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Abstract
Diffuse gliomas are infiltrative primary brain tumors with a poor prognosis despite multimodal treatment. Maximum safe
resection is recommended whenever feasible. The extent of resection (EOR) is positively correlated with survival.
Identification of glioma tissue during surgery is difficult due to its diffuse nature. Therefore, glioma resection is imaging-guided,
making the choice for imaging technique an important aspect of glioma surgery. The current standard for resection guidance in
non-enhancing gliomas is T2 weighted or T2w-fluid attenuation inversion recovery magnetic resonance imaging (MRI), and in
enhancing gliomas T1-weighted MRI with a gadolinium-based contrast agent. Other MRI sequences, like magnetic resonance
spectroscopy, imaging modalities, such as positron emission tomography, as well as intraoperative imaging techniques, including
the use of fluorescence, are also available for the guidance of glioma resection. The neurosurgeon’s goal is to find the balance
between maximizing the EOR and preserving brain functions since surgery-induced neurological deficits result in lower quality
of life and shortened survival. This requires localization of important brain functions and white matter tracts to aid the pre-
operative planning and surgical decision-making. Visualization of brain functions and white matter tracts is possible with
functional MRI, diffusion tensor imaging, magnetoencephalography, and navigated transcranial magnetic stimulation. In this
review, we discuss the current available imaging techniques for the guidance of glioma resection and the localization of brain
functions and white matter tracts.
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Introduction

Surgical resection is the first treatment in the majority of pa-
tients with a diffuse glioma. Surgery aims at providing ade-
quate tissue for diagnosis, relieving mass effect and achieving
cytoreduction. To achieve maximal cytoreduction, pursued to
improve patient’s survival [8, 86], the neurosurgeon needs to
identify glioma infiltration during surgery. This is difficult due
to the diffuse dissemination of glioma cells in the normal
brain. The most widely used aid for the detection of glioma
infiltration during surgery is imaging. Standard magnetic

resonance imaging (MRI), T1-weighted gadolinium-en-
hanced (T1G) for enhancing gliomas (Fig. 1A), and T2
(T2w) or fluid attenuation inversion recovery (FLAIR)
weighted for non-enhancing gliomas (Fig. 1B) are recom-
mended [18].

These standard MRI sequences, however, are less accurate
for the detection of glioma infiltration than advanced MRI
sequences and imaging modalities [93]. Therefore, advanced
imaging, as well as the use of intraoperative fluorescence,
holds the potential to expand the resection beyond the stan-
dard MRI abnormalities, which may improve patient’s out-
come [37, 52, 68, 71, 72, 89].

When expanding the resection, one must be aware of the
potential loss of brain function due to the infiltration of tumor
cells in normal functioning brain. Important brain functions,
such as motor function, language, and neurocognitive func-
tioning, need to be preserved since severe morbidity is not
only associated with a decline in quality of life but also with
survival [19]. The current standard to identify brain functions
and white matter tracts is intraoperative direct cortical stimu-
lation (DCS), a technique that provides an electrical stimula-
tion to accomplish local excitation or inhibition in the cortex
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or white matter tracts that will result in a functional response
[15]. Multiple techniques are available for the localization of
brain functions or white matter tracts.

The neurosurgeon’s goal is to find the balance between the
optimal oncological outcome bymaximizing the resection and
preventing severe morbidity by loss of brain functionality.
Here, we discuss the state-of-the-art imaging techniques to
guide glioma resection and imaging techniques to localize
functions and white matter tracts, in order to achieve a maxi-
mal safe resection.

Imaging techniques for the guidance
of glioma resection

Pre-operative imaging

Standard MRI The current standard MRI sequences for the
guidance of glioma resection have historically grown into
use since their widespread availability. Clinical trials
supporting the use of standardMRI for the guidance of glioma
resection are lacking. Therefore, we discuss the indirect evi-
dence for these sequences. This evidence comes from studies
that investigated the effect of the extent of image-guided gli-
oma resection on survival.

In enhancing glioma, the strongest evidence for the use of
T1GMRI comes from a post hoc analysis of 243 patients from
a randomized controlled trial (RCT), comparing fluorescence-
guided surgery with standard neuronavigation [69, 89]. In this
study—after correction for tumor size, edema, midline shift,
location, age, Karnofsky Performance Scale and National
Institutes of Health Stroke Scale—complete resection of con-
trast enhancement on post-operative T1G MRI, compared to
incomplete resection, resulted in longer OS (16.7 versus
11.8 months, p < 0.01) [69].

In non-enhancing glioma, the choice for T2w or FLAIR
MRI aided surgery depends on the surgeon’s preference, since
direct comparison is lacking, which is reflected in the used
imaging sequences in a recent review [2], where T2w,
FLAIR, and T2w or FLAIR MRI were respectively used in
36%, 46%, and 18% of the studies. A possible benefit of
FLAIR MRI is the suppression of the water signal intensity,

which allows for better contrast of tumor in periventricular
areas. Both T2w and FLAIR MRI aided resections are sup-
ported by retrospective studies [33, 86]. These studies prove
the goal of complete resection of the standard MRI abnormal-
ities in both enhancing and non-enhancing gliomas. The lack
of studies directly comparing standard MRI- versus other
imaging-guided resection, however, makes it impossible to
judge if standard MRI is the best option for the guidance of
glioma resection. Considering the evidence of diagnostic ac-
curacy studies [93], more is to be expected from other MRI
sequences or imaging modalities.

FLAIR MRI in enhancing glioma In the majority of enhancing
glioma, FLAIR abnormalities expand beyond the regions with
contrast enhancement (Fig. 1A) [30]. These surrounding
FLAIR abnormalities are sometimes addressed as peritumoral
edema; however, many studies have proven the presence of
glioma cells within these regions [24, 27, 38, 39, 76].
Extending the resection beyond contrast-enhanced regions
using FLAIR has shown great potential. A large (n = 643)
retrospective study found an improved OS for a more exten-
sive (≥ 53%) resection of the surrounding FLAIR abnormali-
ties after complete resection of contrast-enhanced regions,
compared to less extensive resections (median OS 20.7 and
15.5 months, respectively; p < 0.01). Remarkably, a more ex-
tensive resection resulted in a lower complication rate (18%
versus 26%, p = 0.04), which reflects, according to the au-
thors, the increased use of DCS and imaging to visualize brain
functions and white matter tracts. These promising results are
a bit tempered by the fact that an extensive resection was only
achieved in 25% of the patients [52]. Both FLAIR resection
threshold, number of patients receiving extensive resection,
and the lower complication rate with more extensive resection
were confirmed in another study with 282 patients [68]. These
are the largest studies comparing, although not randomized
and prospective, different MRI sequences to aid glioma resec-
tion, therefore providing the strongest evidence for the use of
other sequences than the current standard.

Magnetic resonance spectroscopy imaging Magnetic reso-
nance spectroscopy imaging (MRSI) measures biochemical
components of a region of interest, which can be used to
calculate, among others, the choline-N-acetyl aspartate index
(CNI) to detect glioma (Fig. 1 A and B). The only study
describing MRS-aided surgery reported an extended resection
beyond contrast enhancement in 86% of seven enhancing gli-
omas and beyond FLAIR MRI abnormalities in 88% of eight
non-enhancing gliomas. The target volume for resection was
based on the lowest CNI threshold that allowed a safe resec-
tion, defined by functional imaging and anatomy. The survival
benefit in this study is not clear due to the limited follow-up of
1 year, in which one enhancing glioma and none of the non-
enhancing gliomas recurred [101]. A limitation ofMRSI is the

�Fig. 1 Exemplary standard and advanced imaging.A Patient with a right
parietal enhancing glioblastoma, IDH-wild type. Upper left: T1-weighted
MRI with a gadolinium-based contrast agent, Upper right: FLAIR MRI,
lower left: multivoxel MRSI CNI projected on the FLAIR MRI. Lower
right: amino acid ([18F]FET) PET. B Patient with a left temporal non-
enhancing diffuse astrocytoma, IDH-mutant. The crosshair is projected to
indicate the region with MRSI CNI and PET abnormalities just outside
the FLAIR MRI abnormalities. Upper left: T2-weighted MRI, Upper
right: FLAIR MRI, Lower left: multivoxel MRSI CNI projected on the
FLAIR MRI, Lower right: amino acid ([18F]FET) PET
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technical difficulty of obtaining a good-quality 3D MRS im-
age due to the artifacts of non-brain tissue [51]. The concept of
different threshold-based target volumes, as well as the possi-
bility to aid resections beyond FLAIR abnormalities, makes
MRSI an interesting technique that deserves further research.

Positron emission tomography Positron emission tomography
(PET) is a nuclear imaging technique that uses radioactive
tracers to visualize perfusion, proliferation, metabolism, and
neurotransmitters (Fig. 1 A and B). Multiple tracers are avail-
able for glioma imaging of which only the amino acid
L-[methyl-11C]methionine (MET) is used to aid glioma re-
section. The only group reporting MET PET aided resection
selected gliomas with ill-defined borders or enhancing glio-
mas with T2w or FLAIR abnormalities beyond the contrast
enhancement. Two strategies were used for these gliomas: (1)
to extend the resection beyond standard MRI abnormalities or
(2) a focused resection of the most metabolic active parts of
the tumor if a complete resection of MRI abnormalities was
not possible. In enhancing gliomas, each strategy was
achieved in one-third of patients, while PET was not contrib-
utive in the remaining one-third of patients. In non-enhancing
gliomas, the first strategy was achieved in 74%; the second
strategy in 14% and 12% of patients did not have a contribu-
tive MET PET. OS in enhancing gliomas was predicted by
complete resection of MET uptake, achieved in 56% of pa-
tients, while complete resection of contrast enhancement,
achieved in 35% of patients, did not [71]. Unfortunately, sur-
vival data was not collected. Limitations of PET imaging are
the costs, an estimated 1600–2100 dollars for one scan [40],
although a cost-effectiveness analysis showed that the use of
MRI and PET is cost-effective [29]. Other limitations are the
necessity of an on-site cyclotron for tracers with a short half
time, and one-third of the non-enhancing gliomas are amino
acid PET negative [49]. Although these retrospective results
are biased by the specific inclusion criteria and the low per-
centage of complete resection of contrast enhancement, they
show the potential of PET-aided glioma surgery.

Limitations pre-operative imagingThree limitations of all pre-
operative imaging are interobserver variation for tumor delin-
eation, image fusion and registration setup inaccuracy, and
inability to compensate for intraoperative surgery-induced
changes. Interobserver variation for the delineation of gliomas
is the difference in tumor volumes, as assessed on imaging,
between different interpreters. In enhancing gliomas, this in
only a minor issue since observer agreements are good (range
0.97–0.99) [47, 95]. In non-enhancing gliomas, however,
agreements are considerably lower (range 0.48–0.77) for both
T2w and FLAIR MRI [4, 95]. Possible causes for this lower
agreement are the interpretation of the hyperintense T2w and
FLAIR signal as edema or glioma infiltration and the less
well-defined borders of the T2w and FLAIR abnormalities

[95]. MRSI and PET are less limited by interobserver variabil-
ity due to their quantitative analysis and the use of a threshold.
Image fusion and registration setup inaccuracy occurs due to
the translation of pre-operative images to the intraoperative
situation. Since the intraoperative navigation is based on the
3D model of one MRI sequence, mostly 3D T1G or 3D
FLAIRMRI, all other images that are used for the delineation
need to be fused with this 3D sequence. This fusion is mostly
performed with a linear method and inaccuracies of 1.0 to
3.0 mm have been reported [31]. Registration inaccuracy oc-
curs due to the translation of the 3D MRI model to the actual
patient. Depending on setup, inaccuracy varies between 1.59
and 3.86 mm [88]. The last but foremost limitation is the
inability of pre-operative imaging to adjust to the new situa-
tion after surgical induces changes such as brain shift, tissue
deformation, and tissue removal. Shifts between 7 mm inward
and 8mmoutward were found after dura opening, and 9.7 mm
inward and 15 mm outward (mean 2.7–5.4 mm) after tumor
resection [62, 80]. The influence of these effects on the resec-
tion can be limited by circumscribing the tumor, instead of
piecemeal removal, thereby limiting the brain shift.

Intraoperative imaging

Intraoperative MRI Intraoperative MRI (iMRI) has the advan-
tage over pre-operative MRI that it can overcome its above-
mentioned limitations. Since the images are acquired in the
same position as the surgery, registration inaccuracy is lower
for iMRI than pre-operative MRI [91]. Even more important,
iMRI can visualize the altered anatomy due to intraoperative
changes, which reduces their influence on navigation inaccu-
racy (Fig. 2A) [57].

Besides these advantages in navigation accuracy, iMRI al-
lows for the detection of residual tumor after a first attempt for
a maximal resection. In enhancing glioma, a RCT with 49
patients found a higher percentage of complete resections of
contrast enhancement in the iMRI group (96% versus 68%,
p < 0.01) [85], although the effect on survival is still awaited
for. In non-enhancing glioma, multiple retrospective studies
report improved complete resection rates (14 to 19%) of T2w
or FLAIR abnormalities using iMRI [58, 63, 67]. Two major
drawbacks of iMRI are the high initial costs, 3.8 million dol-
lars for the ultra low-field model in 2011, and the prolonged
duration of the surgery, up to 2 h, due to scan time [48, 55].
Although iMRI has proven its value for the purpose of com-
plete resection of standard MRI abnormalities, studies using
iMRI to extend the resection beyond these standard imaging
abnormalities are lacking. Even if this is possible, alternatives
could be considered due to the high cost and prolonged sur-
gical time of iMRI.

Ultrasound The visualization of returning sound waves can be
used to detect glioma by direct application of the ultrasound
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(US) probe on the tissue (Fig. 2B). Like with iMRI, this results
in real-time imaging that is not influenced by navigation inac-
curacy or intraoperative changes. US-guided resection
achieved a complete resection of US abnormalities in 67%
of the 61 enhancing and 61% of the 51 non-enhancing glioma
patients. This resulted in an improved 2-year OS compared to
a random selected control group (32.8% versus 13.3% and
88.2% versus 53.3%, both p < 0.05, respectively enhancing
and non-enhancing glioma) [97]. New US techniques like
high-frequency linear probes and ultrasonic contrast are intro-
duced and hold potential to maximize resections compared to
standard US [10, 75]. Direct comparison of high frequency
USwith iMRI, using biopsies from residual tumor and normal
control sites after resection, resulted in a significantly higher
sensitivity for US (sensitivity 76% versus 55%, p = 0.021) and
not significant difference in specificity (specificity 74% versus
58%) [11]. Besides detection of glioma tissue, US can be used
to update the pre-operative MRI-based neuronavigation [74].
Limitations of US are the training necessary to create a good-
quality image; problems with artifacts due to blood, hemostat-
ic material, bone and other structure material; and the 2D
aspect of US. This makes the acquisition and interpretation
of US for glioma delineation challenging [83]. Still, US can
serve as a good and cheaper alternative for iMRI.

Fluorescence Although not a standard imaging technique per
se, the use of fluorescence during glioma resection aids the
surgeon in the visualization of the tumor. Multiple agents are
available for intraoperative fluorescence of which 5-

aminolevulinic acid (5-ALA) and sodium fluorescein (SF)
are most common in daily practice. 5-ALA is a non-
fluorescent prodrug that leads to intracellular accumulation
of fluorescent porphyrins in malignant gliomas. These por-
phyrins can be visualized intraoperatively with a special filter
for the operating microscope resulting in a pink appearance of
the tumor, while the normal tissue appears blue (Fig. 3). A
large RCT (n = 322) reported higher GTR rates of contrast
enhancement (65% versus 36%, p < 0.0001) and prolonged

Fig. 2 Examples of intraoperative imaging.A IntraoperativeMRI of an enhancing right frontal glioblastoma with clockwise images of the progression of
the resection with clear brain shift. Image courtesy of Dr. P Kubben [46]. B Intraoperative ultrasound of a left parietal glioblastoma

Fig. 3 Example of intraoperative fluorescence. Intraoperative image of 5-
ALA-guided resection of superficial glioblastoma with clear pink
fluorescence of the tumor with the surrounding normal tissue appearing
blue
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6-month PFS (41% versus 21%, p = 0.0003) in patients with a
high-grade glioma assigned 5-ALA compared to those
assigned standard operative care [89]. This study showed the
usefulness of fluorescence-guided surgery for the purpose of
GTR of contrast enhancement. Still, the choice of primary
(GTR rate) and secondary (6-months PFS) endpoint did not
permit a definitive conclusion regarding the influence of 5-
ALA-guided resection on OS. Also, the standard surgical care
did not include the use of neuronavigation, which is reflected
by the low GTR rate in that arm. SF is a dye that accumulates
in malignant glioma due to their disruption of the BBB. It is
administrated by intravenous injection during surgery and,
with use of a special filter in the operating microscope, results
in a yellow appearance of the tumor compared to a pink ap-
pearance of the normal brain tissue. The best evidence comes
from a prospective multicenter phase II trial in which 46 pa-
tients underwent SF-guided resection of a high-grade glioma
that led to a GTR of contrast enhancement in 38 patients
(82%). Biopsies were collected from areas with and without
fluorescence in 13 of the patients and assessed for tumor pres-
ence, resulting in an 80% sensitivity and specificity [1]. The
higher GTR rate in this study compared to the 5-ALA trial
should be interpreted with caution since the SF study was
smaller and non-randomized. Direct comparison of 5-ALA
and SF is limited to small cohort studies without uniform
results [16, 99]. A meta-analysis found no significant differ-
ence in the GTR rate between the agents, although it reported
a much higher cost per quality added life years for 5-ALA
(US$16,218) compared to SF (US$3181) [36].

Multiple studies compared 5-ALA with amino acid PET
and iMRI for the detection of tumor tissue. All but one of
the PET studies found a higher sensitivity for PET [20, 65]
or residual post-operative tracer uptake after complete re-
section of 5-ALA [42, 59]. It has to be mentioned that these
were all retrospective studies with different thresholds or
qualitative interpretation of tracer uptake. The one study
reporting 5-ALA to be more sensitive only marked delib-
erate residual 5-ALA fluorescence during surgery to com-
pare with post-operative FET PET [79]. Therefore, it is
unclear if there were also 5-ALA negative FET PET–
positive areas. A recent meta-analysis of iMRI and 5-
ALA found higher GTR rates for both techniques com-
pared to standard operative care, yet no difference between
the two techniques. They therefore concluded that a com-
bination of 5-ALA and iMRI could have its advantages, yet
future studies need to confirm this [26].

Limitation of both fluorescence agents is the lack of fluo-
rescence in the majority of low-grade gliomas. Also, tumor
tissue has been found outside the area of fluorescence of both
5-ALA and SF [28, 78, 99]. However, fluorescence-guided
surgery is not limited by brain shift or navigation inaccuracy,
making it therefore a suitable technique to achieve GTR of
contrast enhancement in high-grade gliomas.

Imaging for localization of brain functions
and white matter tracts

Pre-operative imaging

Functional MRI BOLD-Functional MRI (fMRI) measures the
blood oxygenation level changes caused by perfusion, which
is a surrogate for neuronal activity. This allows for visualiza-
tion of specific tasks-related activity such as motor function or
language (Fig. 4A) [50]. Applying fMRI to localize language
areas resulted in a 59–100% sensitivity and 0–97% specificity
in a systematic review, with the wide ranges attributed to the
heterogeneity in language tasks and imaging protocols. The
authors conclude that fMRI is not an alternative for DCS lan-
guage mapping [25]. Accuracy for motor function localiza-
tion, compared to DCS, varies between studies, with smaller
studies reporting higher accuracies (up to 100%) than the larg-
er studies (66–72%) [3, 34, 45, 82]. In the largest study, 210
cortical sites were tested in 29 patients, resulting in an 83%
sensitivity and 82% specificity. In patients with glioblastoma,
however, sensitivity was only 65%, which is, according to the
authors, a possible effect of the neurovascular uncoupling [7].
The limitations of fMRI have been recently described exten-
sively and include statistical power, flexibility in data-analy-
sis, multiple comparisons, software errors, insufficient study
reporting, and lack of independent replications [56, 73]. Taken
together, fMRI is not accurate enough to aid in the surgical
planning, let alone replace DCS.

Diffusion tensor imaging Diffusion tensor imaging (DTI) is a
technique that relies on Brownian movement of water mole-
cules in tissue. The direction of these movements is restrained
in white matter fibers, which can be used to visualize the
anatomical location of white matter tracts, so-called DTI
tractography (Fig. 4B) [64]. This technique solemnly visual-
izes anatomy and does localize brain functionality. Studies
comparing DTI tractography with the gold standard DCS re-
ported mean distances between DTI tractography and positive
stimulations of 5.2 to 8.7 mm [5, 27, 102]. Therefore, a min-
imum safe distance of 10 mm from a tract has been recom-
mended. In an RCT comparing resection with and without
pre-operative DTI in 214 patients with diffuse glioma involv-
ing the pyramidal tract, the use of DTI in patients with en-
hancing glioma resulted in a higher complete resection rate
(74.4% versus 33.3%, p < 0.001), 6-month good clinical con-
dition (70.0% versus 36.8%, p = 0.001), and improvedmedian
OS (21.2 versus 14.0 months, p = 0.048). In non-enhancing
glioma patients, complete resection rate did not significantly
differ, yet 6-month good clinical condition was higher in the
DTI group (93.4% versus 79.1%, p = 0.013) [98]. Although
this study clearly shows the benefit of DTI tractography in
glioma resection, one must take into account that 63% of
patients in the control group had poor clinical condition
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6 months after surgery, which is remarkably high and would
exclude these patients from adjuvant therapy in most neuro-
oncology centers. High angular resolution diffusion-weighted
imaging (HARDI) with q-ball algorithms is a new
tractography technique with improved fiber tracking resolu-
tion at voxels with crossing fiber populations [6, 92]. One
study reported that an intact left arcuate fasciculus and tempo-
ral part of the superior longitudinal fasciculus on post-
operative HARDI tractography was associated with intact lan-
guage, whereas an alteration or damaging of these structures
resulted in, respectively, temporary or long-term language
deficits [9]. Limitations of DTI are the variability of tracking
algorithm settings and region-of-interest (ROI) placement.
Tracking algorithm settings can lead to under- but mostly
overestimation of white matter tracts. Still, 90% of the ground
truth fibers are present in most of the algorithms [54]. ROI
placement is subject to moderate to substantial interobserver
variability but can be improved with protocols for ROI posi-
tioning [96]. Also, for HARDI DTI, considerable technical
expertise is required, making it not yet available for standard
practice. The high sensitivity and proven clinical value make
DTI an indispensable technique for glioma surgery.

Magnetoencephalography Magnetoencephalography (MEG)
detects magnetic fields as result of the electric currents from
neuronal activity [90]. Although this is not an imaging tech-
nique, registration of the MEG with a 3D MRI sequence al-
lows for visualization (Fig. 4C). Like fMRI, MEG can be used
for the assessment of task-based activity in the pre-operative
phase. Two small studies found MEG predicted motor func-
tion areas at 4 to 17 mm from DCS sites [41, 60]. A direct
comparison of MEG and fMRI for the localization of the
motor cortex showed an overlap with DCS in, respectively,
100% and 73% of the patients [43], demonstrating the higher
accuracy of MEG. Indirect evidence shows that if the MEG

predicted functional areas within or at the margin the tumor,
the EOR waspartial in 88% and complete in 12% compared to
an equal division of partial and complete resections in patients
with all MEG predicted functional areasoutside the tumor.
Complete resection led to neurological deterioration in 2 of
the 11 patients without and 2 of the 2 patients with MEG-
predicted functional areas within or at themargin of the tumor,
respectively [84]. On the other hand, using sensorimotor, vi-
sual, and speech MEG as a risk assessment for operation fea-
sibility resulted in 46% of patients not to be considered for
surgery due to glioma invasion of functional cortex, with only
6% of the patients who were operated suffering from neuro-
logical deterioration [22]. A major limitation of MEG is the
availability, mostly in dedicated academic centers, and tech-
nical expertise needed to interpret the results. Therefore, al-
though accuracy is considerable and the clinical application
proven, MEG is not likely to become a standard modality in
glioma treatment.

Transcranial magnetic stimulation Transcranial magnetic
stimulation (TMS), like MEG, is not an imaging technique.
Due to the integration with neuronavigation (nTMS), howev-
er, it can be used to locate and visualize brain functions in the
pre-operative phase. By stimulating or inhibiting cortical ac-
tivity with directed magnetic fields, specific functional tasks
can be localized [12]. The accuracy of nTMS, compared with
DCS, for localization of the motor cortex is between 3.4–
6.2 mm [44, 70]. Another function of nTMS is the combina-
tion with DTI tractography, where nTMS regions, instead of
user-selected regions of interest (ROI), are used to guide the
tractography. In a study comparing ROI-based with nTMS-
based tractography for language pathways, respectively, 40%
and 76% of the tracts were detected with DSC [61]. Using
nTMS for pre-operative planning, multiple studies found a
minimum distance (range 8–12 mm) from nTMS motor

Fig. 4 Examples of imaging for localization of brain functions and white
matter tracts.A FunctionalMRI of a patient with a language located in the
right hemisphere, which was confirmed with a WADA test. B
Visualization of the left corticospinal tract (green), fasciculate arcuatus

(orange) and inferior fronto-occipital fasciculus (yellow) using DTI in a
patient with a left temporal diffuse astrocytoma, IDH-mutant. C
Localization of the left motor cortex usingMEG in a patient with a diffuse
astrocytoma, IDH-mutant
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function or nTMS-fiber tracking that prevented any neurolog-
ical deterioration [61, 81, 87]. Clinical implementation of
nTMS in a large (n = 250) cohort of patients with brain tumors
in motor eloquent locations, in comparison with a historical
case-matched non-nTMS cohort, resulted in a significantly
increased complete resection rate (59% versus 42%, p =
0.05; respectively) and increased PFS for patients with non-
enhancing glioma (15.4 months versus 22.4 months, p = 0.05;
respectively). Planned biopsies or non-surgical strategies were
changed into resections in 68.5%, and overall post-operative
deficit rate did not significantly differ between the groups
(6.1% versus 8.5%; respectively) [21]. One must realize that
DCS was still used in 66% of the patients and that the authors
conclude that nTMS is crucial for pre-operative planning.

Only one small (n = 4) study used nTMS and nTMS
tractography instead of DCS in patients not suitable for awake
surgery with left-sided perisylvian lesions. This resulted in a
GTR in all patients without any new neurological deficit with
only one patient needing a second nTMS-based resection
within days to achieve the GTR [32]. Overall, nTMS is a
promising new technique that, combined with DTI, can over-
come the ROI selection limitation of DTI and has proven its
usefulness for surgical planning.

Intraoperative imaging

Intraoperative MRI Both fMRI and DTI can be acquired intra-
operatively using iMRI. Intraoperative fMRI (ifMRI) can suc-
cessfully localize the motor cortex during awake procedures
using the task-based fMRI technique [53]. More interesting is
the use of ifMRI resting state that allows for the localization of
the motor cortex in patients under general anesthesia [23, 77].
Comparison of this technique with DCS in 14 patients resulted
in a 62% sensitivity and 94% specificity [77]. Intraoperative
DTI (iDTI) tractography has a high accuracy (100% sensitiv-
ity and 72% specificity) for the localization of the
corticospinal tract, as demonstrated in a study with twenty
glioma patients [35]. Another study replaced DCS with iDTI
tractography for the localization of white matter tracts in-
volved in language, resulting in a GTR in 78% and PR in
22% of the patients without any post-operative neurological
deterioration [13]. The limitations of iMRI have been de-
scribed above. Although ifMRI is not likely to replace DCS,
iDTI has the potential to increase the safety of non-awake
surgery.

Discussion

How can imaging aid glioma surgery? We know gliomas are
widespread in the brain by the time of diagnosis, so a curative
resection is not possible [14]. Still, there is accumulating ev-
idence that removingmore of the tumor improves PFS and OS

[8, 86]. Since glioma is an infiltrative disease, macroscopic
recognition of the tumor within the normal brain can be very
difficult. Imaging has the possibility to visualize the tumor and
thus overcoming the macroscopic problems. Ideally, an imag-
ing modality would not miss any tumor, 100% sensitivity, and
only show tumor, 100% specificity. Unfortunately, current
available imaging is not that accurate [93]. Still, using the
current standard MRI to guide glioma resection has a positive
impact on the treatment. Intraoperative MRI, fluorescence,
and ultrasound can aid in achieving a complete resection of
these standard MRI abnormalities. Since we know that glio-
mas extend beyond the current standard imaging abnormali-
ties [38, 66], the next logical step is to extend the resection
beyond these abnormalities. Evidence is starting to accumu-
late that other modalities like PET and MRSI, or FLAIR MRI
in case of enhancing tumors, could guide these extended
resections.

A different approach is the use of functional boundaries
instead of imaging to guide a resection, whereas intraoperative
mapping during awake surgery defines the limits of resection.
This strategy postpones malignant transformation in LGG [17,
100]. The pitfall of functional boundaries is the choice of
functions to test; removing more of the brain will lead to more
deficits depending on how thoroughly the functions are tested.
Translating this strategy into accuracy gives a high sensitivity
and little residual tumor, but low specificity; not all resected
tissue is tumor. A combination of image-guided extended re-
section and intraoperative stimulation mapping could improve
the specificity by removing less normal brain, while keeping a
high sensitivity.

Future directions

Randomized clinical trials are needed to compare the influ-
ence of image-guided glioma resection, possibly with addition
of intraoperative fluorescence, based on standard MRI versus
the most optimal imaging. In order to determine the most
optimal imaging for the detection of glioma infiltration, stud-
ies directly comparing different imaging modalities, MRI se-
quences, and combinations of imaging, such as the
FRONTIER study [94], have to be conducted. Besides pre-
operative imaging, intraoperative ultrasound has demonstrat-
ed great potential and the results of the randomized US-
GLIOMA trial (NCT03531333) are awaited for. Extending
the resection implies that more frequently, functional areas
will be encountered. DCS remains the gold standard for the
localization of important brain functions and white matter
tracts. Imaging, however, is indispensable for surgical
planning, including the choice of awake versus non-awake
surgery. DTI has proven its clinical value in an RCT, and
studies exploring the increased accuracy of HARDI DTI, pos-
sibly in combination with nTMS, are needed.
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