calculated according
to Equation (1). Herein, di is defined as the deviance residual, Yi

represents the observed outcome and Pi represents the model’s pre-
dicted probability for the observed outcome. In case, an ordinal lo-
gistic regression model is used, an adaptation of this formula is used
to deal with the increase in number of categories.

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2lnðPiÞ

p
; Yi ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2lnðPiÞ

p
; Yi ¼ 0

:

(
(1)

We leverage the different distributions of residuals to calculate
log likelihood ratios (LLRs) that indicate whether a sample is likely
to be a mix-up or not. These LLRs are calculated on the ratio of the
likelihood of a residual fitting in the distribution of provided sample
mappings and the likelihood of a residual fitting in the distribution
of permuted sample mappings. This step is illustrated in Figure 1C.
Since residuals are expected to be normally distributed for continu-
ous traits, likelihoods can be calculated using densities of Gaussian
functions fitted to both of the residual distributions. This might
however not hold for each trait. We, therefore, ascertained how the
performance of this method compared to both an equal width inter-
val-discretization and equal frequency interval-discretization tech-
nique with varying numbers of samples per bin.

Equal width interval-discretization was implemented to separate
the parameter space corresponding to the residuals for the provided
samples in bins so that each bin corresponds to an interval of equal
width. The bins residing at both upper and lower limits of the par-
ameter space are forced to include a minimum number of samples to
prevent the model from overfitting and suffering from outliers hav-
ing a large effect on separating residuals into bins. This minimum
number of samples is also used to prune other bins that do not com-
ply with this lower boundary. Pruned bins are split at their midpoint
with the two halves joined to their respective nearest bin. Equal fre-
quency interval-discretization was implemented to separate the par-
ameter space corresponding to the residuals for the provided
samples in bins so that each bin consisted of an equal number of
values.

For both discretization techniques, the breaks obtained within
the set of provided samples are subsequently applied to the residuals
of permuted samples.

Discretization techniques and the Gaussian likelihood method
were assessed by sampling 10 080 samples from the Lifelines dataset
and artificially inducing 1% of mix-ups in these subsets. For each
subset we applied each discretization technique using 20, 30, 50 and
80 average samples per bin. For the equal width interval-discret-
ization the minimum number of samples per bin was set to 10.
Corresponding LLRs can be represented as a matrix wherein rows
represent phenotype parts of the sample mappings, and columns rep-
resent the genotype (PGS) part of the sample mappings. Within this
matrix, LLRs were scaled over all rows, or phenotypes. We executed
this procedure for 50 individual subsets. Analyses of variance

(ANOVAs), followed by a number of Tukey’s honestly significant
difference tests indicated that for continuous traits, the Gaussian
likelihood method outperformed other methods in which a discret-
ization approach was used (Supplementary Fig. S1).

Phenotypes of binary and ordinal traits are by definition not
continuous, and residuals are not normally distributed as is the case
for continuous traits. Therefore, using a Gaussian function for cal-
culating likelihoods is inappropriate, and the equal width interval-
discretization technique with an average of 80 samples per bin is
used instead. Furthermore, we were not able to identify a significant
advantage for the binary and ordinal traits for one of the likelihood
models. Finally, this equal width interval-discretization was chosen
over other discretization techniques because it should be less prone
to overfitting due to the larger average sample size. Log likelihood
ratios are calculated separately for each observed category within an
ordinal trait.

We select the traits with significant predictive power for sample
mix-ups using a t-test to determine whether LLRs of the provided
sample mappings differ significantly from those of the permuted
sample mappings per trait. In the final step, LLRs are summed over
all traits that have a significant difference in the LLRs, resulting in a
final matrix of LLRs. Summed LLRs are scaled per sample over the
phenotypes. In the following section, we highlight a method for
determining how an appropriate threshold can be obtained.

Using Idéfix, it is possible to select a subset of samples that ad-
here to a specified maximum mix-up rate. First, we estimate the
expected number of mix-ups using the number of samples that fail a
sex-check. Using the provided sample mappings and the permuted
sample mappings the sensitivity for every provided sample mapping
can be calculated. We then need to estimate the total number of
expected mix-ups using the number of mix-ups that are identified
using a sex-correspondence check, while accounting for the ratio of
males and females in the cohort. This is shown in Equation (2).

mrestimated ¼
swapssex check

2ðð1� fmÞ � fmÞ
� swapstotal

� �
1

N
: (2)

Herein, mrestimated denotes the estimated mix-up rate after
excluding samples based on the sex-check, swapssex check denotes the
number of sample mappings that fail a sex correspondence check,
and fm denotes the observed frequency of males in the dataset.
swapstotal depicts the total number of samples that have been
removed after the sex-check as well as other checks for sample mix-
ups such as a pedigree check. N represents the total number of
remaining samples after excluding the detected mix-ups.

Equation (3) shows how an updated estimated mix-up rate,
denoted by mrpass, is calculated for the set of samples that meet a
certain sensitivity threshold.

mrpass ¼ mrestimated � sensitivity
N

npass
: (3)

Herein, mrestimated denotes the original estimated mix-up rate cal-
culated in Equation (2), npass denotes the number of samples that
pass this threshold, and N represents the number of samples that
were assessed.

For each sample, the mrpass can be calculated. Samples for which
the calculated mrpass is below the required mix-up rate are marked
to pass Idéfix. This maximum mix-up rate is best determined based
on the purpose of the dataset. For instance, for clinical purposes, we
can select high-quality participants for whom it is very unlikely that
they reflect sample mix-ups using a maximum mix-up rate of 0.01%
to 0.1%, which is the observed mix-up rate in diagnostic settings
(Lippi et al., 2017).

2.5 Calculating the predictive power of the sample mix-

up method
To estimate the performance of Idéfix, we require a dataset in which
it is known which samples are mix-ups and which samples are cor-
rect. This can be achieved by introducing fake mix-ups into a data-
set. To get a reliable performance estimate, a considerable number
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of mix-ups will have to be introduced. However, since Idéfix expects
that the majority of the sample mappings is correct, introducing a
large proportion of sample mix-ups might underestimate the per-
formance. Therefore, we created a separate training and testing
dataset. We randomly sampled half of the Lifelines available sam-
ples (16 408) to use as training data. Thereafter, we induced 50%
mix-ups in the testing dataset with the remaining samples (16 409).
We used the model fitted on the training data to predict the mix-ups
in the testing data. These predictions were used to establish an ROC
curve and accompanying area under the curve (AUC). From the
LLRs and ROC curve, we have extracted several thresholds. This
was compared with the performance of a regular sex correspond-
ence check in which the inferred sex from genotypes was compared
with the reported sex to find mismatches. We also investigated the
performance of a combined predictor that included both our PGS
sample mix-up identification method and the sex correspondence
check.

2.6 Simulating the relation between the number of used

traits and the predictive power of PGSs
We have conducted several simulations to assess how the perform-
ance of Idéfix is affected by a varying number of traits and how the
performance improves with an expected increase in predictive power
of PGSs for the included traits (Supplementary Table S6). We there-
fore simulated PGSs and phenotype variables while explicitly main-
taining the correlation structure of both the phenotypes, the
covariates, the PGSs, and the correlation structure between these
variables. Maintaining this correlation structure is important be-
cause in practice many complex traits are correlated, simulated un-
correlated data would inflate the added value of additional traits.
The data types of phenotypes (i.e. quantitative, binary, ordinal) are
also maintained. To increase the number of traits, we duplicated the
required part of the correlation structure while maintaining inde-
pendence of traits between individual copies. To increase the
explained variance of polygenic scores the squared correlations be-
tween all phenotypes and all polygenic scores were transformed by
the inverse hyperbolic tangent function and multiplied by a prede-
fined factor of 0.5, 1, 1.5 and 2. Thereafter, we transformed these
values back using the hyperbolic tangent function to maintain the
range from �1 to 1. For each dataset we performed five separate
simulations in which we estimated the performance of Idéfix on
20 000 samples using the same approach that we used to estimate
the performance of Idéfix in Lifelines. For all simulations, we calcu-
lated the predictive power using the method described in the previ-
ous paragraph and compared it with the performance between all
simulated datasets.

Idéfix is implemented and run in the R programming language
(version 3.6.1). Ordinal logistic regression models were fitted using
the MASS package (version 7.3–51.6) (Venables and Ripley, 2002).
ROCs and AUCs were calculated using the pROC package (version
1.16.2) (Robin et al., 2011). For simulating datasets, we made use of
the SimMultiCorrData package (version 0.2.2) (Fialkowski, 2018).

3 Results

3.1 Polygenic score-based sample mix-up identification
We have developed a sample mix-up identification method (Idéfix)
that relies on the comparison of actual phenotypes to PGSs. Our
method works by:

1. modeling the relationships between phenotypes and polygenic

scores,

2. calculating the residuals of the provided samples and their

permutations,

3. using a likelihood model fitted on the residuals for provided and

permuted samples,

4. combining likelihood ratios over multiple traits,

5. estimating mix-up rates to select a subset of samples that adhere

to a specified maximum mix-up rate.

We implemented our method in the R programming language
(version 3.6.1). The installation and usage instructions for Idéfix is
described on the wiki. (https://github.com/molgenis/systemsgenetics/
wiki/Idefix).

3.2 Polygenic scores
We calculated PGSs for the 25 selected traits in the Lifelines dataset.
To assess the predictive power of the PGSs for continuous traits R2-
values were calculated. For ordinal or binary phenotypes, we calcu-
lated spearman correlation and AUCs, respectively. These values in-
dicate that for most traits, the performance is consistent with prior
reported performance in literature. The explained variance ranges
from 3.0% for the concentration of basophilic granulocytes to
33.9% for height. However, we observed that PGSs for body mass
index (BMI) and educational attainment do not explain as much
variance compared with previously reported values (11.9% and
5.3%, respectively). The explained variances for continuous traits
are presented in Supplementary Figure S2. This figure also illustrates
that, as expected, using a model that corrects for both sex and age
increases the phenotypic variance that PGSs explain.

3.3 Predictive power of our method
We assessed the ability of Idéfix to discriminate between sample
mix-ups and correct samples by executing the method we developed
in the Lifelines dataset using the PGSs we calculated and the proc-
essed phenotypes. We fitted the regression and likelihood models on
half of the samples in which we did not introduce artificial mix-ups.
Subsequently, we applied these models on half of the samples in
which we introduced 50% sample mix-ups. The measurements for
the performance are therefore also suitable for situations in which a
regular, moderate, percentage of mix-ups are expected. This ap-
proach allowed us to get an accurate measurement of the

Fig. 2. Performance of polygenic score-based mix-up identification. Performance of

the polygenic score-based mix-up predictor (blue), the sex concordance check (sex

correspondence check, orange) and a combined predictor (green) as illustrated by re-

ceiver operating characteristics (ROC). The x-axis indicates the proportion of cor-

rect samples that are falsely identified as a mix-up, named the false discovery rate

(FDR), which corresponds to 1-specificity. The y-axis represents the proportion of

mix-ups that are identified as mix-ups, named the true positive rate (TPR) or the

sensitivity. Coordinates of one of the curves correspond to the specificity and sensi-

tivity for a particular threshold of the predictor. Due to male–female imbalance in

the dataset, the proportion of mix-ups identified as shown for the sex correspond-

ence check deviates from the expected value of 0.5. Because of this deviation, the

AUC is 0.74 as opposed to the expected AUC of 0.75 given an equal number of

males and females
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performance of our method for individual traits, as well as for the
method overall. First of all, we see that AUCs for individual traits
ranges from 0.50 to 0.66. In Supplementary Figure S3 is presented

that these AUCs are positively correlated with the variance
explained by PGSs, and that the predictive power of binary traits is,

in general, less informative than that of continuous traits. The num-
ber of traits available for the samples in our dataset is presented in
Supplementary Table S7.

In Figure 2 is shown that the AUC for the polygenic score-based
sample mix-up identification for 25 traits combined is 0.80. Using

the AUC as a measure for performance, we also notice that our
method performs better than the sex correspondence check which is

able to identify 50% of samples without false positives if an equal
number of males and females are present in the dataset. When com-
bining the sex-check with our PGS-based sample mix-up identifica-

tion the AUC increases to 0.90. It is conceivable that different
thresholds are advantageous dependent on the intended application
of the genetic data. For instance, GWASs profit from increased sam-

ple sizes (Canela-Xandri et al., 2018), making lenient thresholds
more suitable for this application compared with more stringent

thresholds. Alternatively, when repurposing genetic data for clinical
use more stringent thresholds are desired. In Figure 2, we estimate
that the proportion of sample mix-ups is reduced 250-fold when

selecting the 10% of participants for whom predicted phenotypes
adhere best to the measured phenotypes.

3.4 Application in lifelines
Applying Idéfix to our entire cohort enabled us to identify a number

of potential sample mix-ups. We note that there are four non-
European samples that have considerably higher predictions to be

mix-ups relative to other samples despite the fact that 98.2% of the
analyzed samples are of Dutch ancestry. To ascertain that these find-
ings are not ethnicity-driven, samples of European and non-

European ethnicity were compared. This indicated that for non-
European samples, there is on average not more evidence for classi-

fying these as sample mix-ups (Welch’s t-test, P¼0.92), strengthen-
ing the support for the identified samples being mix-ups
(Supplementary Fig. S4). By plotting the discordance between actual

and predicted phenotypes, we can visually inspect how Idéfix identi-
fies potential mix-ups (Supplementary Fig. S5). We can see that
every sample of our top four predicted mix-ups shows systematic

deviations for multiple traits, which indicates that not a single trait
is driving the predictions. We also observe large deviations for

height (P-values between 3.07�10�3 and 1.13�10�8). Given these
observations, we conclude these are likely mix-ups.

Based on the number of mix-ups detected with a sex-check, it is
expected that Lifelines still contains 56 sample mix-ups, constituting
0.15% of the total samples. In contrast, a diagnostic setting only

allows for 0.01% to 0.1% sample mix-ups (Lippi et al., 2017). We
could use Idéfix to limit the mix-up rate in Lifelines to a mix-up rate

of 0.01%. This allowed us to select 11 266 of 32 786 samples
(34.4%) that are most likely correctly mapped. Herein, the expected
number of mix-ups would be equal to the most stringent require-

ment for diagnostic use.

3.5 Idéfix’s performance increases when using more

traits and with improved PGSs
Simulated datasets allow the performance of Idéfix to be assessed in

diverse conditions: emulating larger biobanks with more traits or
mimicking more powerful PGSs. In Figure 3 is shown that the AUC

increases with an increase in number of traits and with an increased
explained variance of PGSs. Simulations show that the performance
of Idéfix reaches an AUC of 0.96 with 100 traits compared to 0.89

with 25 traits. We additionally show that after an increase of
explained variance of all PGSs to 200%, the performance of Idéfix
reaches an AUC of 0.98 and 1.00 for 25 and 50 traits, respectively.

4 Discussion

Sample mix-ups present a challenge for the repurposing of genetic
data available in biobanks, as well as hindering the capability of as-
sociation analyses to detect small genetic effects. Existing methods
to resolve mix-ups are either not able to identify sample mix-ups
within the same sex or require additional data like gene expression
or methylation measurements. For most biobanks, such genomics
data is usually not available. This was the motivating reason to de-
velop Idéfix, a method that is able to identify sample mix-ups in bio-
banks while solely relying upon genetic data and a limited number
of measured phenotypes, such as height, BMI, cholesterol and hair
color.

We have shown that our method is capable of identifying sample
mix-ups with high accuracy using both real data and simulated data-
sets. By accurately simulating datasets based on the observed corre-
lations and distributions in our real dataset, we were able to model
how increasingly powerful PGSs and additional traits affect the per-
formance of Idéfix. With the increasing samples sizes of biobanks
with genetic data, we can reasonably assume that the accuracy of
PGSs in both European and non-European samples will improve in
the near future and that they will be available for more different
phenotypes. Based on this, we can conclude that the ability of Idéfix
to identify sample mix-ups will improve considerably. This is ex-
tremely valuable for biobanks that wish to return information to
their biobank participants, such as a pharmacogenetic passport or
polygenic risk scores for certain diseases that can be (partly) pre-
vented or intervened on by lifestyle modification. To do so, it is cru-
cial to know that information that is being returned to individuals is
accurate and our method Idéfix can help to ensure this to be the
case.

Previously, it has been reported that predicting phenotypes based
on genetic information with the aim of sample identification has
remained a challenge (Cai et al., 2017; Lippert et al., 2017).
However, the performance of the latter method was not clear
(Erlich, 2017) and our approach is to select a high-quality dataset
rather than sample identification. Here, we have leveraged a set of
well-powered GWASs, in conjunction with a recent method for cal-
culating PGSs, and a likelihood ratio framework to accurately weigh
these PGSs to determine to what extent sample mix-ups can be iden-
tified. Most importantly, we developed this method because we
aimed to identify a set of samples that very likely do not contain
mix-ups and whom for instance can safely be returned pharmacoge-
netic results. Having such a sub-cohort of biobank participants
available can, for instance, be very valuable for investigating the

Fig. 3. The increase in performance of Idéfix with an increase in the number of traits

and an increase in power of PGSs. The figure shows that an AUC for 25 traits

including the sex-check ranges from 0.82 to 0.98 when the explained variance of

PGSs is varied from 50% up to 200%, relative to the actual explained variance of

the PGSs in Lifelines. The points represent the mean for each simulated dataset over

five iterations. Error bars represent the total range for the five iterations
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implications of pharmacogenetics among biobank participants
alongside clinical implementation.

We do observe several avenues to improve our method. We have
shown using both simulations and real data that our method per-
forms best with well-powered PGSs (Supplementary Fig. S3).
However, PGSs do not capture the full heritability of traits.

Furthermore, GWASs that identify variants associated with a
particular trait which are the basis of PGSs are focused on common
variants, while rare variants tend to have larger effect sizes (Marouli
et al., 2017). This is especially true for people with a rare monogenic
disorder that effects multiple phenotypes. For instance, people with
Marfan syndrome often present with medical complaints, but can
live a relatively normal life (Marfan Syndrome, 2021). Since the inci-
dence is between 1 in 5000 to 10 000, people with Marfan
Syndrome are likely to be part of population-based biobanks.
However, because they are typically tall and slender and often pre-
sent bone, cardiovascular and ocular abnormalities they could be
flagged as mix-ups since rare variants are not part of the PGSs that
we used. While an increase in sample sizes will probably result in
rarer alleles being discovered, the accuracy of PGSs can also be
improved by integrating large-effect expression variants found in
other ways as well (Smail et al., 2020). Larger sample sizes also in-
crease the power of GWASs to identify variants regardless of their
effect size (Canela-Xandri et al., 2018) and subsequently increasing
the predictive power of PGSs yet more.

Another limitation of PGSs is that these are much less predictive
for non-European cohorts (Duncan et al., 2019). We show in simu-
lations that a reduction of explained variance of 50% equates to a
corresponding decrease in the performance of Idéfix (Fig. 3). This
supports the need for large-scale GWASs in diverse human popula-
tions. A consequence of the less performant PGSs in non-European
samples is that there will be less power to detect mix-ups, causing
results to be differently distributed for these samples compared with
European samples (Supplementary Fig. S4). We do expect that this
limitation will be resolved when GWASs are performed on mixed
ancestry in cosmopolitan cohorts. Until then, one possible solution
is to run Idéfix separately for each ancestral population separately
or using the recently proposed PGS-CSx that can handle mix-
ancestry data (Ruan et al., 2021).

In the past years, numerous biobanks have been established,
each of these providing valuable resources on genotype data and a
large number of phenotypes. This is a good starting point for our
method. However, since the discovery and validation samples
should be independent when calculating PGSs (Wray et al., 2013),
this poses a problem when biobanks are included in GWASs that are
used for calculating PGSs, since these will then be biased for the
included biobanks. However, we expect that the effect on the per-
formance of Idéfix is limited. Since current GWASs are performed
on many different cohorts, the effect of each individual cohort on
the PGSs is limited.

Biobanks and studies often differ in the phenotypes that have
been measured and that are available. With different independently
inherited phenotypes being available for other biobanks, there is the
opportunity for additional informative phenotypes to be included in
Idéfix. However, this variability also limits the applicability to
cohorts that have fewer phenotypes available since a limited number
of phenotypes will limit the performance of our method, although it
will still add to the performance of a sex-based concordance check.
Moreover, due to the discrete nature of binary traits, these traits are,
in general, less informative than continuous traits (Supplementary
Note). Using highly heritable continuous traits is thus beneficial, al-
though binary traits can also be a valuable aid while mix-up detec-
tion based on PGSs is not yet perfect. In addition, the first step of
the method we developed is dependent in modelling the relationship
between the measured phenotypes of individuals and the PGSs.
Identifying such a relationship can be hindered by a lack of samples
or can be biased when there are too many sample mix-ups present in
the dataset.

Our method can be beneficial in a variety of scenarios. For in-
stance, Idéfix is able to identify mix-ups irrespective of the propor-
tion of males and females included in the study, whereas a common

sex concordance check alone is only able to perform optimally with
an equal number of individuals for both sexes. Our method relies on
the availability of multiple traits in the biobank for which PGSs can
be calculated. Furthermore, it is possible for our method to be
expanded with additional traits when these become available in the
future and it is expected that performance will increase dependent
on the heritability of the trait. In the Lifelines cohort, 285 sample
mix-ups have already been identified, 42% of which have been iden-
tified by utilizing pedigree information and ascertaining whether the
genotype data is concordant with these reported familial relation-
ships. These samples could not have been identified using sex-check
alone, exemplifying the necessity of additional mix-up identification
in biobanks wherein familial relationships cannot be used. Despite
this thorough quality control in the Lifelines cohort, Idéfix has
enabled us to identify 4 additional sample mix-ups with high confi-
dence. Furthermore, it has allowed us to define a set of 34.4% sam-
ples wherein the estimated number of mix-ups is reduced 50-fold.

Currently, Idéfix is not yet able to identify every single sample
mix-up: it can happen that for a certain sample the calculated PGSs
for each of the 25 phenotypes are all quite average and that the
observed, but incorrect phenotypic measurements behave similarly.
In that case this sample is not yet flagged as a sample mix-up.
However, using larger GWAS studies that lead to more accurate
PGSs and by including more traits, we expect our method to help re-
solve most sample mix-ups in biobanks within the next few years.
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Albert Uderzo and René Goscinny for inspiring us to call our method Idéfix.
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