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A B S T R A C T

In this work, flexible plasticized starch/graphene oxide (PS/GO) nanocomposites are synthesized by a simple and
economic solution cast technique. The structural and surface morphological study of the nanocomposite dem-
onstrates an increased degree of interaction between PS and GO which in turn improves the mechanical strength
and thermal stability of the nanocomposite. The influence of GO loading on the capacitive performance of the
nanocomposite was evaluated by studying the electrochemical properties. The PS/GO nanocomposite showed an
improved capacitive behavior with a specific capacitance of 115 F/g compared to that of pure starch (2.20 F/g)
and GO (10.42 F/g) at a current density 0.1 mA/cm2. The electrochemical impedance analysis indicates that the
incorporation of GO enhances the conductivity of the nanocomposite in the charge transfer resistance at the
electrode/electrolyte interface due to the incorporation of GO. The large surface areas provided by the GO sheets
allow faster transport of charge carriers into the electrode and improve the electrochemical properties of the PS/
GO nanocomposite. Considering the simplicity and effectiveness of the synthesis proses, the result indicates that
the PS/GO nanocomposite could be a potential alternative for bio-friendly, flexible energy-storage applications.
1. Introduction

Recently, electrochemical energy storage has received significant
research interest because of its high power density, extended lifecycle
together with the friendliness to the environment of the supercapacitors
compared to the secondary batteries and their wide range of applications
in portable electronics to electric automotive [1, 2, 3]. To date, a variety
of polymers based nanocomposite obtained from PVA, PEDOT, PANI,
polyaniline, polypyrrole, etc. showed high-performance energy storage
properties [2,3]. Most of these polymers originate from the synthetic
route and are not readily degradable, which may cause a great threat to
the environment. Therefore, considering its potential in energy storage
applications, coupled with its enhanced economic viability and sustain-
ability, biopolymer-based energy storage devices have garnered immense
prominence when compared to the non-biodegradable polymer. Elec-
trochemical devices fabricated from natural biocompatible materials are
low cost as they are abundant in nature and environment friendly and
have the ability to address the environmental hazard produced by
non-degradable devices [4,5]. More specifically, biopolymers obtained
from renewable sources are considered as the building block of
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environment-friendly energy storage devices. To date, a variety of bio-
polymers obtained from natural sources demonstrated diverse applica-
tions in different branches, such as electronics, display, energy storage,
etc. [6, 7, 8, 9, 10]. In particular, Starch, a natural polysaccharide, is
considered as one of the most promising natural biopolymers as it pos-
sesses a number of unique specialties such as renewability, abundance,
low cost, and biodegradability [4,5].

Incorporation of nanofillers into the polymer matrix is a prevalent
technique to enhance the thermal, electrical, and mechanical perfor-
mance of the biopolymer. Allotropes of carbon such as carbon nanotubes,
and graphene are being widely used as fillers for polymer matrix [11, 12,
13, 14, 15, 16]. Among them, graphene, a truly two-dimensional (2D)
material, arranged in a hexagonal lattice, has considered as the most
efficient nanofillers due to its unique chemical and physical properties.
Graphene oxide (GO), a derivative of graphene, has attracted significant
research attention as a nanofiller due to its distinctive advantages,
including low cost, facile mass production, and extraordinary mechanical
properties. Additionally, the abundant oxygen functional groups in GO
allows the formation of hydrogen bond interactions with starch [17, 18,
19]. Besides, the higher stability of GO suspension in water allows
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preparation of starch/GO composites using solution-processed tech-
niques which are simple and economic.

Graphene oxide reinforced starch nanocomposite has been synthe-
sized and characterized by a number of research groups and GO was
found to boost the mechanical performance and increase the thermal
stability of the materials [20, 21, 22]. Li et. al. have synthesized PS/GO
nanocomposite and demonstrate that the addition of GO into the matrix
enhances the mechanical performance of the nanocomposite remarkably
[20]. Zheng et. al. showed that incorporation of GO into the PS matrix
enhances the absorbance in the UV region and may be used as a UV
protector [21]. Bhattacharyya et. al. showed that PS/GO nanocomposite
can remove organic dye from aqueous solution and can be used for the
decontamination of water [23]. Aqda et. al. have shown that graphene
oxide/starch nanocomposite can be used to extract antibiotics from milk
[24]. Even though a countable work has been performed on GO-based
starch nanocomposite, most of them focusing on the enhancement of
optical, thermal, and mechanical performance of the nanocomposite
however detailed investigation on the electrochemical performance of
GO/starch was inadequate. Therefore, the main goal of this research is to
investigate the influence of GO nanofiller on the electrochemical prop-
erties of PS/GO nanocomposite.

In this article, one of the promising applications of PS/GO nano-
composite, the energy storage capacity has been reported. The synthesis
method is one of the major factors that control the surface morphology,
structure, and electrochemical performance of the nanocomposite. We
have chosen a solution cast technique for the synthesis of PS/GO nano-
composite since GO suspension was unwavering in water because of their
plentiful oxygen-containing groups. Solution casting has several other
advantages including easy and simple setup, low processing time, and
cost-effectiveness. The influence of GO loading on the structural pa-
rameters, surface morphology, thermal stability, and mechanical prop-
erties of the nanocomposite was studied. To appraise the use of PS/GO
nanocomposites for energy storage applications, the electrochemical
properties of pure PS and PS/GO were studied in detail by cyclic vol-
tammetry (CV), galvanostatic charge-discharge (GCD) measurement, and
Electrochemical impedance spectroscopy (EIS) analysis. PS/GO nano-
composite exhibit improved electrochemical performance together with
significantly enhanced specific capacitances, originating from the syn-
ergistic effect of PS and GO.

2. Materials and characterization

2.1. Materials

Graphite fine powder (Loba Chemie, India) company, Potassium
permanganate (KMnO4) (Merck, India), hydrogen peroxide (H2O2)
(Qualikems, India), sodium nitrate (NaNO3), sulfuric acid (H2SO4, 98%),
were obtained from the supplier, all analytical grade or better and used as
received. Starch was extracted in our laboratory from Potato.
Figure 1. (a) XRD patterns and (b) F
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2.2. Sample preparation

Modified Hummers method was used to prepare GO [25]. At first, 5 g
natural graphite fine powder, 2.5 g NaNO3, and 115 mL H2SO4 were
poured into a glass pot followed by stirring in an ice-bath followed by
mixing of 15 g KMnO4 under continuous stirring and care was to kept the
temperature less than 200 �C. The mixture was heated and stirred for a
few hours followed by the addition of de-ionized water in an oil bath at
95 �C. After that aqueous solution of H2O2 was mixed to diminish the
residual KMnO4 until the bubble got disappeared. After filtering the so-
lution the residue was washed by hot water until it becomes neutral.

Figure 1 (a) shows the X-ray diffraction (XRD) pattern of the GO
flakes. The XRD spectra of GO gives a sharp (001) peak at 10.4�, sug-
gesting an interlayer spacing of 8.0 _A between the layer of GO. This
increment suggests presence of oxygen congaing groups at the carbon
basal plane of GO [26].

Figure 1 (b) shows the Fourier-transform infrared spectroscopy
(FTIR) spectrum of GO. A wide band corresponds to OH groups is
observed between 3550-3000 cm�1. This suggests that inter- and intra-
molecular hydrogen bonding are present in the as-prepared GO. Peaks
are also observed at 1066 cm�1 (C–O–C, C–O bond), and 1720 cm�1 (CO,
C¼O bond of carbonyl and carboxyl groups) [27]. These peak confirms
existence oxygen groups at GO. The bands at 2926 cm�1, 1625 cm�1, and
1384 cm�1 indicates the stretching of C–H, C¼C, and C–O bond
respectively [28].

To synthesize starch, the clean potato was grated and put into a
mortar followed by grinding in DI water. Then the liquid was poured off
to a beaker. This process was repeated several times. The decantation of
water leaves potato starch at the beaker. The starch was then dried for an
hour. Since starch is made of long chains of glucose, vinegar was used to
break down the chains. Propane-1, 2, 3-triol (glycerol) was added to
plasticize the starch. To synthesize potato starch/graphene oxide (PS/
GO) nanocomposite, at first, an aqueous solution of GO powder was
made and the solution followed by an hour of sonication yielding uni-
formly dispersed GO solution. Two different concentration of GO fillers
(0.5 wt% and 1.0 wt%) was used to prepare the PS/GO composite. To
fabricate PS/GO composite, 5 g PS powder, 1.5 g glycerol, and 1.5 ml
vinegar were mixed the GO solution. The blend was stirred constantly at
95 �C for 15min for plasticization of starch. The PS/GO solution was then
decanted onto a petri dish followed by heating at 50 �C yielding solid
films. Three different nanocomposite films were made and named as PS,
PS/GO (0.5%), and PS/GO (1%), where the number inside the paren-
thesis represented the loading of GO.
2.3. Characterization methods

The structural properties of the nanocomposites was investigated by
an X-ray diffractometer (3040XPert PRO, Philips) using monochromatic
CuKα radiation (λ ¼ 1.54Å). FTIR spectra of the nanocomposites were
TIR spectrum of the GO powder.



Figure 3. FTIR spectra of PS/GO nanocomposites with concentration of GO
added to 0%, 0.5% and 1.0%.
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studied using an FTIR spectrometer (IRSpirit, Shimadzu). The thermal
properties of PS/GO nanocomposites were investigated by a thermog-
ravimetric analyzer (TGA) (TG50, Shimadzu). The TGA curves were
studied at the temperature ranges between 25 �C and 800 �C under a
nitrogen atmosphere.

The tensile properties of the composites were studied using universal
testing machine (Wance ETM 501) at ambient using a 10N load cell at a
crosshead speed of 10 mm/min. The standard test method for tensile
properties of thin plastic sheeting (specification D882-02) was followed.
An average value of five replicates for each sample was taken for the
tensile tests. After the tensile test, the fractured surface of the PS and PS/
GO composite was observed by a field emission scanning electron mi-
croscope (FE-SEM) (JEOL-JSM 7600) at an accelerating voltage of 5 kV.

The electrochemical measurements were performed in 0.1M KCL
solution using an electrochemical workstation (CorrTest CS310) at room
temperature. The measurements were carried out by using a three-
electrode cell configuration: Ag/AgCl reference electrode, polished
Glassy Carbon with electro-active material (2 mg) as the working elec-
trode, and platinum plate (1 cm � 1 cm) counter electrode.

3. Results and discussions

3.1. Structural properties of the nanocomposite

XRD was performed to investigate the crystalline structure of neat PS
and PS/GO nanocomposite and the corresponding XRD pattern is shown
in Figure 2. Generally, starch are classified into A, B, and C forms [29]. In
Figure 2, the intense diffraction occurred at 2θ ¼ 17� together with
several peaks near 20�, 22�, and 24�, indicating B-type crystal mor-
phologies of the PS [30,31]. XRD patterns of PS/GO composites
appearing almost the same peaks as PS signifies that PS/GO nano-
composite contains the same crystal type as PS. Additionally, the char-
acteristic diffraction peak of GO was disappeared in the XRD pattern of
PS/GO and the intensity of all the diffraction peak was decreased sug-
gesting that the addition GO the deteriorate the crystallinity of the PS
matrix. Furthermore, it is observed that the incorporation of GO (0.5%)
upshift the peaks indicating a reduction in the d-spacing [32]. Whereas
incorporation of 1.0% GO downshifted the peaks meaning an increase in
the d-spacing.

3.2. Fourier transform infrared spectroscopy

FTIR spectroscopy was used to study the chemical changes that occur
in PS after the addition of filler. The FTIR spectra of PS and PS/GO
nanocomposites are presented in Figure 3. For PS film, the bands at 3352
cm�1 and 1651 cm�1 corresponds to the presence of –OH groups [33].
The band at 2941 cm�1 corresponds to the C–H stretching vibration of
Figure 2. XRD patterns of PS and PS/GO nanocomposites.
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methane hydrogen atoms [34]. The bands at 1151 cm�1 and 1109 cm�1

represents the presence of C–O bond in the anhydrous glucose ring. The
PS/GO nanocomposite exhibit all of these major characteristics of the PS
matrix. The OH banding has been shifted to the lower wavenumber in the
PS/GO nanocomposite, suggesting that formation of hydrogen bonding
between the polymer and filler [20]. Besides, the intensity of the band
corresponds to the OH group (at 3352 cm�1) increases with the incor-
poration of GO. This suggests that the incorporation of GO into the PS
matrix enhances the hydrophilicity of the surface [35]. Overall, the FTIR
spectra of PS/GO nanocomposite indicate the presence of strong inter-
action between GO with the PS matrix, and no new bond was formed
between them [36].

3.3. Surface morphology

The morphology of the fractured surfaces of the PS/GO composites is
presented in Figure 4. The granular structure of starch was absent in the
morphology of the pure PS film. GO was found to be evenly distributed
over the PS matrix. For the higher concentrations of GO, a few agglom-
erations were observed in the composite. The presence of plentiful
oxygen-containing groups of GO allows formation of interaction between
PS and GO by hydrogen bonding [37]. Furthermore, the GO surface
observed to be enclosed by the polymer, suggesting presence of strong
interfacial interactions between GO and PS.

3.4. Thermal stability of the nanocomposite

Thermal analysis of the nanocomposite was performed by thermog-
ravimetric analysis (TGA) to analyze the influence of GO on the thermal
decomposition behavior of PS. Figure 5 shows the TG curve of the PS and
PS/GO nanocomposite. Two main thermal events are observed in the TG
curve for PS. The first one, before the onset temperature (~100 �C), can
be attributed to the volatilization of the water absorbed by starch and
glycerol plasticizer [38]. The second event occurred between 220 �C to
380 �C corresponded to the elimination of polyhydroxyl group and starch
decomposition [39]. The TG curve for PS/GO nanocomposite represents
similar behavior except for the residual mass at 800 �C, which can be
attributed to the presence of more stable GO in the PS matrix.

The different thermal parameters, such as the initial decomposed
temperature (IDT), integral procedural decomposition temperature
(IPDT), the temperature at 50% weight loss (T�50%), and the temper-
ature at the maximum rate of mass loss (Tmax) were calculated [40] from
the TG curve of the nanocomposite to assess the thermal stability of the
material's and are presented in Table 1. It could be observed that all the
PS/GO possesses a higher IPDT than neat PS, signifies the increases of the
decomposition temperatures of PS due to the incorporation of GO. This
may be due to the suppression of the mobility of PS by strong hydrogen



Figure 4. FESEM images of the cross-sections of PS/GO nanocomposites with concentration of GO added to (a) 0%, (b) 0.5% and (c) 1.0%.

Figure 5. TGA thermograms of PS and PS/GO nanocomposites film with con-
centration of GO added to 0%, 0.5% and 1.0%.
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interactions of GO. Typically, the better interaction between nanofiller
and polymer resulting in improved thermal stability of the nano-
composites [41]. Though, PS/GO (1.0%) nanocomposites thermally
degraded at a temperature lower than that of PS/GO (0.5%) suggesting
that addition of more GO reduces the thermal stability of the PS/GO
composites. With the increase of GO content, the decomposition of ox-
ygen functional groups weakens the interaction between polymer matrix
and nanofiller resulting in faster decomposition of the starch matrix [42].
3.5. Mechanical properties

The effects of the concentration of GO nanofiller on the mechanical
performance of PS/GO nanocomposite are illustrated in Figure 6.
Figure 6(a) shows the influence of GO nanofiller on the tensile prop-
erties of PS/GO nanocomposites. The tensile strength of pure PS was 20
MPa. The tensile strength reached 42 MPa for 1 wt% GO loading. Be-
sides, the elongation at break of the nanocomposites also increases as
the concentration of GO increases. The elongation at break shows an
opposite trend and it decreased from 67% to 45% when 0.5% GO was
added to the PS matrix. An increase in GO loading to 1.0% increases the
elongation at break to 70%. Figure 6(b) demonstrates the variation of
Young modulus of the PS/GO nanocomposites as a function of GO
loading. A 16% increase in the tensile modulus from 40.8 MPa to
47.3MPa has been observed when 0.5wt % GO is added to the matrix. A
Table 1. Thermal parameters of PS and PS/GO nanocomposite obtained from TGA c

Sample IDT (�C) IPDT

PS 242 243

PS/GO (0.5%) 253 284

PS/GO (1%) 225 264
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further increase in GO (1wt %) concentration resulting in a 40% rise of
the tensile modulus.

From Figure 6 it is observed that the incorporation of GO enhanced
the tensile performance of the composite signifies that GO has a rein-
forcing effect on the PS matrix. Usually, the improvement of mechanical
properties of polymer nanocomposite depends on i) interfacial interac-
tion among the nanofillers and matrix and ii) good dispersion of nano-
filler [43]. The observed enhancement in the mechanical performance of
the nanocomposite suggests well-dispersion [37] of the GO nanofiller
into the PS matrix. Hydrogen-bonding interactions created between the
oxygen-containing groups of GO and the OH groups of starch which leads
to good interfacial interaction among them [20]. As a consequence, it is
very difficult to disconnect the GO nano-filler from the matrix and they
weaken the tensile stress by transferring them to the PS/GO interfaces,
resulting in improved tensile properties.
3.6. Electrochemical properties of the nanocomposite

Cyclic voltammograms (CV) measurements were performed to study
how the GO nanofiller influence the capacitive performance of the
nanocomposite. CV data were taken at different sweep rates (5 mVs-1, 10
mVs-1, 20 mVs-1, 30 mVs-1, 50 mVs-1 and 80mVs-1) in a potential window
of 10 V (Figure 7). In all cases, the area of the CV loop increases with the
sweep rate. For all scan rates, the CV curves for PS exhibit nearly rect-
angle cyclic voltammograms whereas a distorted rectangular shape is
observed for the GO and PS/GO composite. Such deviation can be
attributed to the presence of pseudocapacitance resulting from the oxy-
gen groups on the GO surface and the presence of uncompensated
resistance due to the GO flake in the system [44]. Additionally, the CV for
GO and PS/GO composite exhibits a sharp rise in current at a low voltage
which drops sharply at the vertex potential suggesting that incorporation
of GO improves the capacitive performance of the nanocomposite [45].

Figure 8 (a) shows the CV measurements for PS, GO, PS/GO (0.5%)
and PS/GO (1.0%) at 20 mVs-1. Notably, the quasi-rectangle area of CV
graphs of PS/GO was larger than that of pure PS and pure GO, indicating
the better capacitive performance of PS/GO composites. This indicates
that the GO nanofiller speeds up the carriers’ transportation along with
the PS matrix [46]. Figure 8(b) represents the galvanostatic
charge-discharge (GCD) graphs of PS and PS/GO nanocomposite at a
constant current density of 0.1 mA/cm2. The discharging curve PS/GO
(0.5%) showed two voltage ranges. A short discharge occurred between
0.8 V to 0.4V due to the electric double-layer capacitance (EDLC) formed
due to the charge separation between the electrode and electrolyte
interface. A longer discharge occurred between 0.4V to -0.2V which may
be attributed to the combination of EDLC and Faradaic capacitance [47].
The IR drop during discharging of the GCD curve gives an idea about the
urves.

(�C) T-50% (�C) Tmax (�C)

273 380

286 380

258 346



Figure 7. Cyclic Voltammetry curves of (a) PS, (b) GO, (c) PS/GO (0.5%), and (d) PS/GO (1.0%) electrodes at different scan rate with current density of 0.1 mA/cm.2.

Figure 8. (a) CV graphs of PS, GO, and PS/GO electrodes at sweep rates 20 mV/S and (b) GCD graphs of PS, GO, PS/GO electrodes.

Figure 6. Effect of GO concentrations on (a) tensile properties and (b) Young's modulus of PS/GO nanocomposites.
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Table 2. Electrochemical parameters of PS, GO, PS/GO (0.5%) and PS/GO (1.0%) at 0.1 mA/cm2

Samples Specific Capacitance (F/g) Energy Density (Wh/kg) Power Density (W/kg) Cyclic Stability (%) Rate Capability (%)

PS 2.20 � 0.32 0.33 7.41 58.33

GO 10.45 � 0.62 1.50 7.47 41.55

PS/GO (0.5%) 115.00 � 1.70 16.14 7.55 86.88% 38.17

PS/GO (1.0%) 75.10 � 1.20 10.59 7.53 85.80% 34.79

Figure 9. GCD curves for (a) PS/GO (0.5%) and (b) PS/GO (1.0%) composite at different current densities. GCD curves for ten cycle at 0.1 mA/cm2 for (c) PS/GO
(0.5%) and (d) PS/GO (1.0%) nanocomposite.
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internal resistance of the electrode [48]. The IR drop of PS/GO (0.5%)
was found to be the smallest of all the different nanocomposites sug-
gesting the presence of low internal resistances of the PS/GO (0.5%)
nanocomposite. For materials with low internal resistance, energy
dissipation during charging-discharging processes got diminished and
Figure 10. Nyquist plots of pure PS, GO and PS/GO electrodes at room
temperature.
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thereby improve the energy storage performance. Thus, PS/GO (0.5%)
nanocomposite is more suitable for fabricating power-saving
supercapacitors.

The specific capacitances (Cs) of the different nanocomposites were
estimated from their respective GCD curve using the formula Cs¼ IΔt/
mΔV [49] where, I is the constant current (A), Δt is the discharge time
(sec), ΔV is the potential window (V) and m is the mass of the active
materials (g). The first discharge specific capacitances of PS, GO, PS/GO
(0.5%), PS/GO (1.0%) composite electrodes were found to be 2.4F/g,
10.83F/g, 116.25F/g, and 76.15F/g, respectively. The average value of
the specific capacitance, energy density, and power density of these
composites are summarized in Table 2. It was evident that the specific
capacitance for PS/GO was significantly larger than that of PS or GO.
Figure 9 represents the GCD curves for the PS/GO (0.5%), PS/GO (1.0%)
at different current density. Based on this data the rate capability of these
electrodes was measured and was found to be 38% and 35% respectively.
Furthermore for the PS/GO (0.5%) and PS/GO (1.0%) the GCD data were
taken at 0.1 mA/cm2 for a number cycle (figure 9 (c), (d)) fromwhich the
cyclic stability of the electrodes was calculated and are presented in
Table 2.

From Table 2 it can be concluded that the significantly enhanced
specific capacitances of PS/GO nanocomposite originates from the syn-
ergistic effect of PS and GO. Such an enhancement in the capacitance can
be attributed to a number of factors. GO with higher specific surface area



M.R. Islam, S.I. Mollik Heliyon 6 (2020) e05292
increases the functioning area of the nanocomposite/electrolyte interface
whereas the layered structure of GO diminishes the diffusion length of
the electrolyte ions [50,51]. This improves the specific capacitance by
increasing the electroactive region. Additionally, due to the hydrophi-
licity of GO, the ions can easily move to the electrode/electrolyte inter-
face for PS/GO nanocomposite resulting in increased action site and high
specific capacitance. However, agglomeration in of GO sheets may occur
when the GO contents are increased, this can reduce the accessible sur-
face area accessible for ion exchange leading to a decreased specific
capacitance [52]. Besides, the XRD results suggest that the interlayer
spacing increases with the increase of GO content, causing a decrement of
the specific capacitance for higher GO content.

Electrochemical impedance spectroscopy (EIS) is a reliable technique
to analyze the performance of electrochemical system, was performed to
understand the kinetic aspect of the ion diffusion liable for the energy
storage property of the electrode. The Nyquist plot of the composites
electrodes is demonstrated in Figure 10, which allows the EIS investi-
gation of the electrodes consisting of pure PS, GO, and PS/GO composites
as a function of the frequency of the alternating current. Two semicircles
are observed in the Nyquist plot. The semicircle at low frequency rep-
resents the grain boundary resistance and the other semicircle represents
the resistance of grain or bulk [53]. Semicircular arc diameter is an
important parameter for measuring the charge transfer resistance of the
electrodes. In figure smaller semicircle at lower frequency indicates a
lower faradic charge-transfer barrier at the grain boundary. Polar func-
tional groups and corresponding defects are always present in GO and the
disordered graphene lattice is responsible for the smaller Nyquist semi-
circle [54,55]. For PS/GO (0.5%), the radius of the semicircle at
low-frequency regions is smallest suggesting that the height of the faradic
charge-transfer barrier for the nanocomposite [56]. This also suggests
that the incorporation of GO reduces the resistivity of the nanocomposite
and thereby upsurges the charge transport properties of the nano-
composite. Additionally, the slope of the PS/GO composite was nearer to
90�, representing good capacitive quality [56]. In total, the electro-
chemical performance of the PS/GO nanocomposite obtained from the
EIS analysis matches the results obtained from the CV and the GCD
analysis.

4. Conclusions

In conclusion, Bio-friendly, PS/GO composites were synthesized
using a simple solution casting process. Structural analysis of the nano-
composite demonstrates the presence of strong hydrogen bonding
interaction between PS and GO, which results in improved mechanical
and thermal properties of the nanocomposites. The electrochemical
analysis demonstrates that the incorporation of GO improves the
capacitive performance of the PS/GO nanocomposite and large specific
capacitance (115 F/g) was observed for the PS/GO nanocomposite. EIS
analysis reveals a reduction in charge transfer resistance at the electrode/
electrolyte interface due to the incorporation of GO. The large specific
capacitance of PS/GO nanocomposite can be attributed to the large
surface areas provided by the GO sheets together with the increase of
action ion resulting from the improved hydrophilicity caused by the GO
nanofiller. Finally, it can be concluded that the PS/GO nanocomposite
synthesized by an effective and economic method may open up a bio-
friendly route that can be used in energy storage applications.
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