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Aim To validate a deep-learning (DL) algorithm for automated quantification of
prostate cancer on positron emission tomography/computed tomography (PET/
CT) and explore the potential of PET/CT measurements as prognostic biomarkers.
Material and methods Training of the DL-algorithm regarding prostate volume was
performed on manually segmented CT images in 100 patients. Validation of the
DL-algorithm was carried out in 45 patients with biopsy-proven hormone-na€ıve
prostate cancer. The automated measurements of prostate volume were compared
with manual measurements made independently by two observers. PET/CT mea-
surements of tumour burden based on volume and SUV of abnormal voxels were
calculated automatically. Voxels in the co-registered 18F-choline PET images above
a standardized uptake value (SUV) of 2�65, and corresponding to the prostate as
defined by the automated segmentation in the CT images, were defined as abnor-
mal. Validation of abnormal voxels was performed by manual segmentation of
radiotracer uptake. Agreement between algorithm and observers regarding pros-
tate volume was analysed by Sørensen-Dice index (SDI). Associations between
automatically based PET/CT biomarkers and age, prostate-specific antigen (PSA),
Gleason score as well as overall survival were evaluated by a univariate Cox
regression model.
Results The SDI between the automated and the manual volume segmentations was
0�78 and 0�79, respectively. Automated PET/CT measures reflecting total lesion
uptake and the relation between volume of abnormal voxels and total prostate
volume were significantly associated with overall survival (P = 0�02), whereas
age, PSA, and Gleason score were not.
Conclusion Automated PET/CT biomarkers showed good agreement to manual mea-
surements and were significantly associated with overall survival.

Introduction

High sensitivity, functionality, and quantification are hall-

marks of molecular imaging, including positron emission

tomography/computer tomography (PET/CT). However,

these abilities are not used to the extent they deserve in

cancer. Prostate-specific antigen (PSA) is non-specific (Bell

et al., 2014), the Gleason score is subjective with moderate

reproducibility (Sadik et al., 2008; Ozkan et al., 2016), and

bone metastases are late occurring events (Hoilund-Carlsen

et al., 2018). Thus, precise characterization of prostate can-

cer patients at the time of diagnosis is currently suboptimal

and reliable markers for individualized assessment are

needed.
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In recent years, deep-learning (DL) has become the method

of choice for automated image analysis (Lakhani et al., 2018).

Radiology studies have reported on application of deep learn-

ing in different organs (Lehman et al., 2018; Nam et al., 2018;

Tao et al., 2019). Still, the prognostic role of that application

remains undefined and further investigation is needed.

Since automated quantitative PET/CT assessments are lack-

ing, imaging biomarkers are still not routinely used. Deep

learning in prostatic malignancies has previously been applied

in magnetic resonance imaging (MRI) (Wang et al., 2017;

Reda et al., 2018), whereas maximum standardized uptake

value (SUVmax) by 18F-FDG PET/CT appears to be of rele-

vance in predicting overall survival in metastasizing prostate

cancer (Jadvar et al., 2013).

Accordingly, the primary aim of this retrospective study is

to evaluate a novel three-dimensional deep learning-based

technique on PET/CT images for automated assessment of

cancer in the prostate gland and its agreement with manual

assessment. The secondary aim was to investigate the associa-

tion between automatically based estimates of prostate cancer

uptake with overall survival in a group of patients with rela-

tively high risk.

Methods

Patients

Training group

A deep learning algorithm was trained to segment the prostate

gland on CT scans using manual segmentation in 100 consec-

utive patients, who were selected from Sahlgrenska’s Univer-

sity Hospital, Gothenburg. These patients had a mean age of

56 years (range 21–85) and had undergone PET/CT scan

examination, between October 2008 and December 2010 for

colorectal (n = 22), lung (n = 17), lymphoma (n = 15),

head-and-neck (n = 14) or other known or suspected tumours

(n = 32). All examinations were pseudonymized before the

digital processing of their examinations. Thereafter, the algo-

rithm was applied in a validation group.

Validation group

The patients of the validation group were derived from a prior

study on staging of prostate cancer by PET/CT (Poulsen et al.,

2014). Inclusion criteria for that study were as follows:

biopsy-proven prostate cancer, whole-body bone scintigraphy

showing ≥1 bone metastases, ability to undergo MRI and

safely await androgen deprivation until all study scans were

completed. Exclusion criteria were as follows: ongoing or

prior androgen deprivation, pain or suspicion of medullar

compression due to bone metastases. All patients gave oral

and written informed consent. Out of 50 patients in the origi-

nal study, five with missing PET/CT were not included, leav-

ing 45 patients, with median age 73 years (range 53–92), for
analysis. Patients were recruited between May 2009 and

March 2012. At inclusion the median PSA was 83 ng/ml

(range 4–5740), Gleason score was 2–6 in six patients, seven

in 17, 8–10 in 21 patients and not available in one patient.

Thirty-three patients in the validation group died during fol-

low-up. Their median survival time was 2�5 years (range 0�3–
7�6) compared with 7�8 years (range 6�1–8�8) in the 12 sur-

viving patients. Clinical information and other data were col-

lected from the local medical records up until 12 March

2018.

Ethical approval for both groups was obtained from the

Ethics Committee at Gothenburg University (295-08) and the

Regional Ethics Review Boards in Sweden (2016/103) and

Denmark (3-3013-1692/1).

Imaging

Training data were obtained using an integrated PET/CT scan-

ner (Siemens Biograph 64 Truepoint, Gothenburg, Sweden).

A low-dose CT scan (64-slice helical, 120 kV, 30 mAs) was

performed from the base of the skull to mid-thigh. The CT

slice thickness was 5 mm. PET images were not used in the

training group.

Subjects in the validation group were scanned with PET/

CT (Discovery VCT, GE Healthcare, Odense, Denmark)

approximately 60 min after administration of 4 MBq/kg of

Table 1 Comparison between the automated and the manual PET/CT measurements (n = 43).

PET/CT measurements [Mean (95% confidence interval)]

DL-based Nuclear medicine physician Radiologist

SUVmaxa 8�6 (7�3–10) 7�8 (6�8–8�8) 8�8 (7�5–10)
SUVmeanb 4�1 (3�6–4�5) 4�4 (4–4�8) 3�9 (3�5–4�3)
VOLUME (ml)c 31 (24�7–37�4) 22 (14�8–28�6) 40 (31–48�2)
FRACTION (%)d 43 (36–49�5) – 59 (47�2–71�4)
TLUe 138 (106�4–170�5) 110 (73–146) 168 (125�4–211)

aMaximal SUV within the prostate gland.
bAverage SUV for voxels with SUV > 2�65.
cVolume of prostate gland voxels with SUV > 2�65.
dFraction of VOLUME related to the whole volume of the prostate gland.
eProduct SUVmean 9 VOLUME reflecting the total lesion uptake.

© 2019 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd on behalf of Scandinavian Society of Clinical
Physiology and Nuclear Medicine 40, 2, 106–113

Artificial Intelligence in PET/CT, E. Polymeri et al. 107



18F-choline following a 6-h fast. A contrast-enhanced CT

scan (64-slice helical, 120 kV, ‘smart mA’ maximum

400 mA) was obtained from base of the skull to mid-thigh

with a slice thickness of 3�75 mm. The PET scan of the

same region had an acquisition time of 2�5 min per bed

position.

Automated quantification method

The core of the automated segmentation method is a fully

convolutional neural network (CNN) (Ian Goodfellow et al.,

2016). For each voxel in the CT image, the network estimates

the probability that this voxel belongs to the prostate gland.

Figure 1 Bland–Altman plot illustrating the
agreement of prostate gland volume measure-
ments (ml) between Radiologist A and B (a),
DL-algorithm and Radiologist A (b), as well
as DL-algorithm and Radiologist B (c) in the
validation group of 43 patients (data from
Table 2). Representation of confidence interval
limits for mean and agreement limits (black
dotted lines) as well as the line of equality
(blue dotted line).
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The voxel values of the CT scan were used as input to the

CNN. The input was split into three separate pipes. Each pipe

processes the image at a different scale, from coarse scale that

is downsampled by a factor of four, to fine scale with no

downsampling. Working on several scales allows for a large

receptive field without excessive memory consumption,

enabling efficient training of the model on a regular graphics

card. Apart from the downsampling, the three pipes are iden-

tically designed with three dilated convolutional layers (Chen

et al., 2018). Before merging the pipes, the two coarse-scale

pipes are upsampled to the full spatial resolution. All convolu-

tional layers use rectified linear units (Ian Goodfellow et al.,

2016) as activation functions except the last one, which uses

softmax to produce output probabilities that sum to one. The

network contains roughly 1 million weights that have to be

learnt from the training data. The goal of this process is to

make the model output on the training set as similar as possi-

ble to the manual segmentations (Ian Goodfellow et al.,

2016). As evaluating this loss function is extremely time-con-

suming, the minimization is performed using stochastic gradi-

ent descent; a random sample is selected and the gradient of

the loss for this specific example is computed, then a small

step in the negative direction of this gradient is taken.

Postprocessing

The raw segmentation from the CNN is not always perfect. Spo-

radically, background voxels are classified as prostate gland. To

address this problem only the largest connected component

from the CNN prostate segmentation is kept. A similar problem

is that isolated voxels inside the prostate gland might be classi-

fied as background. This is addressed by performing morpho-

logical hole filling on the prostate gland mask.

Training

The deep learning-based method was trained to segment the

prostate gland using CT scans in which the prostate gland was

segmented manually by one radiologist (Radiologist A) with

six years of experience. Manual segmentation was performed

using a cloud-based segmentation tool (RECOMIA, https://

www.recomia.org) by the radiologist. The tool is voxel based

allowing the observer to mark prostate gland voxels in the

three-dimensional CT volume and in any of the three planes

(transaxial, coronal or sagittal).

Validation

After training, the segmentation method was applied to the vali-

dation group. The prostate glands were automatically seg-

mented in the CT scans. Voxels in the co-registered PET images

above an SUV of 2�65, as proposed by Reske et al. (2006) and

corresponding to the prostate gland as defined in the CT

images, were defined as abnormal. The following five auto-

mated PET-measures were calculated: maximal SUV within the

prostate gland (SUVmax); average SUV for voxels with

SUV > 2�65 (SUVmean); volume of voxels with SUV > 2�65 in

ml (VOLUME); fraction of VOLUME related to the whole vol-

ume of the prostate gland (FRACTION); and product

SUVmean 9 VOLUME reflecting the total lesion uptake (TLU).

Validation methods

Validation of prostate volume

The prostate glands of the 45 patients in the validation group

were automatically segmented in the CT scans by the algo-

rithm. Further, two observers with a minimum of six years of

experience performed individual manual segmentations of the

prostates of the same material. Thereafter, the automated and

manual segmentations were compared with each other.

Validation of PET uptake

An experienced radiologist and a nuclear medicine physician

independently evaluated the abnormal PET uptake in the pros-

tate gland of the validation group. The same cloud-based seg-

mentation tool as in the training group (https://www.rec

omia.org) was used. Automated TLU measurements were

compared with the manual evaluations of the physicians.

Clinical validation

The prognostic value of automated quantification was assessed

by studying the association between the PET/CT measurements

Table 2 Mean difference in prostate volume (ml) between the algo-
rithm and the observers in the validation group of 43 patients.

Comparisons

Mean difference

(95% CId)

Upper

LOAe
Lower

LOA

DLa-Rad.Ab �10 (�16 to �4) 27�8 �48�2
DL-Rad.Bc �0�55 (�7 to 6) 39 �40
Rad.A-Rad.B 10 (6 to 13) 33�1 �13�8

aDL-deep learning algorithm.
bRadiologist A.
cRadiologist B.
d95% confidence interval.
eLimit of agreement.

Table 3 Sørensen-Dice index (SDI) showing the agreement between
the automated and the manual segmentations of Radiologist A and
Radiologist B (n = 43).

Median 25th percentile 75th percentile

DL-baseda vs Rad. A 0�83 0�76 0�84
DL-based vs Rad. B 0�80 0�74 0�84
Rad. A vs Rad. B 0�86 0�83 0�89

aDL-deep learning.
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and the common clinical measures, that is age, Gleason score

and PSA with overall survival in the validation group.

Statistical analysis

The Sørensen-Dice index (SDI) was used to evaluate the

agreement between automated and manual segmentations by

analysis of number of overlapping voxels. The SDI is defined

as twice the number of overlapping voxels divided by the

sum of the total amount of voxels classified as prostate in

both segmentations. Coefficient values range between 0 and

1, with 1 reflecting perfect agreement (D, 1999). The agree-

ment between the automated measurements and the obser-

vers as well as agreement between observers were further

Figure 2 Bland–Altman plot illustrating the
agreement of total lesion uptake (TLU) mea-
surements between the nuclear medicine
(NM) physician and the Radiologist B (a),
DL-algorithm and NM physician (b), as well
as DL-algorithm and the Radiologist B (c) in
the validation group of 43 patients (data from
Table 4). Representation of confidence interval
limits for mean and agreement limits (black
dotted lines) as well as the line of equality
(blue dotted line).
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evaluated using Bland–Altman analysis and linear regression

analysis. Associations between automated PET/CT measure-

ments, age, PSA, Gleason score and overall survival were

investigated using a univariate Cox proportional hazards

regression model. Overall survival was calculated from the

date of PET/CT scan. Hazard ratios (HR) and 95% confi-

dence intervals (CI) were estimated. The level of significance

was set at 0�05. The R statistical computing environment

(RC, 2014) as well as the SPSS statistics (version 25) were

used.

Results

Prostate volume

The algorithm failed in two patients with hip prostheses caus-

ing beam hardening. Both examinations were excluded and

results from the remaining 43 patients are shown in Table 1.

The median prostate gland volume was 71 ml (range 17–
118) with automated segmentation, corresponding to 65 ml

(range 9–184) and 80 ml (range 9–176), with manual seg-

mentation by the two radiologists (Fig. 1a-c). The mean dif-

ference regarding volume was 10 ml between the radiologists,

and �10 ml and �0�55 ml between the algorithm and Radi-

ologist A and B, respectively (Table 2).

The automatically derived volume was in between the two

manually determined volumes in 14 of 43 (33%) patients.

The overlap between automated and the two manual prostate

gland segmentations showed SDIs of 0�78 and 0�79, respec-
tively. The analysis of inter-observer agreement for the two

radiologists showed an SDI of 0�84 (Table 3). Significant cor-

relation was found between difference and mean of prostate

volume of the automated and the manual volume measure-

ments (P<0�001). The agreement between the algorithm and

the observers was dependent on prostate volume, with the

algorithm overestimating small glands and underestimating

large glands.

Lesion uptake

Median TLU was 105 (range 0–421) by the algorithm-based

method. The two readers obtained a median TLU of 62 (range

0–572) and 126 (range 1–620), respectively (Fig. 2a-c). The

mean difference regarding total lesion uptake was �59

between the two observers, corresponding to 29 and �30

between the algorithm and the nuclear medicine physician

and radiologist, respectively (Table 4). The automated TLU

values were in between the two manually obtained values in

19 of 43 (44%) patients. Regression analysis showed no sig-

nificant correlation between difference and mean of the lesion

uptake of the nuclear medicine physician and the algorithm

(P = 0�07), whereas the manual measurements of the Radiol-

ogist A were generally higher than their corresponding mea-

surements made by the algorithm and the nuclear medicine

physician.

Analysis of survival

In the univariate Cox analysis, three of the automatically

derived volumetric measurements (VOLUME, FRACTION and

TLU), all measures by the nuclear medicine physician as well

Table 5 Univariate survival analysis demonstrating the association
between PET/CT measurements, age, PSA, as well as Gleason score
and overall survival (n = 43).

Automatically based
measures

Hazard
ratio 95% CI

P-
value

SUVmaxb 1�03 0�95–1�11 0�51
SUVmeanc 1�13 0�90–1�42 0�30
VOLUME (ml)d 1�02 1�003–1�036 0�02
FRACTION (%)e 1�02 1�003–1�038 0�02
TLUf 1�004 1�0005–1�0068 0�02
Nuclear medicine

physician

Hazard

ratio 95% CI

P-

value

SUVmaxb 1�13 1�016–1�263 0�03
SUVmeanc 1�38 1�019–1�862 0�04
VOLUME (ml)d 1�01 1�001–1�024 0�03
TLUf 1�002 1�0002–1�005 0�03
Radiologist Hazard ratio 95% CI P-value

SUVmaxb 1�04 0�973–1�122 0�23
SUVmeanc 1�08 0�875–1�345 0�46
VOLUME (ml)d 1�01 1�003–1�024 0�01
FRACTION (%)e 1�0004 0�993–1�008 0�91
TLUf 1�002 1�0004–1�0046 0�02
Clinical data Hazard ratio 95% CI P-value

Age 1�04 0�99–1�09 0�06
PSA (log)a 1�39 0�87–2�23 0�17
Gleason score 1�15 0�88–1�52 0�30

aProstate-specific antigen (ng/ml) logarithmic.
bMaximal SUV within the prostate gland.
cAverage SUV for voxels with SUV > 2�65.
dVolume of prostate gland voxels with SUV > 2�65.
eFraction of VOLUME related to the whole volume of the prostate
gland.
fProduct SUVmean 9 VOLUME reflecting the total lesion uptake.

Table 4 Mean difference of total lesion uptake between the DL-
based algorithm and the observers in the validation group of 43
patients.

Comparisons

Mean difference

(95% CI)c
Upper

LOAd
Lower

LOAd

DLa- Radiologist B �30 (�53 to �7) 117�5 �177
DL-NMb physician 29 (12 to 46) 136�4 �78�5
NM physician-
Radiologist B

�59 (�77 to �40) 60�6 �178

aDeep learning algorithm.
bNuclear medicine.
c95% confidence interval.
dLimit of agreement.
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as VOLUME and TLU by the radiologist were significantly

associated with overall survival. The other PET/CT measure-

ments, age, PSA (logarithmic) and Gleason score, were not.

The results are shown in Table 5, where hazard ratio accounts

for one unit change of each of the automated variables. Fig-

ure 3 shows the PET/CT scans from two study patients and

their respective automatically based measurements.

Discussion

Automatically based estimates of 18F-choline uptake in the

prostate gland reflecting lesion volume and total lesion uptake

were significantly associated with overall survival contrary to

age, PSA and Gleason score. They were similar to values

obtained manually by radiologists, but much faster. Moreover,

they provide measures of cancer reflecting metabolically active

cells. Thus, these measurements may be clinically more rele-

vant than SUVmax or SUVpeak representing only minute vol-

umes of cancerous tissue with high activity, whereas the

entire volume of cancer and its overall activity is a conceptu-

ally more truthful measure of the cancerous burden (Basu

et al., 2014; Boellaard et al., 2015; Ziai et al., 2016).

Volumetric analysis by manual processing is not standard-

ized and is a time-consuming clinical application. The algo-

rithm provides automated and clinically relevant measures

within seconds that may substitute or significantly improve

today’s mainly visual assessment of CT, MRI, PET/CT and

PET/MRI. Thus, it may significantly increase the diagnostic

accuracy and precision of PET/CT imaging. In prostate cancer,

it may become as important as PSA and Gleason score for

identifying high- and low-risk patients. Our approach was

trained with scans from one institution and validated by scans

from another, a circumstance indicating that the algorithm is

applicable in other settings than where it was trained. Thus, it

could be speculated that if properly trained, the algorithm

could work with other tracers and other scanners.

Limitations

The algorithm overestimated the volume of small glands and

underestimated large glands. This could at least partly be

explained by the selection of cases to the training group. Train-

ing of automated-networks depends on large data sets as well as

on different anatomical conditions in each patient. Larger train-

ing groups with both normal and pathological prostate glands

are likely to improve the performance of the algorithm. A fixed

threshold (SUV > 2�65) to define abnormal uptake of 18F-cho-

line was used. Other fixed thresholds and other ways of defin-

ing the most relevant borders of abnormal uptake should be

considered in future studies (Schaefferkoetter et al., 2017).

The value of 18F-choline PET is still debatable. Some studies

highlight its application in case of biochemical recurrence at

high PSA levels (>2 ng/ml) and in monitoring of therapy

response (Ceci et al., 2016; Evangelista et al., 2016). Other

recent studies have analysed the higher accuracy of 68Ga-

PSMA in detecting prostate cancer (Morigi et al., 2015; Evan-

gelista et al., 2016; Eapen et al., 2018). Hence, the clinical

application of the latter has increased over the past few years.

Yet, a recent study showed a 20�5% positive detection rate of
11C-choline PET/CT in prostate cancer patients with biochemi-

cal failure after radical prostatectomy and PSA < 1 ng/ml

(Giovacchini et al., 2019). More specific prostate cancer tracers

targeting primarily prostate-specific membrane antigen and

with higher positive detection rate contends for precedence in

future studies. However, until such tracers become more

broadly available, radiolabeled choline could still be a valuable

(a) (b)

(c) (d)

Figure 3 18F-choline PET/CT scans of two study patients, one aged 68 with survival time 3 years and 8 months (a, b) and another aged 72 with
survival time 1 year and 3 months (c, d). Upper panels (a, c) show fused PET and CT images, lower panels (b, d) are CT images with automated
segmentation of the prostate gland (yellow) and demonstration (red) of prostate gland cancer obtained from the corresponding PET scan using
SUV > 2�65 as cut-off. The longer living patient (a, b) had higher PSA (1230 vs 102) and Gleason score (4 + 3 vs 3 + 4), but lower VOLUME
(2 vs 38 ml), FRACTION (7% vs 76%); and TLU (7 vs 236) than the shorter living patient (c, d).
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option. Further, the extensive clinical use of radiolabeled cho-

line PET for many years has the advantage of a long-term fol-

low-up of prostate cancer patients. Although 18F-choline is

not an ideal prostate cancer tracer (Evangelista et al., 2016), it

was used in this study because of the fund of validated scans

available.

Further, the presence of skeletal metastases makes a worse

prognosis itself. Yet, the main purpose of this study was to

demonstrate the feasibility of the algorithm and investigate

its association with overall survival in this patient category,

aware of the association between cancer spread and sur-

vival.

In conclusion, automated, volume-based measures of 18F-

choline uptake in the prostate gland could be obtained by the

algorithm and showed good agreement with the manually

assessed measurements. In addition, the automated PET/CT

biomarkers were significantly associated with overall survival

despite suboptimal tracer characteristics. The algorithm is now

open for investigation in other cancers and with other tracers.
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