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Background: The diphthamide (DPH) gene family is a group of genes that encode a set of enzymes that 
specifically modify eukaryotic elongation factor 2 (eEF2). Although previous studies have shown a link 
between the DPH genes (DPHs) and carcinogenesis, it is still unknown how the DPHs affect hepatocellular 
carcinoma (HCC). This study aimed to describe the expression, clinical significance, and potential 
mechanisms of DPHs in HCC.
Methods: Real-time quantitative polymerase chain reaction (RT-qPCR), Genotype-Tissue Expression 
(GTEx), and The Cancer Genome Atlas (TCGA) databases were utilized to research the expression of DPHs 
in HCC. The relationship between the expression of DPHs and the clinicopathological characteristics of HCC 
patients was investigated using TCGA data, and their diagnostic value was evaluated using receiver operating 
characteristic (ROC) curves and their prognostic value was analyzed using Kaplan-Meier curves and univariate 
and multivariate Cox regression analyses. Potential reasons for the upregulation of DPH2 and DPH3 (DPH2,3) 
expression in HCC were analyzed using multiple databases. Additionally, this study also explored the potential 
biological functions of DPH2,3 in HCC via gene sets enrichment analysis (GSEA). Correlation analysis of 
DPH2,3 expression with immune-related genes and immune checkpoints was performed using Spearman’s 
correlation analysis, and single-sample GSEA was used to assess the distribution of tumor-infiltrating immune 
cell types.
Results: DPH1,7 expression was downregulated in tumor tissues while DPH2,3,5,6 expression was 
upregulated and showed a similar expression pattern in HCC. The results of the ROC analysis suggested 
that DPHs had valuable diagnostic properties in HCC. Kaplan-Meier analysis demonstrated that DPH2,3,7 
had prognostic predictive value in HCC. Furthermore, univariate and multivariate Cox regression suggested 
that DPH2,3 was an independent predictive factor for HCC. GSEA analysis revealed that DPH2,3 might be 
tightly associated with Pathways in cancer, cell cycles, Fc gamma R mediated phagocytosis, etc. Additionally, 
DPH2,3 expression and numerous immune-related genes showed a positive connection, including 
chemokines receptor genes, immunosuppressive genes, chemokines genes, human leukocyte antigen (HLA) 
genes, and immunostimulatory genes. Further analysis of the association between 24 immune infiltrating 
cells and DPH2,3 revealed the greatest negative correlation between natural killer (NK) cells and Th17 cells, 
but the greatest positive correlation with Th2 cells.
Conclusions: DPHs significantly influence the development and progression of HCC. DPH2,3 has 
significant diagnostic and prognostic potential and may be a promising target for immunotherapy.
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Introduction

Hepatocellular carcinoma (HCC) accounts for a large 
majority of liver cancer cases, and it is one of the leading 
causes of cancer-related deaths worldwide (1,2). Sadly, only 
18% of HCC patients survive for at least 5 years, which 
indicates a poor prognosis (3). There are several treatment 
options available for individuals with HCC, such as surgical 
resection and liver transplantation, as well as transarterial, 
radiotherapy, and percutaneous ablation. However, systemic 
therapy has become the preferred treatment for those with 
intermediate to advanced disease or individuals who are not 
eligible for local treatment (4). Long-term survival of more 
than a year is still unusual, although systemic medication 
therapy has lately given hope for the treatment of HCC 

patients a new lease of life (5). Immunotherapy is crucial 
in treating HCC and can synergize with other treatments 
(6-8). Biomarkers play a vital role in precision medicine by 
helping to identify the most effective treatment options (4,9). 
Therefore, novel biomarker studies are essential for early 
detection, treatment, and prognosis follow-up of HCC.

The diphthamide (DPH) gene family members, including 
DPH1, DPH2, DPH3, DPH5, DPH6, and DPH7, produce 
enzymes that play a crucial role in creating diphthamide. 
Diphthamide is a modified form of histidine that is only 
found in eukaryotic elongation factor 2 (eEF2). These 
post-translational modifications are critical in ensuring 
the accuracy and efficiency of the translation process (10).  
However, diphthamide is the target of pseudomonas 
exotoxin and diphtheria  toxin ADP-ribosylat ion, 
halting protein synthesis and causing cell death (11-13). 
The “active state” of diphthamide directly affects the 
immunotoxicity of tumor cells, in which the DPH genes 
(DPHs) play an indispensable role (14). Studies have shown 
that eEF2 overexpression promotes the proliferation, 
migration, and invasion of a wide range of tumors (15) 
and may be a potential target for drug therapy (16).  
Recent studies have shown that DPH1  deletion or 
deletion of diphthamide inhibits the development of 
N-diethylnitrosamine (DEN)-induced periportal HCC, 
but leads to an increase in K19-positive periportal stem, 
progenitor cells, which nevertheless promotes Pten, Trp53-
deficient HCC development (17). In addition, colorectal 
cancer cells affect their proliferation and invasion through 
the MiR218-5p, DPH1 axis (18). Mutations in the DPH3 
gene have been associated with basal cell carcinoma 
(19,20). And fusions of the DPH7 and PTP4A3 genes 
may be associated with tumor grading and recurrence in 
endometrial cancer (21). However, the specific role of 
DPHs in HCC is unclear.

Our primary objective was to analyze the expression 
patterns of DPHs in HCC. Moreover, we investigated their 
diagnostic and prognostic value in HCC patients and their 
associated clinical features. Our research revealed that 
DPH2 and DPH3 (DPH2,3) are independent prognostic 
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factors for HCC patients. We also delved into the 
methylation and mutation of DPH2,3 in HCC to determine 
the reasons for its increased expression. After analyzing 
the reasons for the increased expression of DPH2,3, we 
conducted a gene sets enrichment analysis (GSEA) and 
discovered a potential connection between DPH2,3 and the 
tumor microenvironment (TME). We further examined the 
role of DPH2,3 in TEM by studying its relationship with 
immune-related genes and immune-infiltrating cells. The 
research suggests a strong link between HCC and DPHs, 
with DPH2,3 being a possible target for treating HCC. 
The theoretical basis of our current work contributes to the 
development of a new effective molecular pathway for the 
treatment of HCC. We present this article in accordance 
with the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-147/rc).

Methods

Ethical statement

The research conducted has adhered to the moral guidelines 
set in the Declaration of Helsinki (as revised in 2013) by the 
World Medical Association while acquiring and classifying 
all human tissue samples. The study was approved by The 
Medical Ethics Committee of the Affiliated Hospital of North 
Sichuan Medical College (protocol No. 2023ER153-1). All 
patients who participated in the study provided written 
informed consent before the collection of tissue samples.

Clinical samples

All tissue samples were collected in November 2019 and 
June 2020. Patients over 18 who had undergone surgical 
resection of the primary tumor and were confirmed to have 
HCC through pathology assessment were included. All 
tissue samples were obtained from the Affiliated Hospital 
of North Sichuan Medical College’s Department of 
Hepatobiliary Surgery. None of the study participants had 
received any radiation, chemotherapy, or immunotherapy 
therapies before surgery. Two independent pathologists 
independently verified the identification of each material 
to guarantee correct post-surgical diagnosis. The tissue 
samples were immediately submerged in liquid nitrogen 
following collection and were stored at −80 ℃. All tissue 
samples are stored at the Hepato-Biliary-Pancreatic-
Intestinal Disease Department of the North Sichuan 
Medical College.

Cell culture

HCC cell l ines, including Huh7, Hep3B, HepG2, 
SMMC7721, HCCLM3, MHCC97L, and MHCC97H, 
were obtained from the Cell Bank of the Chinese Academy 
of Sciences (Shanghai, China). The Huh7, Hep3B, 
HepG2, HCCLM3, MHCC97L, and MHCC97H cell 
lines were cultured in DMEM (VivaCell, Shanghai, China) 
supplemented with 10% fetal bovine serum (VivaCell). 
While the SMMC7721 cell line was cultured in RPMI-1640 
medium (VivaCell) supplemented with 10% fetal bovine 
serum. They were cultured at 37 ℃ and 5% CO2 under 
recommended conditions. Only the cells in the logarithmic 
growth phase were collected for subsequent experiments.

Real-time quantitative polymerase chain reaction (RT-qPCR)

Total RNAs were isolated from the samples using Trizol 
reagent (Invitrogen, Waltham, MA, USA). The RNA 
was then extracted with chloroform, isopropanol, and 
alcohol. The extracted RNA was reverse transcribed to 
complementary DNA (cDNA) using a HiScript III RT 
SupperMix for Qpcr (+gDNA wiper) kit (Vazyme Biotech, 
Nanjing, China). RT-qPCR was performed using Taq Pro 
Universal SYBR qPCR Master Mix kit (Vazyme Biotech). 
The relative expression of DPHs mRNA was calculated 
using the delta-delta Cq (2−∆∆Ct) method with GAPDH as 
the internal control. The specific primers (Sangon Biotech, 
Chengdu, China) used for amplifying each gene are listed in 
Table 1.

Data sources and processing

We obtained RNA-seq data in transcripts per-million 
(TPM) format for The Cancer Genome Atlas (TCGA) 
and Genotype-Tissue Txpression (GTEx) from the 
UCSC XENA (https://xenabrowser.net/) using the Toil  
process (22). We extracted (pan-cancer) data corresponding 
to TCGA and the corresponding normal tissue data in 
GTEx. The full names and abbreviations of the pan-cancers 
are shown in Table 2. We downloaded RNA-seq data from 
the TCGA database (https://www.cancer.gov/ccg/research/
genome-sequencing/tcga) for the STAR process of the 
TCGA-LIHC project and extracted data in TPM format 
and clinical data. Depending on the characteristics of the 
data format, we selected appropriate statistical methods 
for analysis using R packages “stats” (version 4.2.1) and 
“car” (version 3.1.0), and visualized the data using the 

https://tcr.amegroups.com/article/view/10.21037/tcr-24-147/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-147/rc
https://xenabrowser.net/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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ggplot2 (version 3.3.6) package. To ensure accuracy and 
consistency, we transformed these values by log2(TPM  
+ 1) (22). We retrieved immunohistochemistry (IHC) and 
immunofluorescence images from the Human Protein Atlas 
(HPA) database (https://www.proteinatlas.org/) to assess 
expression levels and subcellular localization of DPHs 
proteins in HCC (23). Additionally, Information about 
DPHs protein expression was obtained from the University 
of Alabama Cancer database (UALCAN) (https://ualcan.
path.uab.edu/index.html) (24).

The relationship between clinicopathological characteristics 
and DPHs mRNA

We analyzed the clinical data from 374 HCC patients in 

Table 1 The sequences of RT-qPCR primers

Primer name Sequence

DPH1

Forward CTGAAAGCCGAGTATCGTGTG

Reverse TGTTCTCTGGATAGGACTTTGCT

DPH2

Forward CCTGGACGGAGTGTACGAG

Reverse AGCATCTCCCAATAGCTGGTC

DPH3

Forward GCAGTGTTTCATGACGAGGTG

Reverse TTGCCACGTCTTCCCCATTC

DPH5

Forward ATGCTTTATCTCATCGGGTTGG

Reverse GCAGCGTCTAACAACTTCCAG

DPH6

Forward TGCTGGGCATCAGATCGTTG

Reverse GAGGGGAAGAGCCATTGCTT

DPH7

Forward AGCCTCAGGTCCGTTTAGG

Reverse CCTCGACCAGAGGGTGAATAG

GAPDH

Forward GGAGCGAGATCCCTCCAAAAT

Reverse GGCTGTTGTCATACTTCTCATGG

RT-qPCR, real-time quantitative polymerase chain reaction; 
DPH, diphthamide.

Table 2 Full names and abbreviations of the 33 cancers in the 
TCGA database

Abbreviations Full names

ACC Adrenocortical carcinoma

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and 
endocervical adenocarcinoma 

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid neoplasm diffuse large B-cell 
lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma

KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute myeloid leukemia

LGG Lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

TGCT Testicular germ cell tumor

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma

UVM Uveal melanoma

TCGA, The Cancer Genome Atlas.

https://www.proteinatlas.org/
https://ualcan.path.uab.edu/index.html
https://ualcan.path.uab.edu/index.html
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the TCGA database, to investigate the correlation between 
DPHs mRNA expression levels and clinicopathological 
characteristics, such as T, N, M stage, pathologic stage, 
gender, age, height, body mass index (BMI), prothrombin 
time, and vascular invasion. We used R and appropriate 
statistical methods to analyze the relationship between the 
expression of DPH genes and relevant clinical data.

The diagnostic and prognostic value of DPHs in HCC

We carried out an in-depth study to assess the diagnostic 
and prognostic significance of DPHs in HCC using data 
obtained from the TCGA. We used receiver operating 
characteristic (ROC) analysis with the R package “pROC” 
(version 1.18.0) and calculated the area under the curve 
(AUC). Next, we divided the cases into two groups (high-
expression and low-expression groups) based on the median 
expression values of DPHs mRNA. We used the “survival” 
(version 3.3.1) R package to perform proportional risk 
hypothesis testing and fit survival regressions. This allowed 
us to make a comparison between the overall survival 
(OS) of the two groups. We then executed proportional 
risk hypothesis testing using the R package “survival” 
(version 3.3.1) and “rms” (version 6.3.0). We used TNM 
stage, pathologic stage, gender, age, and DPHs as statistical 
variables for Cox regression analysis (when the univariate 
analysis met P<0.1, it was entered into a multivariate COX 
to construct the model) (25).

Mutation and DNA methylation analysis of DPH2,3 in HCC

The analysis of mutations and gene amplifications in 1348 
HCC samples was conducted using the cBioPortal database 
(https://www.cbioportal.org/). The samples were sourced 
from reputable institutions such as “Peking University, 
Cancer Cell 2019”, “INSERM, Nat Genet 2015”, “AMC, 
Hepatology 2014”, “RIKEN, Nat Genet 2012”, “MERiC, 
Basel, Nat Commun, 2022”, “MSK, Clin Cancer Res 2018”, 
and “TCGA Firehose Legacy”, were utilized for the analysis 
of mutations and gene amplifications (26). We retrieved 
mutations and copy number alterations in the DPH2,3 genes 
in HCC from the cBioPortal database. Furthermore, we used 
the UALCAN database to examine the promoter methylation 
status of DPH2,3 in HCC (24). Additionally, MethSurv 
(https://biit.cs.ut.ee/methsurv/) was utilized for prognostic 
analysis related to the methylation probes of DPH2,3 (27).

GSEA of DPH2,3 in HCC

We used GSEA (28) to explore the mechanism behind the 
high expression of DPH2,3 in HCC (29). First, line ID 
conversion was performed using the R package “rg.Hs.eg.
db”, followed by GSEA analysis using the “clusterProfiler” 
package (version 4.4.4) (30). The significance thresholds 
were set at P<0.05 and q<0.25. From the MSigDB 
collection (https://www.gsea-msigdb.org/gsea/msigdb), 
we selected “c2.cp.all.v2022.1.Hs.symbols.gmt” as the 
reference gene set for pathway analysis. Finally, we chose 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway from the MSigDB collection for presentation.

Relationship analysis between immune-related genes and 
immune cell infiltration in DPH2,3

We performed correlation analyses of the variables in 
the data and the results were visualised in heatmaps and 
scatterplot to investigate the correlation between DPH2,3  
and immune-related genes. We analyzed the immune 
infiltration of DPH2,3 based on the “ssGSEA” algorithm 
provided in the R package “GSVA” (version 1.46.0) in 
combination with 24 markers of immune cells provided in 
the immunity article (31,32).

Statistical analysis

The data was analyzed and visualized using R (version 4.2.1) 
and GraphPad (version 8.0.1). We conducted an analysis of 
the expression of DPHs in various types of cancer, including 
HCC. To do this, we used the Wilcoxon rank sum test to 
compare gene expression levels. For two-sample data, we 
utilized paired t-tests, and for multiple-sample data, we 
used one-way ANOVA. In order to assess the correlation 
between the gene expression levels of DPHs and clinical 
characteristics, we chose the appropriate statistical methods 
based on the characteristics of the data. To predict the 
prospects of DPHs as diagnostic biomarkers, we performed 
ROC curve analysis with the pROC R package. We also 
analyzed the OS of DPHs in HCC using the Log-rank test. 
To study the correlation of DPH2,3 with immune-related 
genes and immune cells, we used Spearman. Additionally, 
we compared the difference in immune infiltrating cells 
between high and low DPH2,3 expression groups using the 
Wilcoxon rank sum test. We defined P<0.05 as statistically 
significant. 

https://www.cbioportal.org/
https://biit.cs.ut.ee/methsurv/
https://www.gsea-msigdb.org/gsea/msigdb
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Results

Patterns of DPHs expression in pan-cancer and HCC

We conducted a thorough pan-cancer analysis of the DPHs 
using the TCGA-GTEx pan-cancer dataset, looking at 
the mRNA expression levels in 33 distinct cancer types. 
Our findings demonstrated that DPH1,7 was considerably 
downregulated in 20 tumors, including adrenocortical 
carcinoma (ACC), breast invasive carcinoma (BRCA), 
and liver hepatocellular carcinoma (LIHC). However, 
DPH1,7 was overexpressed in head and neck squamous 
cell carcinoma (HNSC), lymphoid neoplasm diffuse 
large B-cell lymphoma (DLBC), and cholangiocarcinoma 
(CHOL) (Figure 1A,1B). DPH2,3,5,6 showed significant 
overexpression in a broad variety of cancer types, including 
17 malignancies such as BRCA, CHOL, and LIHC, 
except acute myeloid leukemia (LAML) and kidney 
chromophobe (KICH) (Figure 1C-1F). These data implied 

that DPH2,3,5,6, which consistently overexpressed across 
a broad range of malignancies, may be crucial in the 
formation of carcinogenesis and tumors. On the other hand, 
DPH1,7 was downregulated in a variety of cancers.

TCGA database RNA-seq data paired analysis revealed 
that DPHs were considerably increased in HCC (Figure 2A).  
DPH2,3,5,6 were significantly overexpressed in HCC, 
according to an unpaired analysis, while DPH1,7 showed 
significantly downregulated expression (Figure 2B). 
DPH2,3,5,6 protein were significantly increased in HCC, 
while DPH1,7 protein were expressed at lower levels, 
according to IHC data from the HPA database. The 
UALCAN database displays the total protein expression of 
the DPHs, with DPH1,2,3,5 expression being up-regulated 
in HCC and DPH7 expression being down-regulated (Figure 
2C). Overall, between normal and HCC tissues, there 
were considerable differences in the mRNA and protein 
expression of DPHs.

Figure 1 The expression of DPHs in pan-cancer. (A) DPH1; (B) DPH7; (C) DPH2; (D) DPH3; (E) DPH5; (F) DPH6. *, P<0.05; **, P<0.01; 
***, P<0.001. Blue indicates that normal tissue exhibits higher levels of expression than cancerous tissue, whereas red indicates that cancerous 
tissue exhibits higher levels of expression than normal tissue in the X-axis typeface. DPHs, DPH genes; TPM, transcripts per-million; DPH, 
diphthamide.
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Figure 2 DPHs mRNA and protein expression in HCC. (A,B) Expression of DPHs mRNA in HCC and normal tissues (paired and 
unpaired); (C) protein expression and immunofluorescence localization data of DPHs in HPA and UALCAN, CPTAC databases (HPA: 
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immunohistochemistry ×40 images are presented). DPH1 (normal tissue: https://www.proteinatlas.org/ENSG00000108963-DPH1/
tissue/liver; HCC: https://www.proteinatlas.org/ENSG00000108963-DPH1/pathology/liver+cancer); DPH2 (normal tissue: https://www.
proteinatlas.org/ENSG00000132768-DPH2/tissue/liver; HCC: https://www.proteinatlas.org/ENSG00000132768-DPH2/pathology/
liver+cancer); DPH3 (normal tissue: https://www.proteinatlas.org/ENSG00000154813-DPH3/tissue/liver; HCC: https://www.proteinatlas.
org/ENSG00000154813-DPH3/pathology/liver+cancer); DPH5 (normal tissue: https://www.proteinatlas.org/ENSG00000117543-DPH5/
tissue/liver; HCC: https://www.proteinatlas.org/ENSG00000117543-DPH5/pathology/liver+cancer); DPH6 (normal tissue: https://www.
proteinatlas.org/ENSG00000134146-DPH6/tissue/liver; HCC: https://www.proteinatlas.org/ENSG00000134146-DPH6/pathology/
liver+cancer); DPH7 (normal tissue: https://www.proteinatlas.org/ENSG00000148399-DPH7/tissue/liver; HCC: https://www.proteinatlas.
org/ENSG00000148399-DPH7/pathology/liver+cancer). Subcellular location images are presented. DPH1: https://www.proteinatlas.org/
ENSG00000108963-DPH1/subcellular; DPH2: https://www.proteinatlas.org/ENSG00000132768-DPH2/subcellular; DPH3: https://www.
proteinatlas.org/ENSG00000154813-DPH3/subcellular; DPH5: https://www.proteinatlas.org/ENSG00000117543-DPH5/subcellular; 
DPH6: https://www.proteinatlas.org/ENSG00000134146-DPH6/subcellular; DPH7: https://www.proteinatlas.org/ENSG00000148399-
DPH7/subcellular. ns, P≥0.05; *, P<0.05; ***, P<0.001. DPHs, DPH genes; HCC, hepatocellular carcinoma; HPA, Human Protein Atlas; 
UALCAN, The University of Alabama Cancer database; CPTAC, Clinical Proteomic Tumor Analysis Consortium; TPM, transcripts per-
million; DPH, diphthamide.

The relationship between DPHs mRNA and 
clinicopathological features

Based on clinical data from TCGA, such as T stage  
(Figure 3A), N stage (Figure 3B), histological grade (G1, 
G2, G3, G4) (Figure 3C), pathological stage (stage I, 
II and stage III, IV) (Figure 3D), and OS (Figure 3E), 
the expression of DPHs were evaluated in HCC and 
normal liver tissue. Our research showed that HCC 
tissues exhibited significantly higher expression levels of 
DPHs compared to normal liver tissue. Analysis of the 
clinicopathological correlations between DPHs found 
interesting correlations. Specifically, DPH2 exhibited 
correlations with T stage (P=0.005), race (P=0.03), 
gender (P=0.001), histological grade (P=0.008), and OS 
(P=0.01). DPH3 demonstrated correlations with weight 
(P=0.004), histological grade (P=0.001), alpha-fetoprotein 
(AFP) levels (P<0.001), and OS (P=0.01) (Table 3 and  
Table S1). Furthermore, DPH5 displayed correlations 
with T stage (P=0.005), race (P=0.02), histological 
grade (P<0.001), and vascular invasion (P=0.02). DPH6 
showed correlations with histological grade (P<0.001), 
race (P=0.001), weight (P<0.001), and prothrombin time 
(P=0.006). Lastly, DPH7 exhibited correlations with weight 
(P<0.001), age (P=0.02), height (P=0.008), BMI (P=0.03), 
histological grade (P<0.001), AFP (P<0.001) and vascular 
infiltration (P=0.02) (Table 4 and Table S1).

Diagnostic and predictive value of DPHs in HCC

We evaluated the ability of DPHs as diagnostic indicators 
of HCC using ROC analysis. The results showed that 

DPHs had considerable diagnostic value for HCC, such 
as DPH1 (AUC =0.623, 95% CI: 0.562–0.685; Figure 4A); 
DPH2 (AUC =0.950, 95% CI: 0.923–0.977; Figure 4B); 
DPH3 (AUC =0.893, 95% CI: 0.855–0.932; Figure 4C); and 
DPH5 (AUC =0.924, 95% CI: 0.895–0.953, Figure 4D); 
DPH6 (AUC =0.883, 95% CI: 0.846–0.919; Figure 4E); 
DPH7 (AUC =0.962, 95% CI: 0.941–0.983; Figure 4F). 
We separated the HCC patient data from TCGA into high 
and low-expression groups based on median expression 
levels to further investigate the predictive significance of 
DPHs in HCC. Kaplan-Meier survival curves showed that 
patients had worse OS with high expression levels of DPH2 
(HR =1.84, 95% CI: 1.30–2.61, P<0.001; Figure 4G) and 
DPH3 (HR =1.81, 95% CI: 1.27–2.57, P<0.001; Figure 4H). 
However, the OS of HCC patients was higher in those with 
high DPH7 expression levels (HR =1.46, 95% CI: 1.03–2.07, 
P=0.03; Figure 4I), DPH1,5,6 did not affect the prognosis of 
HCC patients (Figure 4J-4L).

To further explore the diagnostic value of DPH2,3 
in HCC, we performed univariate and multivariate Cox 
regression analyses using RNA-seq data and clinical 
information from the TCGA database.

We conducted univariate and multivariate Cox regression 
analyses using RNA-seq data and clinical information from 
the TCGA database to better understand the predictive 
importance of DPHs in HCC. The variables considered 
in our analysis were tumor node metastasis (TNM) stage, 
histological grade, gender, age, and DPH family gene 
expression levels. Our univariate Cox regression analysis 
showed a strong correlation between the expression 
of DPH2 (HR =1.947, 95% CI: 1.371–2.766, P<0.001;  

https://www.proteinatlas.org/ENSG00000108963-DPH1/tissue/liver
https://www.proteinatlas.org/ENSG00000108963-DPH1/tissue/liver
https://www.proteinatlas.org/ENSG00000108963-DPH1/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000132768-DPH2/tissue/liver
https://www.proteinatlas.org/ENSG00000132768-DPH2/tissue/liver
https://www.proteinatlas.org/ENSG00000132768-DPH2/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000132768-DPH2/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000154813-DPH3/tissue/liver
https://www.proteinatlas.org/ENSG00000154813-DPH3/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000154813-DPH3/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000117543-DPH5/tissue/liver
https://www.proteinatlas.org/ENSG00000117543-DPH5/tissue/liver
https://www.proteinatlas.org/ENSG00000117543-DPH5/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000134146-DPH6/tissue/liver
https://www.proteinatlas.org/ENSG00000134146-DPH6/tissue/liver
https://www.proteinatlas.org/ENSG00000134146-DPH6/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000134146-DPH6/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000148399-DPH7/tissue/liver
https://www.proteinatlas.org/ENSG00000148399-DPH7/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000148399-DPH7/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000108963-DPH1/subcellular
https://www.proteinatlas.org/ENSG00000108963-DPH1/subcellular
https://www.proteinatlas.org/ENSG00000132768-DPH2/subcellular
https://www.proteinatlas.org/ENSG00000154813-DPH3/subcellular
https://www.proteinatlas.org/ENSG00000154813-DPH3/subcellular
https://www.proteinatlas.org/ENSG00000117543-DPH5/subcellular
https://www.proteinatlas.org/ENSG00000134146-DPH6/subcellular
https://www.proteinatlas.org/ENSG00000148399-DPH7/subcellular
https://www.proteinatlas.org/ENSG00000148399-DPH7/subcellular
https://cdn.amegroups.cn/static/public/TCR-24-147-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-147-Supplementary.pdf


Gao et al. DPH gene family in HCC 4070

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(8):4062-4084 | https://dx.doi.org/10.21037/tcr-24-147

Figure 3 Correlation between DPHs expression and clinicopathologic features in HCC. Violin plots of DPHs expression were summarized 
according to (A) T staging, (B) N staging, (C) histologic grade, (D) pathologic stage, and (E) OS event. ns, P≥0.05; *, P<0.05; **, P<0.01; ***, 
P<0.001. DPHs, DPH genes; HCC, hepatocellular carcinoma; OS, overall survival; TPM, transcripts per-million; DPH, diphthamide.
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Table 3 Clinicopathological characterization of DPH1,2,3 in HCC patients from TCGA database

Characteristics
DPH1 expression, n (%) DPH2 expression, n (%) DPH3 expression, n (%)

Low (N=185) High (N=186) P value Low (N=185) High (N=186) P value Low (N=185) High (N=186) P value

Pathologic T stage (N=368) 0.91 0.005 0.92 

T1 90 (24.5) 91 (24.7) 103 (28) 78 (21.2) 90 (24.5) 91 (24.7)

T2 & T3 & T4 94 (25.5) 93 (25.3) 79 (21.5) 108 (29.3) 92 (25) 95 (25.8)

Histologic grade (N=366) 0.82 0.008 0.001

G1 & G2 115 (31.4) 117 (32) 127 (34.7) 105 (28.7) 131 (35.8) 101 (27.6)

G3 & G4 68 (18.6) 66 (18) 54 (14.8) 80 (21.9) 52 (14.2) 82 (22.4)

Race (N=359) 0.20 0.03 0.58

Asian 83 (23.1) 75 (20.9) 67 (18.7) 91 (25.3) 74 (20.6) 84 (23.4)

Black or AA & 
White

92 (25.6) 109 (30.4) 109 (30.4) 92 (25.6) 100 (27.9) 101 (28.1)

Weight (N=344) 0.73 0.08 0.004

≤70 kg 91 (26.5) 91 (26.5) 84 (24.4) 98 (28.5) 78 (22.7) 104 (30.2)

>70 kg 78 (22.7) 84 (24.4) 90 (26.2) 72 (20.9) 95 (27.6) 67 (19.5)

AFP (N=278) 0.62 0.50 <0.001

≤400 ng/mL 109 (39.2) 104 (37.4) 108 (38.8) 105 (37.8) 128 (46) 85 (30.6)

>400 ng/mL 31 (11.2) 34 (12.2) 36 (12.9) 29 (10.4) 20 (7.2) 45 (16.2)

OS event 0.26 0.01 0.01

Alive 115 (31) 126 (34) 132 (35.6) 109 (29.4) 132 (35.6) 109 (29.4)

Dead 70 (18.9) 60 (16.2) 53 (14.3) 77 (20.8) 53 (14.3) 77 (20.8)

HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; AA, African American; AFP, alpha-fetoprotein; OS, overall survival; 
DPH, diphthamide.

Figure 5) and DPH3 (HR =1.828, 95% CI: 1.287–2.597, 
P<0.001; Figure 5) with OS. Furthermore, our multivariate 
Cox regression analysis indicated that DPH2 (HR =1.738, 
95% CI: 1.093–2.763, P=0.02; Figure 5) and DPH3 (HR 
= 1.833, 95% CI: 1.164–2.887, P=0.009; Figure 5) are 
independent predictors in HCC patients.

Methylation, mutation analysis, and GSEA of DPH2,3  
in HCC

To understand the reasons for the higher expression 
of DPH2,3 in HCC, we examined the mutations and 
methylation patterns associated with DPH2,3 in HCC. 
Only a very small proportion of the 1,348 HCC samples 
in the cBioPortal database had genetic alterations, 
including 0.4% for DPH2 and 0.3% for DPH3, and most 
of them were in the form of mutations and amplifications 
(Figure 6A,6B). Therefore, we propose that copy number 

amplification or mutation may not be the main cause of 
DPH2,3 overexpression in HCC.

According to data from the TCGA database, levels of 
DPH2,3 methylation in HCC were lower than those found 
in normal tissue (Figure 6C,6D). The MethSurv database 
revealed that the DPH2 probes Body-Island-cg05050882 
(HR =0.638, P=0.01; Figure 6E) and TSS1500-Island-
cg20577479 (HR =0.556, P<0.001; Figure 6F) showed a 
poor prognosis in the hypomethylated group. Similarly, the 
DPH3 probe 3’UTR-Open Sea-cg18650518 (HR =0.664, 
P=0.03; Figure 6G) demonstrated that the hypomethylation 
group had a poor prognosis. Based on these findings, we 
suggest that elevated DPH2,3 expression in HCC patients 
may be linked to hypomethylation levels, which could 
adversely impact their prognosis.

To investigate the mechanism of DPH2,3 in HCC, 
we performed a GSEA analysis. The results showed 
that DPH2 was positively correlated with 12 pathways, 
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Table 4 Clinicopathological characterization of DPH5,6,7 in HCC patients from TCGA database

Characteristics
DPH5 expression, n (%) DPH6 expression, n (%) DPH7 expression, n (%)

Low (N=185) High (N=186) P value Low (N=185) High (N=186) P value Low (N=185) High (N=186) P value

Pathologic T stage (N=368) 0.005 0.07 0.07 

T1 104 (28.3) 77 (20.9) 99 (26.9) 82 (22.3) 98 (26.6) 83 (22.6)

T2 & T3 & T4 80 (21.7) 107 (29.1) 85 (23.1) 102 (27.7) 84 (22.8) 103 (28)

Histologic grade (N=366) <0.001 <0.001 <0.001

G1 & G2 134 (36.6) 98 (26.8) 136 (37.2) 96 (26.2) 136 (37.2) 96 (26.2)

G3 & G4 49 (13.4) 85 (23.2) 48 (13.1) 86 (23.5) 45 (12.3) 89 (24.3)

Race (N=359) 0.02 0.001 0.07 

Asian 68 (18.9) 90 (25.1) 62 (17.3) 96 (26.7) 70 (19.5) 88 (24.5)

Black or AA & 
White

112 (31.2) 89 (24.8) 113 (31.5) 88 (24.5) 108 (30.1) 93 (25.9)

Weight (N=344) 0.23 <0.001 <0.001

≤70 kg 86 (25) 96 (27.9) 76 (22.1) 106 (30.8) 74 (21.5) 108 (31.4)

>70 kg 87 (25.3) 75 (21.8) 97 (28.2) 65 (18.9) 98 (28.5) 64 (18.6)

AFP (N=278) 0.67 0.054 <0.001

≤400 ng/mL 108 (38.8) 105 (37.8) 111 (39.9) 102 (36.7) 127 (45.7) 86 (30.9)

>400 ng/mL 31 (11.2) 34 (12.2) 25 (9) 40 (14.4) 14 (5) 51 (18.3)

OS event (N=371) 0.97 0.26 0.20 

Alive 120 (32.3) 121 (32.6) 115 (31) 126 (34) 126 (34) 115 (31)

Dead 65 (17.5) 65 (17.5) 70 (18.9) 60 (16.2) 59 (15.9) 71 (19.1)

HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; AA, African American; AFP, alpha-fetoprotein; OS, overall survival; 
DPH, diphthamide.

including cell cycle, DNA replication, homologous 
recombination, mismatch repair, pathogenic Escherichia coli  
infection, Fc gamma R mediated phagocytosis, P53 signaling 
pathway, gap junction, small cell lung cancer, pathways in 
cancer, neuroactive ligand receptor interaction and calcium 
signaling pathway (Figure 7A,7B), but with complement and 
coagulation cascades, peroxisome, peroxisome proliferators-
activated recepto (PPAR) signaling pathway, drug metabolism 
cytochrome P450, oxidative phosphorylation and 
metabolism of xenobiotics by cytochrome P450 (Figure 7C) 
were negatively correlated. DPH3 was positively correlated 
with MAPK signaling pathway, focal adhesion, small 
cell lung cancer, cytokine cytokine receptor interaction, 
pathways in cancer, Wnt signaling pathway, ECM 
receptor interaction, pathogenic Escherichia coli infection, 
gap junction, primary immunodeficiency, Fc Gamma R 
mediated phagocytosis, and cell cycle (Figure 7D,7E). and 
negatively correlated with drug metabolism cytochrome 

P450, metabolism of xenobiotics by cytochrome P450, 
peroxisome, oxidative phosphorylation, drug metabolism 
other enzymes and PPAR signaling pathway (Figure 7F) 
were negatively correlated. The above results suggest that 
DPH2,3 may be involved in the progression of HCC by 
influencing immune regulation, cell cycle, cancer pathways, 
and substance metabolism.

DPH2,3 is correlated to immune-related genes and 
immune cell infiltration

To investigate the immune action mechanism of DPH2,3, 
we analyzed its association with various types of immunity, 
including immunosuppressive, immunostimulatory, human 
leukocyte antigen (HLA), chemokine, and chemokine 
receptor genes. Our analysis showed a positive correlation 
between DPH2,3 and most of the immune-related genes 
(Figure 8A). Additionally, we studied the correlation 
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Figure 4 Diagnostic and prognostic value of DPHs in HCC. (A-F) ROC analysis indicates that DPHs expression has a good diagnostic value 
in HCC. (G-L) Kaplan-Meier curves showed the relationship between DPHs expression and OS, and the results indicated that the DPH2,3,7 
high expression group had a worse prognosis. DPHs, DPH genes; HCC, hepatocellular carcinoma; ROC, receiver operating characteristic; 
OS, overall survival; TPR, true positive rate; FPR, false positive rate; AUC, area under curve; CI, confidence interval; HR, hazard ratio; 
DPH, diphthamide.
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Figure 5 Univariate Cox regression analyses showed that DPH2,3 was significantly associated with OS, and multivariate Cox regression analyses 
showed that DPH2,3 was an independent prognostic factor. OS, overall survival; HR, hazard ratio; CI, confidence interval; DPH, diphthamide.

between DPH2,3 and immune checkpoint molecules, such 
as PDCD1 (DPH2: R=0.16, P=0.002; DPH3: R=0.204, 
P<0.001; Figure 8B,8C), CD274 (DPH2: R=0.225, P<0.001; 
DPH3: R=0.126, P=0.02; Figure 8D,8E), CTLA-4 (DPH2: 
R=0.201, P<0.001; DPH3: R=0.253, P<0.001; Figure 8F,8G),  
LAG3 (DPH2: R=0.108, P=0.04; DPH3: R=0.118, P=0.02; 

Figure 8H,8I),  HAVCR  (DPH2 :  R=0.282, P<0.001; 
DPH3: R=0.276, P<0.001; Figure 8J,8K), and TIGIT 
(DPH2: R=0.155, P=0.003; DPH3: R=0.245, P<0.001;  
Figure 8L,8M), which are widely studied in HCC. Our 
analysis revealed a positive correlation between DPH2,3 and 
these immune checkpoint molecules.
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Figure 6 Analysis of DPH2,3 gene mutation and methylation status suggests that DPH2,3 high expression in HCC may be caused by 
its demethylation and affects its survival probability. (A,B) DPH2,3 gene mutation data of HCC patients from the cBioPortal database  
(*, not all samples are profiled). (C) DPH2 (**, P<0.01) and (D) DPH3 (***, P<0.001) methylation data from the TCGA database. Kaplan-
Meier survival analysis of (E) DPH2 Body-Island-cg05050882, (F) DPH2 TSS1500-Island-cg20577479, and (G) DPH3 3'UTR-Open_Sea-
cg18650518 methylation sites from the MethSurv. HCC, hepatocellular carcinoma; TCGA, the cancer genome atlas; CNA, copy-number 
alterations; HR, hazard ratio; LR, likelihood ratio; DPH, diphthamide.

We investigated the correlation between DPH2,3 
expression and 24 different types of immune cells in HCC. 
Our findings revealed that DPH2 was positively correlated 
only with Th2 cells (R=−0.345, P<0.001). On the other 
hand, it was negatively associated with Th17 cells (R=−0.309, 
P<0.001), CD8 T cells (R=−0.288, P<0.001), natural killer 
(NK) cells (R=−0.253, P<0.001), cytotoxic cells (R=−0.251, 
P<0.001), plasmacytoid dendritic cells (pDC) (R=−0.243, 
P<0.001), eosinophils (R=−0.233, P<0.001), dendritic cells 
(DC) (R=−0.232, P<0.001), mast cells (R=−0.197, P<0.001), 
neutrophils (R=−0.186, P<0.001), NK CD56dim cells 
(R=−0.176, P<0.001), and B cells (R=−0.171, P<0.001) 

(Figure 9A). On the other hand, DPH3 was positively 
correlated with T helper cells (R=0.242, P<0.001), Th2 cells 
(R=0.202, P<0.001), macrophages (R=0.182, P<0.001), and 
activated dendritic cells (aDC) (R=0.104, P=0.02). However, 
it was negatively associated with Th17 cells (R=−0.339, 
P<0.001), NK cells (R=−0.163, P=0.002), and neutrophils 
(R=−0.116, P=0.02) (Figure 9B).

Next, we wanted to understand how DPH2,3 expression 
affects immune cell infiltration in the TME. To this end, 
we divided HCC samples into two groups based on the 
expression level of DPH2,3-low-expression and high-
expression groups. Further, we calculated the enrichment 
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Figure 7 Enrichment plots from GSEA. Results of differential enrichment of gene in KEGG pathways with (A-C) DPH2 and (D-F) DPH3. 
GSEA, gene sets enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; DPH, diphthamide.
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Figure 8 DPH2,3 is significantly associated with immune-related genes. (A) Correlation of chemokine receptor genes, immunosuppressive 
genes, chemokine genes, human leukocyte antigen genes, and immunostimulatory genes with DPH2,3. DPH2,3 was positively correlated 
with (B,C) PD-1 (PDCD1), (D,E) PD-L1 (CD274), (F,G) CTLA-4, (H,I) LAG3, (J,K) HAVCR2 (TIM3) and (L,M) TIGIT. *, P<0.05; **, 
P<0.01; ***, P<0.001. HLA, human leukocyte antigen; DPH, diphthamide.
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scores of immune cells in both groups. The results showed 
that the higher scores in the DPH2 high-expression group 
were for Th2 cells, while the higher scores in the low-
expression group were for 14 immune cell types including 
Th17 cells, CD8 T cells, and NK cells. These differences 
were statistically significant (all P<0.05; Figure 9C). 
Similarly, the higher scores in the DPH3 high-expression 
group were for T helper cells and Th2 cells, whereas the 
higher scores in the DPH3 low-expression group were 
for 8 immune cell types including Th17 cells (all P<0.05;  
Figure 9D). Thus, our findings suggest that increased 
expression of DPH2,3 in HCC affects the infiltration of 
immune cells in the TME, which may contribute to the 
survival of tumor cells.

Validation of DPHs mRNA expression in HCC cell lines 
and tissue samples using RT-qPCR

To verify the expression of DPHs, we first analyzed the 
mRNA levels in tissues using RT-qPCR. We found that 
the expression of DPH1 (P<0.001; Figure 10A), DPH2 
(P<0.001; Figure 10B), DPH3 (P<0.001; Figure 10C), DPH5 
(P<0.001; Figure 10D), and DPH6 (P<0.001; Figure 10E),  
DPH7 (P<0.001; Figure 10F) was elevated in HCC. 
Next, we analyzed the mRNA levels in tissues using RT-
qPCR and found that DPH1 expression was highest in 
MHCC97-H cells and relatively low in HCC-LM3 cells 
(Figure 10G), DPH2 expression was highest in Hep-G2 
cells and relatively low in Hep3B cells (Figure 10H), DPH3 
expression was highest in Hep3B cells and relatively low 
in SMMC-7721 cells (Figure 10I), DPH5 had the highest 
expression in Hep-G2 cells and relatively low expression 
in HCC-LM3 cells (Figure 10J), DPH6 had the highest 
expression in Hep-G2 cells and relatively low expression in 
SMMC-7721 cells (Figure 10K), and DPH7 had the highest 
expression in Hep-G2 cells and relatively low expression in 
HCC-LM3 cells (Figure 10L). Overall, these results suggest 
that the DPH gene family is differentially expressed in HCC 
cells.

Discussion

Tumor cells promote their genesis and progression by 
reprogramming the translational process, in which high 
levels of protein synthesis play a key role in maintaining the 
metabolism of cancer cells (33). In this process, eEF2 plays 
an important role (34). It has been found that Huanglian 
Jiedu Tang (HLJDD) may promote the phosphorylation 

of eEF2 by activating the AMPK, mTOR pathway, 
which inhibits the activity of eEF2 and thus prevents the 
progression of HCC (35). Notably, overexpression and 
enhanced activity of eEF2 in cancer are closely associated 
with cancer cell progression as well as early tumor 
recurrence (36,37). DPHs encode a key group of enzymes 
involved in the synthesis of diphthamide, a specifically 
modified histidine presents only in eEF2. the status of 
diphthamide influences the active state of eEF2 (11). 
Nevertheless, there is a lack of detailed studies reported on 
the expression pattern and the possible functions of DPHs 
in HCC.

A recent study of HCC based on a mouse model found 
that reduced DPH1 expression was strongly associated with 
advanced disease and shorter survival time in patients with 
HCC. Nevertheless, DPH1 deletion alone does not seem 
to be sufficient to trigger hepatocarcinogenesis. Strikingly, 
while the downregulation of DPH1 limited translation 
prolongation rates, it increased total eEF2 levels (17). On 
the other hand, a study noted that the inactivation of either 
allele of DPH1 or DPH2 resulted in the accumulation of 
unmodified eEF2 and suggested that DPH1 and DPH2 
were critical base for the synthesis of diphtheria (38). 
Meanwhile, DPH2,3 was found to maintain DPH1[4Fe-4S] 
cluster activity and reducibility, thus ensuring diphthamide  
function (39). In addition, a study revealed that the 
development and recurrence of basal cell carcinoma are 
associated with a DPH3 promoter mutation, a mutation that 
also promotes migration and invasion of malignant cells (20). 
In our study, we observed up-regulation DPH1 and DPH2,3 
expression, which may be a key mechanism adopted by 
tumor cells to maintain a high level of protein synthesis. 
DPH5 serves as a key enzyme required for the second 
step in the process of diphthamide synthesis. Even in cases 
where diphthamide synthesis is hindered or incomplete, 
the presence of DPH5 ensures the accuracy of eEF2 during 
translation (12). Another study revealed that diphthamide 
deficiency syndrome triggered by DPH5 deficiency is 
a novel autosomal recessive Mendelian disease (40).  
In our study, the expression of DPH5 was significantly 
increased, which may be a key strategy adopted by tumor 
cells to ensure the accuracy of protein translation. In the 
third step of diphthamide synthesis, DPH6 and DPH7 are 
jointly involved in completing the process. Specifically, 
DPH7 is a methyl esterase that hydrolyzes the diphthyl 
ether generated by the methylation of DPH5, thus paving 
the way for the amidation of DPH6 to complete the final 
step of diphthamide synthesis (41). Strikingly, our study 
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Figure 9 DPH2,3 correlates with immune cell infiltration in HCC. Correlation between DPH2 (A) and (B) DPH3 expression and abundance 
of 24 tumor-infiltrating immune cell types. Enrichment scores of (C) DPH2 and (D) DPH3 high and low expression groups with 24 immune 
cell types. ns, P≥0.05; *, P<0.05; **, P<0.01; ***, P<0.001. HCC, hepatocellular carcinoma; NK, natural killer; pDC, plasmacytoid dendritic 
cell; aDC, activated dendritic cell; DPH, diphthamide.
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Figure 10 Expression of DPHs mRNA in HCC tissue samples and cell lines. (A-F) RT-qPCR analysis of DPHs mRNA expression in  
18 HCC and normal liver tissue pairs. (G-L) RT-qPCR analysis of DPHs mRNA expression in 7 HCC cell lines. ***, P<0.001. DPHs, DPH 
genes; HCC, hepatocellular carcinoma; RT-qPCR, real-time quantitative polymerase chain reaction; DPH, diphthamide.

showed an increase in DPH6 expression. However, the 
expression of DPH7 was unstable, which may be caused 
by tissue variability. This needs to be verified with more 
experiments. Unexpectedly, the expression of DPH7 was 
inconsistent with the expected results. This phenomenon 
may be related to its role as a potential negative regulator 
of RNA polymerase I (12). and it has been shown that the 
tumor’s protein requirements for growth and cell division 
are dependent on RNA polymerase I (42). It was found that 
DPH1, DPH2, and DPH5 play a crucial role in diphthamide 
synthesis. Although the deletion of diphthamide itself is 

not fatal, the deletion of DPH3, DPH6, and DPH7 cannot 
be compensated by other genes (38,43). By analyzing the 
expression pattern of DPHs in pan-carcinomas, especially 
HCC, we found that the expression of DPH1,7 was 
unstable, while the expression of DPH2,3,5,6 increased. 
In this study, we used a sample of 18 cases to validate this 
expression pattern. We plan to expand the sample size in 
future studies to further validate and enhance our findings, 
ensuring their reliability and applicability on a larger scale. 
Based on this expression pattern, we hypothesized that 
HCC cells can ensure high levels of expression of their 
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proteins through this expression pattern, thus driving 
tumorigenesis and progression.

To gain insight into the mechanism of DPHs in HCC, we 
further investigated their association with clinicopathologic 
features. The results showed that DPHs were strongly 
correlated with histologic grade, especially DPH2,3 was 
significantly correlated with OS. We also evaluated the 
efficacy of DPHs in the diagnosis and prognosis of HCC. 
The results of ROC analysis confirmed the high diagnostic 
value of DPHs. By Kaplan-Meier survival curve analysis, we 
found that patients with high expression of DPH2, DPH3, 
and DPH7 had a poor prognosis. Further univariate and 
multivariate Cox regression analyses also showed that the 
expression of DPH2,3 was significantly associated with OS 
time. Thus, DPH2,3 is not only valuable in the diagnosis of 
HCC but also independent factors affecting the prognosis 
of HCC patients. Next, we first used the cBioportal 
database to analyze the mutation status of these two 
genes, and then we performed an analysis of the promoter 
methylation status of DPH2,3 genes and their prognosis 
with the help of the UALCAN database and MethSurv 
to explore the reasons for the increased expression of 
DPH2,3 in HCC. The results suggested that in HCC, the 
overexpression of DPH2,3 was likely to be caused by the 
hypomethylation status of their promoters rather than 
gene mutations. Furthermore, this hypomethylation status 
may be a key factor contributing to the poor prognosis of 
HCC patients. To gain more insight into the regulatory 
mechanisms of DPH2,3 in HCC, we performed a GSEA. 
The results showed that DPH2,3 were positively correlated 
with cell cycle, Fc Gamma R mediated phagocytosis, and 
pathways in cancer, whereas they were positively correlated 
with peroxisome, PPAR signaling pathway, drug metabolism 
cytochrome P450, oxidative phosphorylation and oxidative 
phosphorylation were negatively correlated. Therefore, we 
hypothesized that HCC cells may promote their growth 
and development by regulating the cell cycle, cancer-related 
pathways, and certain immune and metabolic pathways.

TME in HCC is highly immunosuppressive, comprising 
various cell types, cytokines, and other components that 
impair antitumor immunity (44). The DPH gene family, 
particularly DPH2 and DPH3, may play a crucial role 
in regulating the immune microenvironment of HCC 
by influencing immune-related gene expression and 
immune cell distribution. To gain insight into the immune 
mechanisms of DPH2,3 within HCC, we first investigated 
the relationship between mRNA expression of DPH2,3 and 
the five major immune modalities, including chemokines 

receptor genes, immunosuppressive genes, chemokines 
genes, HLA genes, and immunostimulatory genes (43). in 
particular, we presented the association between DPH2,3 
and common immune checkpoints (PD-1, PD-L1,  
CTLA-4, LAG3, TIM3, and TIGIT) (45). A previous 
study has shown that therapeutic strategies for HCC 
targeting immune checkpoints are highly promising (46).  
Our results showed that DPH2,3 was significantly and 
positively associated with most immune-related genes 
and common immune checkpoints. Despite the success 
of immune checkpoint inhibitors in treating HCC, drug 
resistance remains a significant issue, resulting in poor 
therapeutic outcomes (47). Our study indicates that high 
DPH2/3 expression may inhibit anti-tumor cell activity by 
regulating immunosuppressive pathways (e.g., PD-1/PD-
L1 and CTLA-4), enabling tumor cells to evade immune 
surveillance and attack. Therefore, silencing DPH2/3 
expression may enhance the efficacy of immune checkpoint 
inhibitors against tumor cells. The presence of immune-
associated cells in the TME has a major impact on the 
progression of HCC. Tumor cells employ a variety of 
strategies to evade immune detection and clearance (48).  
Effective antitumor immunotherapy relies on the synergistic 
action of the components of the immune system (49)  
and utilizes immune cells inside and outside the TME 
to localize and destroy cancer cells (50-52), where 
combinations of immune checkpoint inhibitors and immune 
cell therapy are effective (53). We hypothesize that HCC 
cells disturb the immune mechanism by overexpressing 
DPH2/3, enabling tumor cells to evade immune detection 
and clearance. By altering the distribution of immune cells 
within the immune microenvironment, tumor cells evade 
immune attack. Therefore, we conducted an in-depth study 
of the association of 24 immune-infiltrating cells with 
DPH2,3 expression. The results showed that high DPH2/3 
expression was associated with an increase in various pro-
tumorigenic immune cells, including Th2 cells, helper T 
cells, and macrophages. These cells promote tumor growth 
and metastasis by secreting pro-inflammatory and growth 
factors (e.g., IL-4, IL-10, and TGF-β). Conversely, high 
DPH2/3 expression suppressed immune cells with anti-
tumor effects, such as Th17 cells, CD8 T cells, and NK 
cells. These cells exert their effects by secreting cytotoxic 
factors (e.g., IFN-γ and TNF-α) and directly killing 
tumor cells (48,49). These results suggest that DPH2/3 
modifies the immune status of the TME by adjusting the 
ratio and activity of immune cells, thereby influencing 
HCC progression. High DPH2/3 expression predicts poor 
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prognosis for HCC patients. Targeting DPH2/3 and its 
pathways may restore anti-tumor immune responses and 
enhance immunotherapy, thus improving patient survival. 
Therefore, DPH2/3 is a potential immunotherapy target in 
HCC patients. Next, we will investigate the mechanisms of 
DPHs in tumors and conduct further experiments to verify 
their feasibility and effectiveness as therapeutic targets. 
These studies will aid in developing new therapeutic 
strategies and providing more effective treatment options 
for HCC patients.

Another concern is that when diphthamide is intact, the 
toxin causes ADP-ribosylation of the diphthamide, leading 
to blocked protein synthesis and thus cell death. Based on 
this, we hypothesized whether it would be possible to treat 
tumor cells by restoring their diphthamide integrity and 
then targeting the toxin to the tumor cells. Therefore, we 
will further investigate the mechanism of action of DPHs 
in tumors to explore their potential in the treatment of 
tumors.

Conclusions

Overall, HCC maintains its genesis and progression 
by finely regulating the expression patterns of DPHs. 
Particularly noteworthy, DPH2,3 showed significant 
clinical value in the diagnosis and prognosis of HCC. 
Further studies revealed that DPH2,3 plays crucial roles 
in the immune microenvironment and immunoregulation, 
which may make them potential therapeutic targets for 
immunotherapy.
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