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Scoliosis is a common spinal condition where the spine curves to the side and thus deforms the spine. Curvature estimation provides
a powerful index to evaluate the deformation severity of scoliosis. In current clinical diagnosis, the standard curvature estimation
method for assessing the curvature quantitatively is done by measuring the Cobb angle, which is the angle between two lines, drawn
perpendicular to the upper endplate of the uppermost vertebra involved and the lower endplate of the lowest vertebra involved.
However, manual measurement of spine curvature requires considerable time and effort, along with associated problems such as
interobserver and intraobserver variations. In this article, we propose an automatic system for measuring spine curvature using the
anterior-posterior (AP) view spinal X-ray images. Due to the characteristic of AP view images, we first reduced the image size and
then used horizontal and vertical intensity projection histograms to define the region of interest of the spine which is then cropped for
sequential processing. Next, the boundaries of the spine, the central spinal curve line, and the spine foreground are detected by using
intensity and gradient information of the region of interest, and a progressive thresholding approach is then employed to detect the
locations of the vertebrae. In order to reduce the influences of inconsistent intensity distribution of vertebrae in the spine AP image,
we applied the deep learning convolutional neural network (CNN) approaches which include the U-Net, the Dense U-Net, and
Residual U-Net, to segment the vertebrae. Finally, the segmentation results of the vertebrae are reconstructed into a complete
segmented spine image, and the spine curvature is calculated based on the Cobb angle criterion. In the experiments, we showed the
results for spine segmentation and spine curvature; the results were then compared to manual measurements by specialists. -e
segmentation results of the Residual U-Net were superior to the other two convolutional neural networks.-e one-way ANOVA test
also demonstrated that the threemeasurements including themanual records of two different physicians and our proposedmeasured
record were not significantly different in terms of spine curvature measurement. Looking forward, the proposed system can be
applied in clinical diagnosis to assist doctors for a better understanding of scoliosis severity and for clinical treatments.

1. Introduction

-e spine is one of the most important parts of the human
body. It provides a human with many significant functions,
for example, carrying the weight of the body and protecting
the spinal cord and nerves within. As shown in Figure 1, the
spine consists of 33 vertebrae that are subdivided into
five regions: cervical (C1–C7), thoracic (T1–T12), lumbar
(L1–L5), sacrum (S1-S5), and coccyx (Co1–Co4). -e upper

24 vertebrae are separated and movable providing the spinal
columnwith flexibility.-e lower 9 vertebrae are fixed, and 5
sacral vertebrae are fused to form the sacrum and 4 coccygeal
vertebrae are usually fused to form the coccyx after ado-
lescence [1].

A normal spine should be straight and centered over the
pelvis when viewed from the front and viewed from the back.
Scoliosis is a condition where the spine abnormally curves
towards the left or the right side and when the sideways
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curve of the spine is greater than 10 degrees. A person’s spine
with scoliosis will look like a C- or S-shaped curve as shown
in Figure 2.

Symptoms associated with scoliosis may include pain in
the back or shoulders, osteoarthritis, and even respiratory or
cardiac problems in severe cases. In order to establish a
diagnosis of scoliosis, a physician measures the degree of
spinal curvature on imaging scans such as X-rays, CT scans,
and MRIs. -e most common quantification of scoliosis is
the Cobb angle [4], which was originally proposed by the
American orthopedic surgeon John Robert Cobb. -e Cobb
angle was formally adopted as the standard quantification of
scoliosis by the Scoliosis Research Society (SRS), founded in
1966. -e measurement of Cobb angle involves estimating
the angle between the two tangents of the upper and lower
endplates of the upper and lower end vertebra, respectively,
as shown in Figure 3. -e severity definition for scoliosis is
determined using the Cobb angle as shown in Table 1. -e
condition of a spine is associated with the spinal curve
instead of scoliosis when the Cobb angle is less than 10
degrees. A Cobb angle in the range of 10 to 20 degrees is
considered as mild scoliosis. Scoliosis severity is moderate
when the Cobb angle ranges from 20 to 40 degrees. A Cobb
angle greater than 40 degrees denotes severe scoliosis.

-e current widely adopted standard for scoliosis di-
agnosis and treatment decisions is the manual measurement
of Cobb angles, which refers to the internal curvature of
the spine trunk. Despite the fact that manual measurement
has been working for the last decade, it is difficult for cli-
nicians to make accurate measurements because of the large

anatomical variation of patients from different age group
and the low tissue contrast of X-ray spinal image. -is
usually results in a large number of interobserver or
intraobserver errors. -erefore, the development of auto-
mated computer measurement is an important research
topic to provide a reliable and robust quantitative assess-
ment of scoliosis.

In the literature, there are many articles that deal with
interesting relevant topics. Giannoglou and Stylianidis [6]
provided a review article about the Cobb angle calculation
and image-based modelling techniques for measurement of
spinal deformities. In this article, Cobb angle measurement
includes X-ray image processing that attempts to detect the
locations of vertebrae in order to calculate the Cobb angle of
each AP view X-ray spinal image. In general, the sequences
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Figure 1: -e vertebral column [1].

Figure 2: Normal spine and scoliosis [2].
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of the image processing involve the following stages: (a)
image acquisition, (b) corner detection of the vertebra, and
(c) a final stage for global estimation of the spine curvature.

Moura et al. [7] proposed a set of techniques to (1)
isolating the spine by removing other bone structures, (2)
detecting vertebrae locations along the spine using the
progressive threshold method, and (3) detecting vertebrae
lateral boundaries. -e author used a tree data structure to
prune redundant information and to merge regions that
were too small. -e detected vertebrae boundaries were used
to measure the Cobb angle of spine curvature. Okashi et al.
[8] proposed a fully automatic solution for spine segmen-
tation and curvature quantification from X-ray images of
mice. -eir approach consists of three stages: preparation of
the region of interest, spine segmentation, and spine cur-
vature quantification. -e stage for preprocessing the region
of interest involves three operations: (a) aligning the mouse
skeleton, (b) cropping of ROI, and (c) denoising and en-
hancing the cropped ROI.-e spine segmentation stage first
uses the Otsu method to obtain the initial segmentation and
then further refines it. -e refinement first applies two
grayscale morphology operations tophat and topbot, to
reduce noise and maximize contrast. Next, the spine border
is refined by using a complex iterative process to determine a
high intensity value for modifying border pixels. Finally,
polynomial fitting methods are applied to refine edges of the

spine. Two different indexes, SRM1 and ARM2, are proposed
to measure the spine curvature. -is method had some
shortcomings: (a) it requires complex image processing
techniques to segment the spine and (b) it does not separate
each vertebra that cannot compute the most useful measure,
which is the Cobb angle.

Mukherjee et al. [9] selected the best filter of the four
denoising techniques: bilateral filters [10], nonlocal means
filters [11], principal neighborhood dictionaries nonlocal
means filtering [12], and block matching three-dimensional
filtering [13]. Due to the poor contrast of radiographs,
histogram equalization was applied to enhance image
contrast, and the Otsu thresholding method was used to find
the Canny edge points of vertebrae. Finally, a Hough
transform [14] was used to detect the two straight lines of the
upper endplate of the uppermost vertebra involved and the
lower endplate of the lowest vertebra involved. -e two
detected lines were then used to find the Cobb angles for
comparison. Lecron et al. [15] proposed a learning method
that combines scale-invariant feature transform (SHIF) local
descriptors [16] with a multiclass SVM to detect vertebra
anterior corners. However, these methods require compli-
cated image processing stages that involve image filtering,
enhancement, segmentation, and feature extraction to ob-
tain vertebra assessment, which make the techniques
computationally expensive and temptable to errors caused
by the variations in X-ray spinal images.

Recently, deep convolutional neural networks (CNNs)
have demonstrated enormous potential in the field of
medical image analysis [17, 18]. Unlike traditional machine
learning methods, deep neural networks do not require any
handcrafted features for training and can be trained end-to-
end for object detection and semantic segmentation. As
such, a CNN network is a suitable choice for extracting the
vertebral regions of a spine. In biomedical image segmen-
tation, recent successes in precise image segmentation were
achieved by using a U-Net architecture [19]. In the U-Net,
contextual information is propagated to upsampling layers
by concatenating the output of lower layers to high layers,
providing more feature channels. Al Arif et al. [20] applied
the U-Net and shape-aware U-Net to segment the cervical
vertebrae.-e authors modified the crop and copy operation
into the concatenation operation that obtained an average
Dice similarity coefficient (DSC) of 0.9438 for U-Net and
0.944 for shape-aware U-Net. -e authors also compared
with other methods such as ASM-G [21], ASM-M [22], and
ASM-RF [23]. -eir DSCs are 0.774, 0.877, and 0.883. -ese
results reveal that the performance of our proposed work is
very close to the one in [24] and should be better than the
abovementioned methods [21–23]. Additionally, the mod-
ifications of a U-Net such as Residual U-Net [24] and Dense
U-Net architecture [25] were also applied to segment the
thoracic and lumbar vertebra for comparison.

In this paper, we proposed an automatic system for the
measurement of spine curvature from X-ray images. A flow
chart of the proposed system is shown in Figure 4. -e
proposed system includes four stages: isolation of the spine
region, detection of vertebrae, segmentation of vertebrae,
and spine curvature quantification.-e isolation of the spine
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Figure 3: Measurement using the Cobb method [3].

Table 1: Definition of Cobb angle [5].

Cobb angle Definition
0°–10° Spinal curve
10°–20° Mild scoliosis
20°–40° Moderate scoliosis
>40° Severe scoliosis
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region stage starts from the image preprocessing procedure
that includes resizing an input image and cropping the
region of interest (ROI) of a spine. Afterwards, image
processing techniques are applied to detect the locations of
vertebrae using a progressive threshold method. And then
we apply a convolutional neural network (CNN) to segment
vertebrae. Unlike the work of Moura et al. [7], we used an
analogous voting mechanism to separate each vertebra. -e
final stage is to compute the spinal curvature by applying the
criterion of Cobb angle measurements.

-e rest of the paper is organized as follows. Section 2
introduces the proposed methods and data material for the
experiments. -e experimental results and discussion of the
proposed system are in Section 3. Finally, Section 4 presents
the conclusion and future works.

2. Materials and Methods

2.1. ExperimentalMaterials. -eX-ray spinal images used in
the experiments were acquired from the National Cheng
Kung University Hospital using EOS medical imaging
system (EOS company, Paris). Prior to experiments, all
participants were informed about the study’s aims and
procedures, which include the removal of identification for
privacy protection and signed consent forms approved by
the Institutional Review Board of National Cheng Kung
University Hospital (IRB number: A-ER-105-013). -e
images are 2D X-ray spinal images in the anterior-posterior
view (AP view) in grayscale format as shown in Figure 5 with
a size of width: 1056 to 3028 pixels and height: 1996 to 5750
pixels. In total, thirty-five images captured from young
scoliosis subjects were used in this study, each depicting a
complete spine which includes 12 thoracic and 5 lumbar
vertebrae for the following segmentation process. Most of
the X-ray spinal images are about 3000× 5000 pixels in size.

2.2. Proposed Methods

2.2.1. Isolating the Spine Region. -e isolation of the spine
region stage is applied to decide upon the region of the in-
terest (ROI) of the spine. In order to make the processing
more efficient, we first reduce the size of all spinal AP view
images to a quarter of its original size. In this stage, we focused
on the region between the thoracic and the lumbar vertebrae
(i.e., from T1 to L5 vertebrae) in the X-ray AP view spinal
images. -e region is defined as the spine region of interest
(spine ROI). Figure 5 shows the image columns with
the brighter pixels indicating columns where the spine is
located. -erefore, we first vertically align the large structures

including the head, spine, and hips and then compute the
intensity histogram of a vertical projection. We select col-
umns that are between the mean intensity plus or minus one
standard deviation as the left and right boundaries of ROI as
shown in Figure 6. Another interesting observation from
Figure 5 is that the intensity of the spine near the thoracic
vertebrae is relatively low, but the spine regions of the lumber
vertebrae appear brighter. As a result, we used the intensity
histogram of a horizontal projection to detect the lowest
extrema as the upper boundary of ROI and the position of the
largest discontinuous position as the lower boundary as
shown in Figure 6.-e detected spine ROI is then cropped for
sequential spine detection and segmentation.

2.2.2. Vertebrae Detection. After extracting the spine region,
we further detect the locations of vertebrae from the spine
ROI image. In general, the spine usually appears with a
higher intensity in the cropped spine ROI; therefore, we can
detect the edges of the spine by using the sums of the in-
tensity and gradient. -ere are three steps for detecting the
vertebrae: (1) detection of the central line segment (CLS), (2)
detection of spine boundary, and (3) detecting vertebrae.
Details are described as follows.

-e first step of vertebrae detection is to detect the
central line segment (CLS) of the vertebrae. In this step,
many rectangle windows with a size of H×W pixels are
overlapped and placed with one-pixel increment along the

Input X-ray spinal
images

Isolate spine region Detection of
vertebrae

Vertebrae
segmentation

Spine curvature
quantification

Figure 4: Flow chart of the proposed system.

Figure 5: 2D X-ray spinal image in the AP view.
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top of the spine ROI from left to right. -e sums of intensity
inside each rectangle window are calculated. If one rectangle
window has the largest sum of intensity, the top middle
point of this window is used as the first reference point for
CLS as shown in Figure 7(a). Next, the current rectangle
window with a maximum sum of intensity is moved down p
pixels, and then a search is initiated for the next reference
point in the interval of q pixels on both of its sides. -is
search slips one pixel once and then records the intensity
sum of the corresponding window. -e window with the
maximum sum of intensity value is then assigned to the
current window and its top middle point is defined as the
second reference point for CLS. Similar procedures are
repeated until n reference points are detected, and these are
then fit into a CLS by polynomial fitting method as shown in
Figure 7(a).

-e boundary points of the spine along the normal
direction of the detected central line segment are determined
in the second step.-is second step utilizes two small sibling
windows, each 11× 5 pixels. -e pair of sibling windows
moves at most r pixels along both sides in normal directions
of the corresponding CLS point as shown in Figure 7(b). -e
top middle of the pair of the sibling windows is selected as
the boundary point of the spine when their intensity dif-
ference is maximum as shown in Figure 7(b). -e procedure
for boundary detection continues until all points of the CLS
have been explored. -e corresponding current window of
the final point for this CLS is reconstructed for sequential
detection of the CLS until all boundaries of the spine are
found. Finally, all spine boundary points in each side are
dependently fitted by polynomial fitting with three degrees
into the spine boundary. In the experiments, we set the
following parameters: H� 51, W� 13, p� 12, q� 10, r� 40,
and n� 6.

Once the right and left boundaries of the spine are
obtained, we consider the middle point of the pair of the
boundary in the horizontal line as a point of the central
spinal curve (CSC) line. -e complete CSC line and region
for the foreground of spine are drawn in Figures 8(a) and
8(b). -e results are then applied in the final procedure for
vertebrae detection. -e spinal area enclosed by the two
boundary lines is equally divided into three regions: left,
middle, and right, as shown in Figure 8(c). -e left and right

regions are used to generate threshold images It with
threshold values ct � 16t, t � 1, . . . , 15.

Figure 8(d) shows image I12 in which the region of the
vertebrae always appears in the brightest region. -e intensity
of each It image is projected normally to the CSC line and then
summed up in their projection histogram pt.-e transformed
projection ft is generated by the following equation:

ft(y) �
0, if pt(y)> 0,

1, otherwise,
􏼨 (1)

where y is an index of the histogram, that is y � 1, . . . , β,
where β is the bin dimension of histogram pt. In general, β is
the length of the spine’s central line. -e accumulated
histogram P is the sum of all ft shown as follows:

P(y) � 􏽘
15

t�1
ft(y). (2)

-e computation for histogram P looks like a voting
mechanism; more precisely, the pixels of the intervertebral
disc region always have a larger value than those of a ver-
tebra. -e value of the histogram in the vertebrae is almost
always assigned to be 0. In order to obtain the rectangle
region of interest (ROI) for a vertebra, we first select each
drastic change in the increasing order of histogram P as
starting point A. In general, the start point always occurs in
the lower bound of each vertebra, i.e., the border point
between vertebra and the lower intervertebral disc. Starting
from each point A along the CSC lines, we extract a 15 bin
nonoverlapped subhistogram from the corresponding P
histogram. -e first finding of a global maximum of each
subhistogram indicates as the position of the horizontal
boundary line of the ROI of the corresponding vertebrae.
-e ROI of vertebrae enclosed by two adjacent horizontal
lines and the spine boundary are defined as the region of
interested of the vertebrae as shown in Figure 8(d).

2.2.3. Segmentation of Vertebrae. After the vertebrae de-
tection step, we obtain the 17 vertebrae regions of interest
(ROI) of each spine image. In the AP view spine images, the
vertebrae intensity varies considerably, but in general,
cervical vertebrae usually have a low intensity and the

Vertical projection

Resize

Input image

Horizontal projection

Detect the
ROI

Crop the
ROI

Figure 6: Spine region isolation.
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lumbar vertebrae usually appear with a very high intensity.
Intensity inconsistencymakes it difficult to segment by using
only simple image processing techniques. -us, current
convolutional neural network (CNN) techniques have be-
come a powerful alternative to overcome the problem of
intensity inconsistence. Essentially, CNN is an end-to-end
mechanism where the inputs to the CNN are the original
images without applying any image processing procedure.

All vertebra regions of interest are rescaled as input images
with a size of 256×128 pixels for the CNN segmentation.We
then applied three different convolutional neural networks
(CNN) : U-Net, Residual U-Net, and Dense U-Net, to seg-
ment vertebrae and for comparison.

U-Net is based on an encoder-decoder structure, which
was originally developed and used for the biomedical image
segmentation [19] as shown in Figure 9.

(a) (b) (c) (d) (e)

Figure 8: Detection of vertebrae: (a) central spinal curve line, (b) spine foreground, (c) region partition, (d) threshold result, and (e) results
of vertebra detection.

Polyfit

A segment of the center line

51 × 13 window

(a)

Polyfit

5 × 11 window

(b)

Figure 7: Finding boundary points of the spine: (a) finding a segment of the center line before finding spinal edges; (b) using a segment of
center line for finding spinal edges.
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We revised the original U-Net architecture to be suitable
for the vertebra segmentation as shown in Figure 10.-e left
side of the proposed U-Net is the encoder part and the right
side is the decoder part. -e encoder part applies convo-
lution and downsampling to extract information into feature
maps from the input image. -e decoder part reconstructs
the prediction map from the encoded feature maps by using
upsampling and concatenation of corresponding feature
maps from the encoder side. In the original U-Net, the crop
and copy operation needs to crop the central area of feature
map of encoder part and then concatenate them with the
corresponding feature map in the decoder stage. However,
the crop operation always loses important information of
vertebra segmentation. In order to avoid important in-
formation loss, we replace the original crop and copy op-
eration with concatenation operation in the design of
U-Nets. Similar strategy has also been adopted in the other
literatures [20]. A vertebra ROI image with a size of
256×128 pixels was input to the network for segmentation.

In the convolutional layers, the operation with a 3× 3
filter convolution was performed, followed by a rectified
linear unit (ReLU) [26] and batch normalization (BN) [27]
that was applied in both the encoder and decoder part of the
network. -e convolution is applied by learnable filters to
extract features from the input image.

In our network, the convolution of an image is per-
formed by filters with size 3× 3, stride 1 to generate feature
maps. -e equation of convolution is denoted as follows:

h xl( 􏼁 � W
T ∗xl + b, (3)

where xl and h(xl) are input and output in the lth layer of the
convolution, respectively, WT is a learning filter of the
convolution, and b is a bias.

A rectified linear unit (ReLU) [26] is a kind of activation
function and is applied for nonlinear transformation for the
feature maps. ReLU is commonly used because it has lower
computational costs and better performance than other
activation functions in typical cases. -e ReLU activation
function is expressed as below:

F xl, wl( 􏼁 � f h xl( 􏼁( 􏼁 � max 0, h xl( 􏼁( 􏼁, (4)

where f(·) is the activation function and F(xl, wl) repre-
sents the output of the lth convolution layer under the wl

weight. In the network, the output feature maps are
downsampled or upsampled after two convolutional layers.

-e 2× 2 max-pooling operation with stride 2 is applied
for downsampling in the encoder part.-e purpose of pooling
operation is downsampling, which is used to reduce the size of
the feature maps. In this study, we use max-pooling which
outputs the maximum value within the window regions. Max-
pooling can make learned features more robust and reduce
noise. -e decoder part resizes the feature map by using
deconvolution at upsampling, followed by a 3× 3 filter size
convolution that halves the number of feature channels, and
the output concatenates with the corresponding feature map
from the encoder part. At the final layer, a 1× 1 filter con-
volution is applied to map the 64 channels of a feature map to
a probability map in the range of [0, 1], and the segmentation
result is generated after probability thresholding.

Our next proposed network architecture based on a
Residual U-Net [24] is shown in Figure 11. -e architecture
of the Residual U-Net is similar to that of U-Net as men-
tioned previously.

-e difference between U-Net and Residual U-Net is that
Residual U-Net replaces the standard convolution operation
of U-Net with a residual block. -e concept of a residual
block which is applied on network is proposed by He et al.
[28]. In their research, the proposed network, named a
residual neural network, was used to improve the perfor-
mance of the network and address the degradation problem.
As shown in Figure 12, each residual block contains two
repeated operations which included batch normalization,
ReLU and 3× 3 filter convolution, and identity mapping.-e
identity mapping connects input to the output of the block.
Each residual block can be calculated as follows:

xl+1 � xl + F xl, wl,k􏼐 􏼑, (5)

where xl and xl+1 are the input and output of the l-th residual
block, respectively, wl,k is the weight of the first residual unit,
and k is the number of weighted layers contained in each
residual unit. -eF(·) is the residual function stacking two
3∗ 3 convolutional layers.

A Dense U-Net [25] is the architecture of a U-Net built
from dense blocks [29]. -e architecture of a Dense U-Net is
shown in Figure 13.

As known from the Residual U-Net above, the input is
added to the output of a layer in a residual block. In a dense
block, all feature layers are connected and then have con-
catenation applied instead of addition. Each dense block can
be calculated as follows:

xl � Hl x0, x1, . . . , xl−1􏼂 􏼃( 􏼁, (6)

where [x0, x1, . . . , xl−1] indicates the concatenation of the
feature maps produced in layers 0, . . . , l− 1. H(·) is a dense
layer that includes batch normalization, rectified linear units
(ReLU), and convolution layer. A l-layer dense block with a
growth rate of k outputs l × k feature maps, as shown in
Figure 14.

In our implementations, the dataset consisted of 595
vertebra images. -e boundary of each vertebra image was
annotated by clinical experts. Figure 15 shows the vertebra
images and their corresponding segmentation ground truth.
-e 5-fold cross-validation was used to evaluate the segmen-
tation performances of U-Net, Residual U-Net, and Dense
U-Net. In each fold, the training images were augmented to
1000 images, 10% of them were used as the validation images.

All parameters of the CNN network are randomly ini-
tialized and trained by an Adam optimizer.-e loss function
for the network optimization uses the L2-norm loss function
by minimizing of the sum of the square of the differences
between the predicted result and the ground truth. -e loss
function is calculated by

L2 loss �
􏽐

N
i�0 yi − h xi( 􏼁( 􏼁

2

N
, (7)

where xi is input data, yi is ground truth, h(xi) is the
predicted result, and N is number of data.
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2.3. Cobb Angle Measurement. Cobb angle [3] is the most
widely used measurement for quantifying spine curvature.
-e curvature of the Cobb method is defined as the angle

between the upper border of the upper vertebra and the
lower borders of the lowest vertebra as shown in Figure 3.
-e definition of the upper and the lower border in the
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original approach is determined by manual drawing lines
parallel to the upper and lower borders to find the angle. In
our implementations, we used an automatic approach called
minimum bounding rectangle (MBR) method to obtain the
upper and lower border of the vertebra. For the MBRmethod,
we find a minimum bounding rectangle according to the
segmented vertebral contour and then consider the top and
bottom border of this rectangle as the upper and lower borders
of vertebra. Figure 16 shows an example for MBR approach.

Once the upper and lower borders are defined, we can
calculate spine curvature φ by the formula below:

φ � max tan−1
mi −mj

1 + mi × mj

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩,

(i, j) ∈ (a, b) | a ∈ N, b ∈ N, b− a≥ 2 and b≤N{ },

(8)

where a is the upper vertebra and b is the lower vertebra with
at least one vertebrae interval from upper vertebra a. mi is

the slope of the upper border of the upper vertebra and mj is
the slope of the lower border of the lower vertebra. N is the
number of counted vertebrae. We calculated all possible
curvatures of the spine and consider the maximum curva-
ture as the resulting Cobb angle.

3. Experimental Results and Discussions

-e experiments were performed on a PC with Intel Core i7
3.60GHz CPU, 16GB memory, and NVIDIA GeForce GTX
1080Ti GPU. -e network was implemented based on the
Tensorflow framework in Python. In this section, we eval-
uated the performance metrics of the proposed system.
-ere are six performance metrics, including accuracy (AC),
sensitivity (SE), specificity (SP), mean square error (MSE),
Dice similarity coefficient (DSC) [30], and Jaccard similarity
(JS) [31], which were used for quantitative analysis of the
experimental results and are defined below:

accuarcy(AC) �
TP + TN

TP + TN + FP + FN
,

sensitivity(SE) �
TP

TP + FN
,

specificity(SP) �
TN

TN + FP
,

dice similarity coefficient(DSC) �
2|GT∩ SR|

|GT| + |SR|
,

Jaccard similarity(JS) �
|GT∩ SR|

|GT∪ SR|
,

mean square error(MSE) �
1
N

􏽘

n

i�1
GTi − SRi( 􏼁

2
,

(9)

6464

256 × 128 256 × 128

128 × 64 128 × 64

64 × 32 64 × 32

32 × 16

64 64 + 64 64 64 1

128 128 128 + 128 128

256 256 256256 + 256

512

1

Max-pooling 2 × 2

Upsampling
Concatenation

Conv 1 × 1

Conv 3 × 3
Residual unit

Figure 11: Residual U-Net architecture of the proposed method.

Input

Conv 3 × 3, ReLU
(+ batch norm)

Conv 3 × 3, ReLU
(+ batch norm)

Output

+

xl+1

xl

F (xl, wl)

Figure 12: Residual block [28].
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where GT is the ground truth, SR is the segmentation result,
and N is the number of all images.

3.1. Evaluation of U-Net, Residual U-Net, and Dense U-Net.
In the experiments, we evaluated the segmentation per-
formance of the U-Net, the Residual U-Net, and Dense
U-Net, where they were trained according to the following
parameters: batch size is 10, learning rate is 0.01, and the
number of epoch until stopping is 100.

Table 2 shows the Dice similarity coefficient (DSC) from
a 5-fold cross-validation of U-Net, Residual U-Net, and
Dense U-Net and their usage for parameter size, training
time, and test time of each image. From Table 2, the DSC
performance of Residual U-Net is 0.951 which is better than
that of U-Net and Dense U-Net.-e result is also superior to
the results in [20]. -e segmented results of the U-Net, the
Residual U-Net, and Dense U-Net are shown in Figure 17. In
Figure 17, the first row shows the input original images, the
second row the ground truth, the third row is the seg-
mentation results for U-Net, the fourth row is the results for

Dense block

Conv 3 × 3

Conv 1 × 1

Concatenation

Upsampling

Max-pooling 2 × 2

256 × 128

64

128 × 64

128

64 × 32

176 256 128

64 × 32

128 × 64

112 128 64

256 × 128

80 64 32 1

32 × 16

256

48 + 128

48 + 64

1 32 48 + 32

Figure 13: Dense U-Net architecture.

Concatenation

Input

Layer

Layer

Layer

Output

Figure 14: Dense block [29].
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Residual U-Net, and the last row is the results of Dense
U-Net. -e segmentation results of the three networks are
highly fitted to the ground truth on the left two cases.
However, there are some artifacts and less segmentation on
the results of U-Net for the remaining cases, although the
results of Residual U-Net are still pretty good. -is shows
that our proposed Residual U-Net is promising for vertebra
segmentation.

Additionally, we also applied several performance metrics
to quantitatively evaluate the segmented results for the U-Net
and Residual U-Net. -e DSC, JS, MSE, accuracy, sensitivity,
and specificity are shown in Table 3. -e Residual U-Net had
the best performance for all these metrics compared to U-Net
and Dense U-Net. After vertebrae segmentation, the results
are drawn in the original spine image to show the spine
segmentation results as depicted in Figure 18. Figure 18 shows
the vertebrae segmentation results for U-Net, Residual U-Net,
and Dense U-Net, in which the first column is the ground

truth, the second to fourth columns show the results for
U-Net, Residual U-Net, and Dense U-Net, respectively. -e
upper and lower boundaries of vertebrae are proper and
better fit to the ground truth for the Residual U-Net results
and are close to those of Dense U-Net.-is demonstrates that
the performances of both the Residual U-Net and Dense
U-Net methods are suitable for spine curvature estimation
tasks. From clinical experts’ perspectives, the proposed ver-
tebrae segmentation does not need the manual intervention
which is time consuming and instable. -e proposed method
provides rapid response and precise measurement.

3.2. Evaluation of Spine Curvature Result and Ground Truth.
In this experiment, we compared the results of the Cobb
method with manual results that were measured by two
orthopedists (one is an expert, the other is a novice) as
shown in Table 4. Each orthopedist measures the same X-ray
spinal images twice in different times. -e results of this
table indicate that the spine curves to right when the angle of
spine is less than 0, and the spine curves to left when the
angle is larger than 0.

Statistical analysis was performed using the software
toolkit designed by Jason Brownlee [32]. -e descriptive
statistic includes mean, standard deviation, and 95% confi-
dence interval, which were used to explain the findings of the
experimental results. -e purpose of a one-way analysis of
variance (one-way ANOVA) [33] is to compare the means of
two or more groups (the independent variable) on one de-
pendent variable to see if the group means are significantly
different from each other. -us, the one-way analysis of
variables was used to analyze the difference among the three
measurement results while also considering their signs. -e
one-way ANOVA analysis, with its corresponding statistics�

0.020 and p � 0.980 was less than the significant level α� 0.05.
-is result fails to reject the null hypothesis such that the three
data samples have the same distribution, i.e., no significant
difference.

Furthermore, the reliability of the Cobb angle measured
by using our proposed MBR method was assessed by the
intraclass correlation coefficient (ICC) [34, 35, 36, 37] and
Pearson correlation coefficient [38]. In general, the ICC
values are rated poor (less than 0.40), fair (0.40–0.59), good
(0.0–0.74), or excellent (0.75–1.00). -e levels of significance
in the experiments were set at p< 0.05. -e experimental

(a)

(b)

Figure 15: Vertebra images: (a) the ROI of vertebra and (b) their corresponding annotated segmentation ground truth.

Figure 16: -e minimum bounding rectangle (MBR) approach for
obtaining the upper and lower borders of the vertebra.

Table 2: Dice similarity coefficient (DSC) from 5-fold cross-val-
idation of U-Net, Residual U-Net, and Dense U-Net.

k-fold
Dice similarity coefficient (DSC)

U-Net Residual U-Net Dense U-Net
k� 1 0.940± 0.036 0.952± 0.023 0.947± 0.028
k� 2 0.942± 0.032 0.951± 0.029 0.947± 0.029
k� 3 0.942± 0.033 0.952± 0.025 0.949± 0.028
k� 4 0.941± 0.034 0.949± 0.030 0.947± 0.026
k� 5 0.942± 0.035 0.952± 0.028 0.947± 0.030
Average± std. 0.941± 0.034 0.951± 0.027 0.948± 0.028
Parameter size 1.21 million 1.19 million 1.20 million
Training time 0.34 hour 0.77 hour 2.33 hour
Testing time
(each image) 0.03 second 0.05 second 0.07 second
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results of intraclass and interclass correlation coefficients are
shown in Table 5. -e ICC and Pearson correlation co-
efficient were more than 0.93, indicating the results of MBR
were highly matched with the manual assessment.

Rank correlation can be calculated for real-valued var-
iables. -is is done by first converting the values for each
variable into rank data. -is is where the values are ordered
and assigned an integer rank value. Rank correlation co-
efficients can then be calculated in order to quantify the
association between the two ranked variables. Because no
distribution is assumed for the values, rank correlation
methods are referred to as a distribution-free correlation or
nonparametric correlation. Interestingly, rank correlation
measures are often used as the basis for other statistical
hypothesis tests, such as determining whether two samples
were likely drawn from the same (or different) population
distributions.

An analysis of the severity ranks applied the Spearman
rank-order correlation [39]. -is is also called Spearman’s
correlation coefficient and is denoted by the lowercase Greek
letter rho (ρ). As such, it may be referred to as Spearman’s

rho. -is statistical method quantifies the degree to which
ranked variables are associated by a monotonic function,
reflecting an increasing or decreasing relationship. As a
statistical hypothesis test, the method assumes that the
samples are uncorrelated (fail to reject H0).

ρ � 1−
6􏽐

n
i�1 xi −yi( 􏼁

2

n n2 − 1( )
, (10)

where xi and yi are the rank of ith sample of different data
samples and n is the number of samples.

-e results for different pairs of data samples for Cobb
measurement are shown in Table 6, where the results
“rejected the null hypothesis.” -is means that the three
ranked data samples were highly correlated. -e highly
correlated result indicates that the Cobb measurement ob-
tained by the MBR method has high potential as a new
indicator for diagnosing the severity of scoliosis. In addition,
the averaged differences of measurements when different
physicians manually computed twice were 1.93° and 0.21°.
Apparently, the manual computation usually suffers with
intraclass error measurement.

(a)

(b)

(c)

(d)

(e)

Figure 17: Segmentation results of vertebrae: (a) the input image, (b) ground truth, (c) segmented result of U-Net, and segmented results of
(d) Residual U-Net and (e) Dense U-Net.

Table 3: Quantitative evaluation of the segmented results of U-Net, Residual U-Net, and Dense U-Net.

Methods Dice similarity
coefficient (DSC)

Jaccard similarity
coefficient (JS)

Mean square
error (MSE)

Accuracy
(AC)

Sensitivity
(SE)

Specificity
(SP)

U-Net 0.941± 0.034 0.891± 0.057 0.030± 0.016 0.961± 0.022 0.980± 0.016 0.945± 0.038
Residual U-Net 0.951± 0.027 0.908± 0.046 0.025± 0.012 0.969± 0.016 0.982± 0.013 0.958± 0.029
Dense U-Net 0.948± 0.028 0.902± 0.048 0.027± 0.013 0.966± 0.017 0.982± 0.014 0.952± 0.031
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(a) (b) (c) (d)

(a)

Figure 18: Continued.
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(a) (b) (c) (d)

(b)

Figure 18: Continued.
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(a) (b) (c) (d)

(c)

Figure 18: Segmentation results of a whole spine: the ground truth (a); the results of U-Net, Residual U-Net, and Dense U-Net are shown in
(b), (c), and (d), respectively.
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4. Conclusion and Future Work

In this study, we proposed an automatic measurement
system for assessing the severity of scoliosis. -e system

consists of three main parts: isolation of the spine, vertebra
segmentation, and Cobb angle measurement. In the seg-
mentation of the vertebra, we applied and compared three
different convolutional neural networks (CNN) that are the

Table 4: Results of spine curvature with Cobb method and manual method.

Image

Observer 1 (expert) Observer 2 (novice) Cobb method (MBR)
Upper

vertebrae
Lower

vertebrae Cobb angle Upper
vertebrae

Lower
vertebrae Cobb angle Upper

vertebrae
Lower

vertebrae
Cobb
angle

t� 1 t� 2 t� 1 t� 2 t� 1 t� 2 t� 1 t� 2 t� 1 t� 2 t� 1 t� 2
1 T8 T8 L2 L2 −16.8 −16.9 T8 T8 L1 L1 −15.0 −15.2 T8 L5 −20.1
2 T6 T9 L1 L1 6.4 6.1 T10 T10 L1 L1 13.7 13.7 T6 T12 7.8
3 T2 T10 L1 L2 9.9 6.2 T4 T4 L2 L2 11.6 11.6 T3 L2 10.1
4 T9 T10 L4 L4 11.9 16.9 T9 T9 L4 L4 13.9 13.9 T11 L4 15.9
5 T11 T10 L4 L4 15.9 14.5 T11 T11 L4 L4 11.6 11.6 T12 L4 9.1
6 T11 T9 L4 L4 −19.2 −16.8 T10 T10 L4 L4 −15.1 −15.1 T11 L3 −15.1
7 T12 T11 L4 L4 −8.1 −12.3 T9 T9 L4 L4 −12.0 −12.0 T6 L2 −5.2
8 T12 T11 L4 L4 −9.1 −8.2 T9 T9 L4 L4 −13.5 −13.5 T12 L2 −11.0
9 T10 T10 L4 L4 −19.8 −15.6 T11 T11 L4 L4 −20.6 −20.6 T9 L3 −14.8
10 T11 T12 L4 L4 10.2 11.0 T12 T12 L4 L4 10.9 10.9 T12 L3 10.8
11 T5 − L1 − −8.4 0 T7 T7 L2 L2 −4.2 −4.2 T1 T12 −7.2
12 T5 T5 L2 L1 13.5 8.7 T4 T4 L3 L3 9.3 9.3 T1 L2 11.1
13 T10 T10 L4 L4 15.1 14.0 T10 T10 L4 L4 14.4 14.4 T9 L5 13.5
14 T9 T9 L4 L4 −15.4 −12.1 T10 T10 L4 L4 −13.8 −13.8 T2 L5 −14.2
15 No scoliosis T4 T4 T12 T12 −7.4 −7.4 T4 T10 −7.7
16 T9 T11 L4 L4 −14.2 −15.0 T7 T7 L4 L4 −20.2 −20.2 T7 L4 −18.9
17 T1 T4 T7 T12 5.9 8.4 T2 T2 T12 T12 13.4 13.6 T2 T12 11.3
18 T7 T6 L1 L3 14.7 8.3 T6 T6 L4 L4 7.0 7.1 T9 L1 7.6
19 T11 T9 L5 L5 −6.9 −9.6 T4 T4 L5 L5 −11.5 −11.7 T2 L5 −12.4
20 T3 T2 T8 T11 7.1 8.5 T4 T4 T6 T6 8.8 8.5 T3 T6 9.8
21 T12 T10 L5 L4 11.1 9.9 C3 C3 L2 L2 15.3 16.2 T3 L3 13.8
22 T7 T7 L4 L4 12.9 13.0 T2 T2 L4 L4 16.8 16.9 T3 L3 18.1
23 T8 T8 L3 L4 11.3 13.8 T11 T11 L5 L5 15.5 15.6 T11 L3 9.4
24 T7 T9 L4 L4 −14.1 −14.0 T5 T5 L5 L5 −21.8 −22.1 T2 L3 −13.5
25 T9 T8 L3 L3 −16.2 −14.5 T6 T6 L3 L3 −10.3 −9.9 T11 L2 −10.7
26 T8 T8 L3 L3 −8.2 −8.0 T7 T7 L2 L2 −6.4 −6.3 T2 L2 −5.6
27 T5 T5 L3 L4 −17.3 −17.3 T5 T5 L3 L3 −15.8 −15.0 T1 L3 −15.2
28 T11 T11 L4 L3 18.4 15.7 T12 T12 L4 L4 22.4 23.1 T12 L4 16.6
29 No scoliosis T3 T3 T10 T10 −5.2 −5.1 T2 L4 −6.6
30 T9 T9 L4 L4 −11.7 −9.9 T5 T5 L4 L4 −14.2 −14.1 T6 L4 −8.7
31 T11 T12 L4 L4 −6.9 −7.7 T3 T3 L1 L1 10.0 10.1 L1 L4 −7.4
32 T11 T10 L4 L4 −5.9 −6.0 T5 T5 L5 L5 −6.2 −7.1 T1 L3 −9.1
33 T9 T9 L4 L4 −16.7 −16.0 T8 T8 L4 L4 −14.0 −13.3 T11 L4 −12.5
34 T12 T12 L4 L4 10.3 12.1 T12 T12 L4 L4 10.0 9.7 T1 L3 9.9
35 T5 T7 L1 L2 15.7 16.4 T5 T5 L1 L1 17.0 17.9 T5 L1 13.8
Note. -e “no scoliosis” or empty data indicate that the result of manually measurement is no scoliosis. -eir Cobb angle is assigned to be 0 in statistical
analysis. Each orthopedist measures the same X-ray spinal images twice in different times (t� 1 or t� 2).

Table 5: -e statistical data of a MBR Cobb measurement.

Variable Observer (expert) Observer (novice) MBR (proposed method)
Cobb’s angle −0.703± 12.552 (−19.8 to 18.4) −0.106± 13.582(−21.8 to 22.4) −0.694± 12.091(−20.1 to 18.1)
Intrareliability (ICC) 0.936 (expert-novice) 0.9710 (expert-MBR) 0.940 (novice-MBR)
Pearson correlation coefficient 0.944 (expert-novice) 0.971 (expert-MBR) 0.948 (novice-MBR)
Data are presented as mean± standard deviation with 95% confidence interval and compared using the one-way analysis of variance (ANOVA).

Table 6: -e Spearman rank-order correlation of different data pair of Cobb measurement.

Data pair of Cobb measurement Expert-novice pair Expert-MBR pair Novice-MBR pair
Spearman rank-order correlation (α< 0.05) 0.889, p � 0.000 (reject H0) 0.891, p � 0.000 (reject H0) 0.928, p � 0.000 (reject H0)
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original U-Net, Residual U-Net, and Dense U-Net. -e
segmentation results of Residual U-Net were superior to the
other two methods. Its average Dice similarity coefficient
reached up to 0.951. -e one-way ANOVA analysis of our
proposed MBR measurement of Cobb angle and results by
manual computation by two clinical doctors indicated that
the results do not have any significant differences.-e test of
Spearman rank-order correlation showed that the MBR
results of our proposed method were highly correlated to
manual assessment by clinical doctors.

-e main contribution of this study is a method that
provides a reliable and convenient measurement of the Cobb
angle for clinical applications. MBR measurement only
focuses on the computation of Cobb angle for spine cur-
vature. Other interesting features such as the length of
central spinal curve (CSC) and the ratio of curvature to CSC
are also proven effective measurements for assessing the
severity of scoliosis [34]. In addition, many novel studies
now build a three-dimensional model of the spinal volume
to assist in more accurate detection and measurement of
spine curvature [18, 40]. As such, current and future studies
are exploring various promising methods to develop more
accurate measurement of the Cobb angle of the spine to
assess scoliosis.
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