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SUMMARY

Synthetic bacterial communities are powerful tools for studying microbial ecology and evolution, as

they enable rapid iteration between controlled laboratory experiments and theoretical modeling.

However, their utility is hampered by the lack of fast, inexpensive, and accurate methods for quan-

tifying bacterial community composition. Although next-generation amplicon sequencing can be

very accurate, high costs (>$30 per sample) and turnaround times (>1 month) limit the nature

and pace of experiments. Here, we quantify amplicon composition in synthetic bacterial commu-

nities through Sanger sequencing. We PCR amplify a universal marker gene, then we sequence

this amplicon mixture in a single Sanger sequencing reaction. We then fit the ‘‘mixed’’ electrophero-

gram with contributions from each community member as a linear combination of time-warped sin-

gle-strain electropherograms, allowing us to estimate the fractional amplicon abundance of each

strain within the community. This approach can provide results within one day and costs �$5 per

sample.

INTRODUCTION

Model microbial communities, comprising a small number of pre-defined, culturable taxa, are emerging

as powerful tools in microbial ecology and biotechnology. Unlike wild microbial communities, whose un-

derlying design principles are often obscured by complex environmental conditions and thousands of

microbial ‘‘parts,’’ simple synthetic consortia can be studied precisely under controlled laboratory con-

ditions. Through this approach, numerous studies have uncovered principles of microbial community in-

teractions, assembly, organization, and evolution (Celiker and Gore, 2014; Friedman et al., 2017; Gold-

ford et al., 2018; Harcombe et al., 2014; Momeni et al., 2011, 2017; Ratzke and Gore, 2018; Wolfe

et al., 2014). Furthermore, simple synthetic consortia hold great promise for biotechnology (Brenner

et al., 2008), including synthesis of natural products that would be difficult to achieve with a single spe-

cies (Zhou et al., 2015).

Despite the importance of model microbial communities, characterizing their composition (the propor-

tional abundances of their constituent strains) quickly and cheaply remains challenging, since most stan-

dard methods have significant drawbacks (Table 1). On the one hand, counting individual cells through

colony formation on agar plates or with fluorescent labeling and flow cytometry is both cost- and time-

effective and provides a direct measurement of population size. However, these methods can be

applied only when strains are morphologically distinct or genetically tractable. On the other hand,

next-generation sequencing can provide precise abundance estimates for arbitrary microbial commu-

nities, regardless of their composition, but typically has large up-front costs and can take weeks to

months to receive results. Notably, all DNA-based methods provide estimates of gene or amplicon

abundances, which are distinct from cell abundances because strains differ in their gene (V�etrovský

and Baldrian, 2013) and genome copy number (Akerlund et al., 1995; Schaechter et al., 1958), as well

as extraction (Abusleme et al., 2014; Yuan et al., 2012) and amplification efficiency (Polz and Cavanaugh,

1998).

Sanger sequencing has long been a cheap and effective method to characterize the taxonomy of bac-

terial strains in isolation, often by sequencing the 16S rRNA gene. This process typically begins by

PCR-amplifying the 16S rRNA gene(s) from a pure bacterial culture containing a single strain. The result

is a homogeneous pool of 16S rRNA amplicons (unless the strain has multiple copies of the 16S rRNA

gene). Subsequently, the amplicon pool is subjected to a linear amplification process that yields DNA
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segments of different lengths (Sanger et al., 1977), where all segments of a given length have a fluores-

cent color label corresponding to the final (30) base (Smith et al., 1986). Then, DNA segments are sorted

by length via capillary electrophoresis (Swerdlow and Gesteland, 1990), and the nucleotide sequence is

determined from the corresponding sequence of fluorescent colors. Data are produced in the form of an

electropherogram, in which fluorescent signal is plotted as a function of electrophoretic time (roughly

corresponding to sequence position). Once characterized, the 16S rRNA gene sequence is often used

as a taxonomic marker for a bacterial isolate.

In multi-strain bacterial communities where each member has a distinct 16S rRNA sequence, Sanger

sequencing can be extended to characterize the presence and/or fractional abundance of each com-

munity member. The full complement of 16S rRNA genes present within a multi-strain community can

also be PCR-amplified (typically with degenerate universal primers) and analyzed via Sanger

sequencing. This process results in a ‘‘mixed’’ electropherogram. Like the single-strain electrophero-

gram, a mixed electropherogram records the fluorescent signal as a function of electrophoretic

time, but it now includes contributions from each of the strains present. Two approaches to charac-

terize multi-strain community composition from mixed electropherograms have been developed previ-

ously (described below). However, unlike the new method we propose here, both prior approaches

sought to characterize community composition without any prior knowledge of which strains were

present.

In the first method (Kommedal et al., 2008), a novel base-calling method was developed to preserve

ambiguity at positions where multiple nucleotides were present, thereby allowing the authors to enumerate

every possible constituent sequence. They then compared possible sequences with a database of known

Method Cost Considerations Speed Measurement Uncertainty Biological Limitations

Illumina sequencing of

marker gene amplicons

Entirely outsourced

>$20/sample for library

prep and sequencinga

In house

>$1,500/lane at university

facility, plus library prep

costs ($37.5/sample)b

Typically weeks,

sometimes months

to get resultsc

Ideally limited by Poisson

(counting) error. Given 50,000

reads, can detect members

with abundance <0.01%

Requires marker gene that has

unique sequence but conserved

primer sites for all strains (e.g.,

16S rRNA gene)

qPCR of marker genes <$1/sample for PCR Same day Large dynamic range but

low accuracy

Similar to Illumina sequencing.

Requires designing specific

primers or probes for each strain

Plate counts of CFUs Low (requires only agar

plates)

Typically 2–3 days,

depending on growth

rates

Ideally limited by Poisson

error

Strains must produce

morphologically distinct colonies.

Communities must

be dissociable to single cells

Fluorescent labeling

of cells

Flow cytometer or

microscope use

Same day Ideally limited by Poisson

error

Requires genetically tractable

strains and spectrally distinct

labels for each strain,

potentially limiting communities

to a few strains

CASEU (this work) $4–6/sample for

sequencing, plus

<$1/sample for PCR

As fast as next day Fractional abundance error

typically 1 percentage point

Similar to Illumina sequencing for

smaller consortia

Table 1. Comparison of Methods for Determining Strain Composition in Simple Model Microbial Communities

Sanger sequencing prices and turnaround times were obtained from Genewiz (https://www.genewiz.com/Public/Services/Sanger-Sequencing/Purified-

Templates, accessed 2018 Apr 10).
aCGEB—Integrated Microbiome Resource (http://cgeb-imr.ca/pricing.html., accessed 2018 Feb 17).
bBioMicroCenter:Pricing—OpenWetWare. (https://openwetware.org/wiki/BioMicroCenter:Pricing, accessed 2018 Feb 17).
cCGEB—Integrated Microbiome Resource (http://cgeb-imr.ca/queue.html, accessed 2018 Feb 17).
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16S rRNA gene sequences. Using this method, they reliably identified the bacteria present in numerous two-

and three-species mixtures, including clinical samples (Kommedal et al., 2009, 2011; Wolff et al., 2013). How-

ever, this approach has not been used for quantification of strain abundance, and it is unclear how accurately

the members of more complex communities (>3 strains) can be resolved.

In the second method (Amir and Zuk, 2011), the authors developed an algorithm to find a sparse set of

strains whose combined DNA would be expected to generate the observed mixed electropherogram. To

do this, they first created a database of predicted electropherograms (based on a statistical model of

how gene sequences determine electropherograms) for 16S rRNA sequences of nearly 20,000 bacterial

strains. They then computationally solved for a small set of strains that could best reproduce the

observed electropherogram. Applying this method to a mixture of five equally abundant strains, they

detected at least eight strains, of which seven were closely related to strains in the actual mixture. How-

ever, their fractional abundance estimates were noisy, varying from 5%–15% when the actual abundances

were 20% each.

Here we develop and evaluate a new and distinct method for analyzing Sanger sequencing traces from

amplicon mixtures as a fast (1 day) and inexpensive (�$5/sample) method for quantifying the fractional

abundance of individual strains within simple model communities. It differs from previous approaches in

twomain ways. First, it assumes that one knows the full set of strains that might be in the mixture and exper-

imentally measures their individual Sanger electropherograms. For model systems consisting of cultured

isolates, this requirement is easily fulfilled. Second, our method accounts for a common mode of run-to-

run variability not previously accounted for, which we show is necessary for accurate compositional esti-

mates. We benchmark this method with multiple 2-, 4-, and 7-member communities of marine bacterial

isolates, achieving a root-mean-square error of roughly 1% and yielding results similar to Illumina

sequencing. We also demonstrate the utility of this method by quantifying time dynamics of five model

communities over 2 weeks. Overall, given its accuracy and broad applicability, we believe that this method

will enable experiments with a wide range of simple synthetic microbial communities that were previously

time- or cost-prohibitive.

We have also implemented our method in a free and open-source package for the open-source language R

(R Core Team, 2017; Hill et al., 2014) under the name ‘‘CASEU’’ for Community/Compositional Analysis via

Sanger Electropherogram Unmixing. We provide functions for fitting and evaluating fit quality, both via the

R language/terminal and through a graphical user interface.

Approach

Our approach is to fit mixed-strain electropherograms as linear combinations of time-warped single-strain

electropherograms. For a model bacterial community in which all component strains are known, it is

possible to measure its mixed electropherogram, as well as each single-strain electropherogram. We

thus sought to find a function relating the two that would allow us to extract the relative proportions of

individual strains in the mixed electropherogram.

A Simple Linear Model Is Insufficient due to Retention-Time Variability

Naively, it is reasonable to fit a mixed Sanger electropherogram as an abundance-weighted linear com-

bination of single-strain electropherograms. However, this approach yields poor fits owing to between-

sample and within-sample variability in the run speed, that is, the rate at which molecules migrate during

electrophoresis. This phenomenon, referred to as ‘‘retention-time variability,’’ is a well-known confound-

ing factor in electrophoretic methods (Eilers, 2004; Nielsen et al., 1998), including Sanger sequencing.

Indeed, we observed substantial retention-time variability in our measurements: technical replicates of

the same sample sequenced on different days were often temporally offset from each other (by

roughly G1 base) and were sometimes stretched or contracted relative to one another by G0.3% (see

Figures S1 and S2).

Instead, our fitting procedure conceptually involves two components: time warping, which accounts for

retention-time variability and fitting a linear model. First, we warp (locally shift and stretch or contract)

the time axis of single-strain electropherograms (Figure 1). Second, we estimate strain abundances by

fitting the mixed electropherogram as a linear combination of time-warped single-strain electrophero-

grams. In practice, we do these steps simultaneously, by identifying warping parameters and abundance

iScience 23, 100915, March 27, 2020 3



Figure 1. CASEU Quantifies the Fraction of Individual Strains in Mixed Communities by Fitting Mixed Sanger

Electropherograms as Linear Combinations Of Time-Warped Single-Strain Electropherograms

(A) Schematic of CASEU approach. Electropherograms shown are simulated for illustration purposes. For clarity, only a

single fluorescence channel is illustrated.

(B) Example of the continuous piecewise warping function used for alignment. The warping function is parameterized by

six numbers, b0-b5 (the values of the function at t0, t1, ., t5). The figure shows an exaggerated warping with simulated

electropherograms for illustration purposes.
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fractions that minimize the sum-of-squares difference between the observed and model-predicted mixed

electropherogram, as follows:

argminf1 ;.;fn ;g1ðtÞ;.;gnðtÞ; x0
Xtend
t = t0

X4
c = 1

 
Y ½t; c� �

 
x0 +

Xn
i = 1

fiXi½giðtÞ; c�
!!2

+ l
Xn
i = 1

RðgiÞ (Equation 1)

where

� fi is the abundance of strain i, where i ranges from 1 to n;

� t is an index of time, ranging from t0 to tend;

� Y[t,c] is a matrix of the mixed electropherogram, with one row per time point and one column for

each of the four fluorescence channels, c;

� Xi[t,c] is a matrix of strain i’s electropherogram, with one row per time point and one column for each

of the four fluorescence channels, c;

� x0 is a scalar accounting for constant background fluorescence;

� gi(t) is a warping function for strain i; and

� R(gi) is a quadratic penalty function for shifting and stretching individual electropherograms.

Because it is not possible to have negative abundances, we constrain strain abundances to be non-negative

(fi > 0) by using non-negative least-squares fitting (Lawson and Hanson, 1995).

A Piecewise-Linear Time-Warping Function Can Account for Retention-Time Variability

Within a given electropherogram, the relative run ‘‘speed’’ may vary substantially, such that certain sections

are stretched and others are contracted, compared with the average speed. To account for

within-electropherogram variability, we use a continuous piecewise linear warping function gi(t) (see Fig-

ure 1B), which divides the electropherogram into several segments, each of which can be locally stretched

or contracted (Nielsen et al., 1998). To prevent unreasonably large stretching or shifting, our software pack-

age includes the option of a quadratic penalty for moving the end of each segment from its original location

(RðgÞ= P
j

ðtj � bjÞ2 where tj and bj are as shown in Figure 1B). However, for our data analysis in this work, we

did not use this regularization term (l = 0). To determine the optimal number of segments, we systemat-

ically varied the number of segments and aligned technical replicates to each other. We found that using

five segments enabled us to align all samples precisely to either of their two technical replicates over a

region of �630 bases (Figure S2). Using only a single segment yielded poor alignments between technical

replicates (Figure S2) and producedmediocre estimates of knownmixture fractions (Figure S3). Usingmore

than five segments did not improve the alignments between technical replicates (Figure S2) but increased

computation time.

RESULTS

To benchmark CASEU’s performance, we analyzed a series of mock bacterial communities of 2, 4, or 7

bacterial strains with known fractional abundances. We prepared these communities by PCR-amplifying

the 16S rRNA gene from each single strain (here called ‘‘A’’ through ‘‘H’’) and mixing together amplicons

from different strains in known fractions. By analyzing mixtures of amplicons, rather than mixtures of cells,

we could measure sequencing and algorithmic performance independent of biases due to DNA extraction

efficiency, PCR efficiency, or 16S rRNA gene copy number. Using mock communities, we assessed the

following metrics of algorithmic performance:

� Accuracy of fractional abundance estimates, by systematically varying the abundance of community

members between 1.3% and 95%;

� Reproducibility, by sequencing each sample three times on separate days;

� Ability to differentiate closely related strains, by varying phylogenetic distance between strains; and

� Ability to correctly reject the presence of ‘‘decoy strains,’’ which are included as potential community

members in the fits but were absent in reality.

iScience 23, 100915, March 27, 2020 5



Figure 2. CASEU Accurately Resolves Composition of Two-Strain Mock Communities

(A) An example alignment and fit over approximately 630 bases, showing a single fluorescence channel. Top and middle

traces show reference electropherograms of individual strains (after warping). Bottom trace shows the electropherogram

of a 1:1 mixture (black) and best-fit weighted sum of aligned references (red).

(B) Zoom-in of segment of (A), showing alignments and fit over approximately 120 bases.

(C) Phylogenetic tree of genes chosen for analysis, made using nearly full-length 16S sequences from Datta et al. (2016).

We aligned these sequences using the SINA Alignment Server (Pruesse et al., 2012) https://www.arb-silva.de/aligner/ and

made an approximate maximum-likelihood tree using FastTree 2.1.10 with the default options (Price et al., 2010).

(D) Similarity matrix between all strains used in Figures 2, 3, and 4. Similarity was calculated as the Pearson

correlation between electropherograms after aligning one to the other. Because each strain was measured in triplicate,

each strain pair consists of a 3 3 3 submatrix of similarity values. The average of these replicate pairs is written in the

figure.
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We first analyzed two-strain mixtures for which the proportion of a single strain varied from 5% to 95%

(Figure 2). Across all two-strain communities (except the mixtures of strains A and B, see below), fractional

abundance estimates were accurate with an average absolute deviation between the expected fraction and

the observed fraction of 0.9 percentage points (range 0.05%–3%). Furthermore, abundance estimates were

consistent across independently sequenced technical replicates; the average standard deviation of

triplicate measurements was 0.59 percentage points (range 0.06%–1.17%).

In larger communities (4- and 7-strain mixtures), fractional abundance estimates were similarly accurate,

even for low-abundance community members. To test the effect of strain evenness on fractional abun-

dance estimates, we prepared 4- or 7-strain communities whose strain abundances were distributed

according to a power law (fifi�a), where we varied the value of the exponent a. This allowed us to assemble

communities of varying evenness (Figure 3), ranging from those in which all strains were at equal abun-

dance (a = 0) to those in which the dominant strain was 50-fold more abundant than the least abundant

strain (a = 2). Across these communities, abundance estimates were similarly accurate compared with

the two-strain communities, with root-mean-square (RMS) errors of 0.75 and 1.14 percentage points

(maximum errors of 2.2 and 3.4 percentage points), respectively, for the 4- and 7-strain communities.

Furthermore, the magnitude of error in a strain’s abundance was nearly independent of that strain’s abun-

dance in the community (Figure S5A). The standard deviations we observe between triplicate results were

comparable with what would be attained by counting-basedmethods (e.g., next-generation sequencing or

plate counts) with �5,000 counts (reads or colonies) per sample (Figure S5B).

It is important to not only estimate the abundance of a strain known to be present, but also to correctly

determine when a strain is absent. To test whether CASEU is susceptible to erroneously finding strains

that were not present, we re-fit all our two- and four-species communities, this time including all strains

(except for B) as possible ‘‘decoy’’ community members. In nearly all cases, CASEU correctly rejected

the presence of strains that were not included in the community (Figure 4). Notably, CASEU erroneously

found non-zero amounts of strain D in some samples where only strains A and C were present. We attribute

this to the similarity between electropherograms of strains C and D (discussed below).

To Differentiate Strains, CASEU Requires That Their Electropherograms Are Dissimilar

We quantified similarity as the correlation between two electropherograms after aligning one to the other.

Our mock communities contained mixtures of strains with varying degrees of electropherogram similarity,

ranging from 0.98 (for strains A and B) to 0.09 (for strains A and G) over a 630-basepair region of the 16S

rRNA gene (Figure S4). Although CASEU failed to differentiate strains A and B, which have an average

post-alignment correlation of 0.98 (Figure 2), it accurately estimated fractional abundances for all other

communities (Figures 2 and 3) containing between-strain correlations of up to 0.82 (strains C and D; Fig-

ure 3). However, strain D was sometimes mistakenly found in the mixtures of strains A and C, suggesting

it may sometimes be mistaken for strain C. Therefore, we suggest that strains with correlations of �0.8

or greater may not be clearly resolvable with CASEU and should be analyzed with caution. In our dataset,

this corresponds to roughly within-genus distances or closer, but the relationship between CASEU resolv-

ability and phylogeny may depend on the specific strains of interest.

We also note that we expect electropherogram correlations to be strongly affected by indels, because our align-

mentapproachhas insufficient flexibility toaccommodate largegaps.StrainsAandBdifferbyonlySNPs,whereas

strain C possesses a 12-base deletion near the beginning of the gene (Table S1). This likely explains the low cor-

relation and subsequent ability to differentiate A and C (which otherwise have only 29 SNPs in their 930 bases of

high-quality sequence) but not A and B (which have no indels and only a dozen SNPs in one gene region).

We next investigated whether we could improve our results for themixture of strains A and B by focusing on the

region inwhich these two strains’ electropherogramsdiffer.Our logicwas that ifmost of the electropherogram is

uninformative and subject to some amplitude noise, then removing the uninformative regions should improve

the signal-to-noise ratio. We thus fit only a small region of the electropherogram (roughly 59 bp) that included

the differing bases between strains A and B (Figure S4). This enabled us to obtain far more accurate fractional

Figure 2. Continued

(E) Estimatedmixture fractions plotted against the true ratio at which the sequences weremixed (circles). We also note the

similarity (Pearson correlation) between strains. These mixture fractions have been corrected for errors in stock

concentration (uncorrected fraction data shown in Figure S3, bottom row).
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abundance estimates formixtures of strains A and B (Figure S4D). We thus suggest that CASEU users seeking to

differentiate highly similar strains restrict their analysis to the region in which their electropherograms vary.

Evaluation on Synthetic Model Communities

Weenvision CASEU as a rapid, inexpensive alternative to Illumina sequencing for characterizing the structure of

simple synthetic microbial communities. To demonstrate this use case, we performed experiments with seven

Figure 3. CASEU Provides Reliable Estimates of Community Composition in Mixtures of 16S Amplicons from Four (Left) or Seven (Right) Strains

Solid bars show measurements after accounting for stock concentration error (uncorrected data are given in Figure S6); red lines show true mixture

proportions based on power law distributions. In power law distributions, the abundance of the ith most abundant strain is proportional to 1
ia where a is the

power law exponent.

8 iScience 23, 100915, March 27, 2020



four-strain model communities of unknown fractional composition, derived from strains isolated in Enke et al.

(2019). We extracted DNA from each community, then amplified and sequenced each sample twice, once via

Sanger sequencing (16S rRNA V1-V9 hypervariable regions) and once via next-generation Illumina sequencing

(16S rRNA V4-V5 hypervariable regions) (Figure 5). Importantly, this analysis does not compare the accuracy of

the two methods, since the true fractional abundances are unknown, but rather whether their fractional abun-

dance estimates are consistent.

Figure 4. CASEU Correctly Infers the Absence of Strains that Were Not Present in the Mixture

(A) Community composition estimates of two-strain mixtures (as in Figure 2D), in which five extra ‘‘decoy’’ strains were

included as potential community members to test CASEU’s ability to infer strain absence. Bars indicate CASEU estimates

(average of three replicates); open circles indicate each of the three replicate estimates, and red lines indicate the true

values. Estimates are corrected for errors in stock concentrations.

(B) Community composition estimates of four-strain mixtures (as in Figure 3; a is the power law exponent), in which three

extra ‘‘decoy’’ strains were included as potential members. Bars and points are as in (A).

iScience 23, 100915, March 27, 2020 9



We found that CASEU provided community composition estimates consistent with next-generation

Illumina sequencing of 16S rRNA amplicons (Figure 5), despite differences in library preparation procedure

and sequencing technology. Across all communities, fractional abundance estimates between the two

methods were highly correlated (Pearson correlation 0.88, Figure 5H). Furthermore, in five of seven com-

munities, we observed strong quantitative agreement between Illumina estimates and CASEU estimates,

with an RMS difference of 7.0 percentage points (Figure 5A–5C, 5E, and 5G).

In the two model communities where CASEU and Illumina sequencing disagreed (Figures 5D and 5F;

RMS differences of 15 and 28 percentage points, respectively), the differences can be attributed to a sin-

gle group of closely related strains. These three strains (I3M06, I2M14, and I2M19) are very closely

related (electropherograms cannot be distinguished by CASEU), and in both model communities, these

strains were estimated by CASEU to be at substantially lower fractions than was estimated by Illumina

sequencing. Although we remain uncertain as to why these strains are detected less with CASEU than

Illumina, it may be a result of CASEU and Illumina relying on different primers and amplification

protocols.

In our CASEU analyses performed with these four-strain model communities, we additionally observed two

cases in which CASEU produced poor fits as quantified by the correlation between the observed and pre-

dicted traces (Figure S7). In the first case, the predicted electropherogram had a correlation of only 0.63 to

the observed electropherogram, compared with >0.9 for all other samples. This poor fit alerted us to a low-

quality Sanger sequencing electropherogram for one strain in the community, which contained a large

anomalous fluorescence spike (Figure S7A). In the second case, CASEU yielded a correlation between pre-

dicted and observed traces of 0.45, compared with >0.95 for other samples from the same model commu-

nity. This poor fit was caused by the presence of a contaminating strain, which was not included in the fit

(Figure S7B). Including the contaminating strain increased the fit correlation to 0.95. Thus, while we only

rarely observed poor fits, CASEU includes a simple metric that enables users to identify and exclude prob-

lematic samples.

DISCUSSION

In microbial ecology, model communities have emerged as a useful intermediate between single-species

microbiology and complex natural communities. Here, we demonstrate that Sanger sequencing can be

used for rapid, inexpensive, and accurate quantification of model community composition.

Figure 5. CASEU Yields Estimates of Community Composition That Are Typically Consistent with Illumina 16S

Sequencing

(A–G) Bar plots indicate results of CASEU analyses of mixtures of saturated cultures of four bacterial strains. Solid blue

lines show estimates obtained from Illumina sequencing of the 16S rRNA V4-V5 hypervariable region.

(H) Fractional abundance estimates for CASEU versus Illumina sequencing. Solid line shows equality.
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CASEU Can Provide Rapid Results

Sanger sequencing requires a simple sample preparation protocol with a single PCR step, followed by out-

sourced Sanger sequencing. Therefore, the time to acquire results is largely limited by sequencing time,

which is often less than 1 day. In contrast, next-generation sequencing requires a more time-consuming

library preparation protocol, often with multiple PCR steps for adaptor ligation and barcoding. Further-

more, runtime for an Illumina MiSeq routinely exceeds 1 day (e.g., 40 h for paired-end 150 3 150

sequencing) but can require weeks to months if outsourced.

CASEU Can be Inexpensive

Sanger sequencing has a fixed cost per sample (here, $4 for sequencing and roughly $1 for PCR and

cleanup), whereas Illumina sequencing has large upfront cost (typically more than $1,000 per sequencing

lane), plus per-sample costs for library preparation.

CASEU Is Accurate for Simple Model Communities

Sanger sequencing provides an accurate and reproducible means to quantify amplicon composition for

model communities, achieving similar results as Illumina sequencing for model communities and errors

of less than 1% point for mock communities.

More broadly, we believe that our Sanger sequencing demixing approach can be extended beyond the 16S

gene. For example, CASEU might be used with model communities containing closely related strains by using

other marker genes (e.g., Vibrio communities that are poorly resolved by 16S but easily differentiated by hsp60

sequences [Hunt et al., 2008]), or even communities containing both fungal andbacterialmembers (for example,

cheese rind model communities [Wolfe et al., 2014]) by amplifying both 16S and 18S or ITS sequences simulta-

neously through multiplexed PCR. Beyond microbes, CASEU might be extended to quantify aneuploidy using

marker sequences with conserved primer sites present on all chromosomes (Kinde et al., 2012). Overall, we

believe CASEU provides a versatile tool to assess sequence-variant composition in multiple contexts.

Limitations of the Study

CASEU has important limitations. To determine if CASEU is appropriate for your application, we recom-

mend considering the following factors as they pertain to your model community.

Number of Strains

Here, we demonstrate that CASEU can provide accurate fractional abundance estimates for communities

of 2, 4, and 7 strains. However, CASEUmay be suitable for larger model communities, as we did not identify

an upper bound on the number of resolvable members.

Resolvability of Strains

We found that strain resolvability depends on the correlation of their electropherograms, which is distinct

from their aligned sequence similarity. Therefore, for your particular community, we recommend Sanger

sequencing each individual strain and verifying that their electropherograms cannot be aligned to be high-

ly correlated, which can be done with our R package.

Low-Abundance Strains

Given typical errors of 1%–2%, CASEU cannot resolve community members at fractional abundances below

1%. If this dynamic range is needed, alternatives like qPCR or next-generation sequencing may be more

suitable.

Sources of Bias

CASEU shares the same limitations of all DNA-based approaches for quantifying community composition,

including bias in DNA extraction and amplification efficiency. Importantly, next-generation sequencing,

qPCR, and CASEU do not yield cell counts but instead yield sequence abundance. Although sequence

abundance is expected to be roughly proportional to cell count for any given strain, this relationship

may vary between strains depending on gene copy number (V�etrovský and Baldrian, 2013), growth phase

(Akerlund et al., 1995; Hildenbrand et al., 2011; Schaechter et al., 1958), DNA extraction efficiency (e.g.,

Abusleme et al., 2014; Yuan et al., 2012), and amplification efficiency (e.g., Polz and Cavanaugh, 1998).
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METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

We have implemented our method in a free and open-source R package called CASEU (‘‘Community/

Compositional Analysis by Sanger Electropherogram Unmixing’’), available at https://bitbucket.org/

DattaManoshi/caseu.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100915.
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V�etrovský, T., and Baldrian, P. (2013).
The variability of the 16S rRNA gene in
bacterial genomes and its consequences for
bacterial community analyses. PLoS One 8,
e57923.

Wolfe, B.E., Button, J.E., Santarelli, M., and
Dutton, R.J. (2014). Cheese rind communities
provide tractable systems for in situ and
in vitro studies of microbial diversity. Cell 158,
422–433.

Wolff, T.Y., Eickhardt, S., Björnsdottir, M.K.,
Moser, C., Bjarnsholt, T., Høiby, N., and
Thomsen, T.R. (2013). Direct sequencing and
RipSeq interpretation as a tool for identification
of polymicrobial infections. J. Clin. Microbiol. 51,
1281–1284.

Yuan, S., Cohen, D.B., Ravel, J., Abdo, Z., and
Forney, L.J. (2012). Evaluation of methods for the
extraction and purification of DNA from the
human Microbiome. PLoS One 7, e33865.

Zhou, K., Qiao, K., Edgar, S., and
Stephanopoulos, G. (2015). Distributing a
metabolic pathway among a microbial
consortium enhances production of natural
products. Nat. Biotechnol. 33, 377–383.

iScience 23, 100915, March 27, 2020 13

http://refhub.elsevier.com/S2589-0042(20)30099-7/sref18
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref18
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref18
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref18
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref18
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref18
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref18
https://www.dropbox.com/s/9ad2ilzw4u09mob/solving-least-squares-problems.pdf?dl=0
https://www.dropbox.com/s/9ad2ilzw4u09mob/solving-least-squares-problems.pdf?dl=0
https://www.dropbox.com/s/9ad2ilzw4u09mob/solving-least-squares-problems.pdf?dl=0
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref21
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref21
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref21
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref21
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref23
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref23
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref23
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref24
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref24
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref24
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref25
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref25
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref25
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref25
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref26
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref26
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref26
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref27
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref27
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref27
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref27
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref30
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref30
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref30
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref30
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref30
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref31
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref31
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref31
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref31
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref33
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref33
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref33
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref33
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref33
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref34
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref34
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref34
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref34
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref34
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref34
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref35
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref35
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref35
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref35
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref36
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref36
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref36
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref36
http://refhub.elsevier.com/S2589-0042(20)30099-7/sref36


iScience, Volume 23

Supplemental Information

Rapid, Inexpensive Measurement of Synthetic

Bacterial Community Composition

by Sanger Sequencing of Amplicon Mixtures

Nathan Cermak, Manoshi Sen Datta, and Arolyn Conwill



 

 

Transparent Methods 

Strains. Strains A-H are marine isolates collected in (Datta et al., 2016) from Canoe Beach, Nahant, 

MA, USA. The taxonomic identities of the isolates (classified using SINA (Pruesse et al., 2012)) 

are as follows: Strain A (1A01), Vibrio; Strain B (4B04), Vibrio; Strain C (6D03), Vibrionaceae; 

Strain D (6C06), Psychromonas; Strain E (4A09), Oceanospirillaceae; Strain F (4A10), 

Rhodobacteraceae; Strain G (4C08), Polaribacter; Strain H (6B07). Strains in Figs. 5 and S7 are 

isolates from (Enke et al., 2019), collected from the same location. Communities are denoted by 

their subfigure label in Fig. 5. 

A: G2R05 Cellulophaga, C3M06 Rhodobacteraceae, F3R02 Neptunomonas, G3M19 Celeribacter 

B: I3R01 Vibrio, F3R08 Shewanella, E3M07 Paraglaciecola, A3R10 Tenacibaculum 

C: A1M03 Alteromonas, G2M11 Colwellia, A1R15 Pseudoalteromonas, G2M05 Photobacterium 

D: D3R06 Colwellia, E3M10 Cellulophaga, G2R14 Vibrio, I2M14 Marinobacterium 

E: D2R05 Alteromonadaceae, E3R09 Winogradskyella, A1R03 Shewanella, D2R04 Rhodobacteraceae 

F: G2M18 Saccharospirillaceae, I3M06 Marinobacterium, C2R09 Paracoccus, I2M19 Marinobacterium 

G: C3R15 Flavobacteriaceae, E3R01 Tenacibaculum, B3M02 Psychromonas, G2R10 Vibrio 

 

Preparing mixtures of 16S amplicons and sequencing. For two-, four-, and seven-strain 

mixtures, genomic DNA was extracted as previously reported15. 16S genes were amplified with 

27F (AGAGTTTGATCMTGGCTCAG) and 1492R (TACGGYTACCTTGTTACGACTT) 

universal primers, as follows: 

Reagent Volume 

ddH2O 23.5µL 

5X HF Buffer 10 µL 

dNTPs (10mM) 1 µL 

27F primer (3uM) 5 µL 

1492R primer (3uM) 5 µL 

Phusion polymerase 0.5 µL 

Genomic DNA 5 µL 

Total 50 µL 

PCR cycle conditions were as follows: 

Step Temperature Duration 

Initial denaturation 98°C 30 seconds 

Amplification (30 cycles) 98°C 30 seconds 

 50°C 30 seconds 

 72°C 90 seconds 

Final extension 72°C 10 minutes 

For experiments shown in Figs. 2 and 3, we ran six PCRs for each strain to ensure that we had 

sufficient amplicon DNA to prepare all the mixtures. We pooled each set of six reactions into a 

single tube, then SPRI-cleaned the products. We estimated DNA concentrations via Nanodrop, 



 

 

and subsequently diluted all samples to 3 ng/µL (concentration measurements required subsequent 

computational correction, see Materials and Methods). We added 5 µL of 27F primer at 15 µM to 

40 µL of amplicon at 3 ng/µL, to yield 45 µL with a primer concentration of 1.6 µM and a template 

concentration of 2.6 ng/µL. These concentrations are what Genewiz recommends for Sanger 

sequencing (https://www.genewiz.com/Public/Resources/Sample-Submission-

Guidelines/Sanger-Sequencing-Sample-Submission-Guidelines/Sample-Preparation#sanger-

sequence, accessed 2018 Apr 2). We split the 45 µL of sample into three separate plates, each with 

15 µL of sample per well, and submitted each plate on a different day over the course of one week. 

Sequencing was performed by Genewiz as a drop-off service for $6/sample (<48 samples) or 

$4/sample (>48 samples). We routinely received results within 24 hours of submitting our samples. 

Our ABIF file metadata suggests Genewiz sequencing was performed on a 3730xl DNA Analyzer, 

using BigDyeV3. 

Processing ABIF files. We used the 'sangerseqR' Bioconductor package (Hill et al., 2014) in R (R 

Core Team, 2017) to read in ABIF  (.ab1) files. In ABIF files, there are two types of data we 

considered using: “raw” fluorescence traces, and “processed” data. While the details of the 

processing method are not available, the process appears to involve baseline subtraction, low-pass 

filtering, and an unknown temporal adjustment. Attempts to use the “raw” traces were stymied by 

the poor temporal alignment of the traces and required searching a much larger range of alignment 

parameters, yielding a significantly slower analysis. Before analysis, we additionally normalized 

the amplitudes of all reference files such that the mean amplitude was one over the region to be 

used for alignment. 

Algorithm for fitting mixed electropherograms. We initially tried optimizing Equation (1) via 

the Nelder-Mead algorithm (also called downhill simplex) but found that this method tended to 

yield solutions that were very dependent on starting estimates (suggesting many local minima). 

Instead, we adopted an approach in which we determine the warping parameters for one strain at 

a time. To determine the warping parameters for a single strain (“aligning a single strain”), we use 

the dynamic programming approach pioneered in correlation-optimized warping(Nielsen et al., 

1998). In brief, we first calculate the sum of squared errors over a 2D grid of values for parameters 

b1 and b2 (the boundaries of the first warping segment). (Note that to do so, we rapidly calculate 

optimal fi values for each (b1, b2) pair using non-negative least squares.) For each possible value 

of b2, we only keep track of the best value of b1 and its corresponding error. We then repeat that 

same process, but this time evaluating the error for a grid of possible values for b2 and b3 (the 

boundaries of the second segment). For every b2-b3 pairing, we calculate the error over that 

segment, plus the lowest possible error for that value of b2 over any value of b1.  We then record 

the lowest error obtainable for any given value of b3, and the corresponding b2 that yields that 

optimum. We repeat this process for all five warping segments. This process does not necessarily 

yield a globally optimal solution because, for the errors for each segment to be additive, we allowed 

each segment to have its own amplitude parameter fi. However, ultimately this parameter fi, must 

be the same for all segments. We thus globally refine parameter estimates by minimizing equation 

(1) directly via Nelder-Mead, starting from the (b1-b6) estimates obtained as described above 

(which are usually very near the final optimum). 

To align multiple strains, we sequentially align strains one after another. We first align each strain 

individually, identify the one that yields the greatest improvement in the fit, and fix that strain’s 

alignment parameters (b1-b6). We then repeat that process for the remaining strains, always 

https://www.genewiz.com/Public/Resources/Sample-Submission-Guidelines/Sanger-Sequencing-Sample-Submission-Guidelines/Sample-Preparation#sanger-sequence
https://www.genewiz.com/Public/Resources/Sample-Submission-Guidelines/Sanger-Sequencing-Sample-Submission-Guidelines/Sample-Preparation#sanger-sequence
https://www.genewiz.com/Public/Resources/Sample-Submission-Guidelines/Sanger-Sequencing-Sample-Submission-Guidelines/Sample-Preparation#sanger-sequence


 

 

greedily fixing the parameters of whichever strain yields the greatest improvement in the fit 

(reduction in squared error). Our rationale was that this would ensure that we always fit the 

majority component of the mixture before fitting the minority components. 

More formally, our algorithm is as follows: 

 

Inputs: 

• 𝑌[𝑡, 𝑐] - Mixed electropherogram matrix 

• 𝑋1[𝑡, 𝑐], 𝑋2[𝑡, 𝑐], … , 𝑋𝑛[𝑡, 𝑐] - Individual reference electropherogram matrices (𝑛 is number 

of strains) 

Run: 

1. Initialize 𝐹 = ∅, the indices of strains for which the alignment parameters have been fixed. 

2. Initialize 𝑈 = {1, ..., n}, the indices of strains for which the alignment parameters have not 

yet been fixed. 

3. Initialize 𝐴 as an empty 𝑛 × 6 matrix for the alignment parameters. 

4. While 𝑈 ≠ ∅ 

1. For every strain index 𝑖 in 𝑈, find a warping of 𝑋𝑖  via dynamic programming that 

yields the greatest reduction in equation (1), conditional on all strains with fixed 

alignments 𝑋𝑓 for 𝑓 ∈ 𝐹. 

2. Identify which strain 𝑗, yields the most improvement to the fit. 

3. Fine-tune the alignment parameters of strain 𝑗 by downhill simplex. 

4. Record strain 𝑗's alignment parameters in row 𝑗 of matrix 𝐴. 

5. Add strain 𝑗 to 𝐹, remove it from 𝑈. 

5. Fine-tune all alignment parameters simultaneously by optimizing over 𝐴  via downhill 

simplex, starting from 𝐴 (the best individual alignments obtained in step 4). 

 

On a HP laptop with an Intel Core i7-7500U CPU and 16 GB RAM, our fitting approach took on 

average 10.8 seconds for a two-strain mixture, and 138 seconds to fit a seven-strain mixture. 

Notably, the computation time is expected to be at worst quadratic in the number of strains that 

could potentially be in the mixture. 

Accounting for concentration errors. Before mixing amplicons to make mock communities, we 

attempted to normalize all amplicon stock solutions to the same concentration, as measured by 

Nanodrop. However, the Nanodrop has limited precision, and as such we have fit a model to 

correct for remaining non-uniformity in stock solution concentration. For all 120 amplicon mixture 

samples in Figs. 2 and 3, we fit a model in which the amplicon concentration of each strain i was 

Ci times greater than expected. We then calculate the mixture fractions that would have resulted 

had the concentrations been equal.  



 

 

𝑓𝑖,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑓𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
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∑
𝑓𝑗,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐶𝑗

𝑛
𝑗=1

 

We estimated Ci values by finding the Ci that minimized the mean squared difference between the 

corrected fractions and the known fractions at which the amplicon stock solutions were 

volumetrically mixed. Arbitrarily, CA was set to 1, and all Ci values were defined relative to that 

(therefore our model has seven free parameters). Concentration error estimates were as follows: 

CB=5.35 (not reliable due to poor estimates of fobserved), CC=1.10, CD=0.80, CE=0.66, CF=0.91, 

CG=0.86, CH=0.75.   

Model community dynamics and Illumina sequencing. 

Communities used in Fig. 5 contained non-overlapping sets of four marine isolates. We grew 

communities at room temperature while shaking in 200uL of 2216 Marine Broth media in a 96-

well deep well plate. Communities were diluted 100-fold and transferred to new plates every 24 

hours and sampled after two weeks for DNA extraction and sequencing. DNA extraction was 

performed using a Epicentre MasterPure Kit. 

 

Illumina 16S V4-V5 library preparation and sequencing were performed at Integrated Microbiome 

Resource (IMR) on an Illumina MiSeq (paired-end, 300-basepair reads). For Sanger sequencing, 

samples were PCR-amplified using identical conditions as described for the amplicon mixtures 

(above), but in 25 µL volumes instead of 50 µL.  

 

Analysis of Illumina sequencing data. Illumina sequencing of model communities resulted in 

514,524 reads (average per sample of 64,316 reads, range over all samples of 46,633-72,095 reads).  

Paired-end reads were merged with vsearch –fastq_mergepairs (10 mismatches allowed in overlap 

region) and trimmed of primer sequences with cutadapt 1.16. We estimated read counts for each 

isolate by assigning trimmed and merged reads that perfectly matched a known isolate 16S rRNA 

V4-V5 sequence to that isolate. Reads that did not match a known isolate were discarded. 

Fractional abundances were estimated by dividing the read count for each isolate in a sample by 

the read counts for all isolates in that sample. 
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Fig S1. Aligning via time-warping can correct for temporal variability among technical replicates.  

Related to Figure 1.  

(A) Three technical replicates (black, red and blue) for a sample of 16S DNA (showing only a single 

fluorescence channel for clarity).   

(B) Technical replicates two and three aligned to technical replicate one, over indices 1500-9000, covering 

~630 bases.   



 

 

 

Fig S2. Determining optimal warping flexibility and typical range of warping parameters. Related to 

Figure 1.  

(A) A six-parameter alignment yields good fits without unnecessary degrees of freedom. Fit quality was 

quantified as post-alignment Pearson correlation between technical replicates. With less than six 

boundary parameters, fits can be improved by increasing the warping flexibility, but beyond six 

parameters improvements are minimal. Lines indicate individual replicates and are colored according to 

the legend shown in (B). 

(B) Same data as in (A) but averaged for each type of mixture. The similarity between lines shows that 

the required flexibility of the warping function does not depend on the sample type. 

(C) Warping functions estimated from fitting each sample to its two technical replicates (N=48 samples; 8 

single-strain samples; 30 two-strain samples; 5 four-strain samples; 5 seven-strain samples). At right are 

histograms of offsets for each boundary (how many time indices the boundary was moved in the 

alignment). Pink bars show alignment parameters for replicate 2, blue bars show alignment parameters for 

replicate 3, suggesting no day-specific effects.  



 

 

 

Fig S3. Flexible alignment is necessary to quantify community composition accurately. Related to 

figure 2. Without alignment, estimates of the fractions of each component are poor (top row). With 2-

parameter alignment it yields more accurate results (middle row), but still much less precise than those 

obtained with 6-parameter alignment (bottom row). Data in this figure is not corrected for error in stock 

solution concentrations.  



 

 

 

Fig S4. Strains A and B have similar electropherograms, but can be quantified by CASEU when 

restricting the analysis to the differing region. Related to figure 2.  

(A) Overlay of aligned triplicate electropherograms of strain A, spanning electropherogram indices 4900-

5700 (total electropherogram length is typically ~13000 indices, fit region is indices 1500-9000 for all 

other analyses in this paper).  Colors correspond to the four fluorescence channels. 

(B) Overlay of electropherograms of strain B, aligned to an arbitrarily-chosen replicate of strain A. 

Underlined stretches of ~6-7 bases are the positions at which these electropherograms differ. Over the 

remainder of the fit region, the electropherograms yield identical sequences. 

(C) Measured fractional abundances of strain in mixtures of strains A and B (same as lower left panel of 

Fig S3), fitting the full electropherogram region as used throughout the rest of the paper, approximately 

630 bases. 

(D) Same as (C), but restricting the fitting to roughly the region in which the two genes differ (the region 

shown in (A) and (B)).  



 

 

 

Fig S5. CASEU error magnitude is only weakly dependent on strain abundance. Related to Figures 2 

and 3.  

(A) Errors are similar in magnitude regardless of a strain’s abundance, though there is some bias in the 

seven-strain mixtures at higher proportions (blue circles).   

(B) Standard deviation of abundances calculated from triplicate Sanger sequencing measurements are 

generally around ~0.5% and are comparable to those that would be expected from counting based methods 

like next-generation sequencing or plate counts with n=4957 counts (best fit to 𝜎𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 =  √
𝑝(1−𝑝)

𝑛
).  



 

 

  

Fig. S6. Without correcting for concentration errors in stock solutions, four- and seven-strain 

mixtures are consistent across replicates but biased. Related to Figure 3. Data are the same as shown in 

Fig. 3 but without correcting for stock solution concentration errors. Solid bars are CASEU measurements 

after accounting for stock concentration error, whereas red lines show true mixture proportions based on 

power law distributions. In power law distributions, the abundance of the ith
 most abundant strain is 

proportional to 
1

𝑖𝛼 where α is the power law exponent.  



 

 

 
 

Fig S7. Assessing CASEU fits to detect sample preparation and/or sequencing errors. Related to Figure 

5. 

(A) The CASEU fit to a sample (red lines) does not accurately reproduce the observed mixed 

electropherogram (black lines). Each of the four traces shows a single fluorescence channel of the 

electropherogram. The best fit remained poor even when excluding the spike around t=2400. 

(B) The CASEU fit to a contaminated community (blue) did not accurately reproduce the observed mixed 

electropherogram (black). After including the contaminating strain (identified by Illumina sequencing), the 

CASEU fit (red) reproduces the observed electropherogram. 

E) Histogram of correlations between experiment and prediction for the model communities (n=39), 

showing two clear outliers (the communities shown in (A) and (C)). 

  



 

 

Strain A   11   NNNNNNNNTANNNNTGNNNGTCGAGCGGAACGACAACATTGAATCTTCG 

Strain B   11   GNNNNNNNTANNCNTGCAG-TCGAGCGGAACGACACTAACAATCCTTCG 

Strain C   11   NNGGCNNNNACACATGCAG-TCGAGCGGAACGAGAATAG-----CTT-- 

                 *   *** *    **    ************* *  *      ***   

 

Strain A   61   GAGGATTTGTTGGGCGTCGAGCGGCGGACGGGTGAGTAATGCCTAGGAA 

Strain B   61   GGTGCGTTAATGGGCGTCGAGCGGCGGACGGGTGAGTAATGCCTAGGAA 

Strain C   61   -----GCTATTCGGCGTCGAGCGGCGGACGGGTGAGTAATGCCTGGGAA 

                       *  * ******************************** **** 

 

Table S1. Strain C possesses a deletion near the beginning of the gene relative to strains A 

and B. Related to Figure 2. Truncated multiple sequence alignment (using Clustal 2.1) of 

sequences for strains A, B and C. Outside of this region, no gaps were found in the alignment. The 

gap in strain C begins roughly 50 bases after the end of the sequencing primer (27F) and leads to 

an offset of 12 bases for the remainder of the electropherogram.  
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