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Abstract

Background: Residual feed intake (RFI), a measure of feed efficiency, is the difference between observed feed intake and the
expected feed requirement predicted from growth and maintenance. Pigs with low RFI have reduced feed costs without
compromising their growth. Identification of genes or genetic markers associated with RFI will be useful for marker-assisted
selection at an early age of animals with improved feed efficiency.

Methodology/Principal findings: Whole genome association studies (WGAS) for RFI, average daily feed intake (ADFI),
average daily gain (ADG), back fat (BF) and loin muscle area (LMA) were performed on 1,400 pigs from the divergently
selected ISU-RFI lines, using the Illumina PorcineSNP60 BeadChip. Various statistical methods were applied to find SNPs and
genomic regions associated with the traits, including a Bayesian approach using GenSel software, and frequentist
approaches such as allele frequency differences between lines, single SNP and haplotype analyses using PLINK software.
Single SNP and haplotype analyses showed no significant associations (except for LMA) after genomic control and FDR.
Bayesian analyses found at least 2 associations for each trait at a false positive probability of 0.5. At generation 8, the RFI
selection lines mainly differed in allele frequencies for SNPs near (,0.05 Mb) genes that regulate insulin release and leptin
functions. The Bayesian approach identified associations of genomic regions containing insulin release genes (e.g., GLP1R,
CDKAL, SGMS1) with RFI and ADFI, of regions with energy homeostasis (e.g., MC4R, PGM1, GPR81) and muscle growth related
genes (e.g., TGFB1) with ADG, and of fat metabolism genes (e.g., ACOXL, AEBP1) with BF. Specifically, a very highly
significantly associated QTL for LMA on SSC7 with skeletal myogenesis genes (e.g., KLHL31) was identified for subsequent
fine mapping.

Conclusions/significance: Important genomic regions associated with RFI related traits were identified for future validation
studies prior to their incorporation in marker-assisted selection programs.
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Introduction

Feed is the biggest variable cost in most livestock production

systems, including pig farms. Profitability of pork production

depends on feed efficiency, which can be measured by the feed to

gain ratio. One estimate showed that reducing the feed to gain

ratio from 2.75 to 2.45 could save swine producers in the US $500

million dollars annually [1]. Another measure of feed efficiency is

residual feed intake (RFI), which is the difference between a pig’s

actual feed intake and its expected feed intake requirement

predicted based on the animal’s growth and maintenance.

Generally in pigs, the predicted feed requirement is determined

based on metabolic body weight, average daily gain (ADG) and

back fat (BF) [2,3]. Being a residual, RFI is phenotypically

independent from metabolic weight, ADG and BF and represents

differences in feed efficiency (feed to gain) that are independent of

weight, ADG, and BF. Pig studies have shown RFI to be

moderately heritable (0.18 to 0.41) [3,4,5,6,7,8,9]. Consequently,

RFI is a candidate trait for selection to improve feed efficiency,

along with selection for increased growth rate and reduced BF.

Although RFI is an important trait, measurement of the

phenotype requires collection of average daily feed intake (ADFI),

which is expensive and difficult. Hence, identification of genes or

markers associated with RFI and its related traits will be useful in

applying marker-assisted selection for feed efficiency at an early

age with lower cost than can be achieved measuring ADFI. To

develop a resource population for elucidating the biological and

genetic aspects of RFI, Iowa State University (ISU) has been

developing selection lines for RFI for over a decade [2,10].

Whole genome association studies (WGAS) using high-density

SNP genotypes are efficient tools to identify genes or genomic

regions that explain variation in livestock traits. WGAS studies can
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be based on different statistical methods, including frequentist and

Bayesian approaches [11,12,13]. Several WGAS were performed

for RFI in cattle [14,15,16,17,18] using frequentist approaches.

One study [19] used Bayesian approaches to estimate the

accuracies of estimated breeding values for RFI in beef cattle.

However, few WGAS have been undertaken for RFI in pigs. The

present study used both frequentist and Bayesian approaches to

analyze the whole genome for associations with RFI and related

traits such as ADFI, ADG and BF, as well as for a production trait,

loin muscle area (LMA), in the ISU RFI pig selection lines.

Materials and Methods

Population
Animal care guidelines were followed according to the

Institutional Animal Care and Use Committee (IACUC) at ISU

(IACUC permit number 11-1-4996-S). Data on a total of 1433

Yorkshire pigs were included in this study. Starting from split

litters from purebred Yorkshires in generation 0, these animals

belonged to generations 0 to 8 of two selection lines for RFI [2,10].

The numbers of animals from each generation are depicted in

Figure 1. The low RFI line was selected for decreased RFI

(increased efficiency) for all 8 generations. The high RFI line was

randomly mated until generation 4 and was selected for increased

RFI (decreased efficiency) starting in generation 5. Selection is on-

going and has been successful [2], demonstrating a difference in

RFI of 117 g/day between the two lines in generation 8. This RFI

difference was obtained from the current data used for this study.

Phenotypes
Daily feed intake was collected on each animal starting around

90 days of age (on-test) using electronic Feed Intake Recording

Equipment (FIRE, Osborne, KS, USA) feeders donated by PIC

(Hendersonville, TN, USA) and Newsham Choice Genetics (West

Des Moines, IA, USA). Pigs were put on-test in 2 to 3 groups

based on age. Sixteen pigs of a similar age and weight were

penned together in one of 12 pens, which contained either a FIRE

feeder or similar feeder. Prior to generation 7, only 6 pens

contained a FIRE feeder with the other 6 pens containing a FIRE-

like feeder. Pigs were switched every two weeks between a pen

with a FIRE feeder and one with a FIRE-like feeder. Starting with

generation 7, all 12 pens contained FIRE feeders. Body weights

were collected every 2 weeks during the testing period. Upon

reaching approximately 115 kg, 10th-rib BF and LMA were

evaluated with an Aloka ultrasound machine (Corometrics

Medical Systems, Inc., Wallingford, CT, USA). Among 1433

animals genotyped, 1417 had ADFI data, 1418 had ADG data,

1412 had BF data, and 1410 animals had LMA and RFI

phenotypes.

The ADG phenotype was calculated by regressing weights on

days on test with ADG being equal to the slope of the regression

line. Feed intake data were edited using methods developed by

[20] to account for missing data. ADFI was then calculated using

quadratic random regression of feed intake data from on-test day

to off-test day. Finally, RFI was computed similar to [2], where a

single trait animal model was used to analyze ADFI with

adjustments for metabolic mid weight, ADG, BF, weight at on-

test, and weight at off-test. The following equation was used to

compute RFI for each pig:

RFI~ADFI{½b1i � (onwt{40)zb2i � (offwt{115)

zb3i �metamidwtzb4i � adgazb5i � offbfa�,

where i represents each combination of generation and line; onwt

and offwt are the weight at on-test and off-test, respectively;

metamidwt is the average weight of the pig while on test raised to

the 0.75 power, which represents the metabolic mid-weight; adga

is ADG adjusted to testing from 90 to 180 days of age; and offbfa is

off-test BF adjusted to 115 kg of body weight. The regression

coefficients were computed with a model that included random

effects of animal (genetic), dam, and pen within on-test group, and

fixed effects of line, on-test group, sex, and interactions of

generation by line with each of the following covariates: onwt - 40,

age at on-test - 90, offwt - 115, metamidwt, adga, and offbfa.

Genotyping
DNA was isolated from tail tissue using the Qiagen (Valencia,

CA, USA) DNeasy blood & tissue kit. Genotyping was completed

with the Illumina (San Diego, CA, USA) PorcineSNP60 BeadChip

by GeneSeek, Inc. (Lincoln, NE, USA) with approved standard

techniques outlined by the manufacturer. A total of 50,953 SNPs

that met quality control criteria (.80% call rate, .40% GC score

and Hardy Weinberg equilibrium P value.0.0001) were used.

Population stratification
Population stratification was analyzed by identity-by-state (IBS)

and multi dimensional scaling (MDS) clustering methods available

in the PLINK software. Diagnostic tools to understand the

stratification included Q-Q plots based on the associated P values

for individual SNPs and haplotypes from the PLINK software.

Allele frequency differences
The allele frequency differences method used animals from

generation 8 of the low (n = 78) and high (n = 79) RFI lines, as

allele frequencies are expected to have been changing over

generations as the divergent selection continued. Allele frequencies

for each line were calculated for each SNP, and then used to

compute differences between lines. Allele frequency differences

were categorized into five groups based on minor allele frequencies

(MAF) (,0.1, 0.1–0.19, 0.2–0.29, 0.3–0.39, 0.4–0.5) of the SNP in

generation zero. This step was to control for the effect of genetic

drift, which is expected to be greater for SNP with low MAF.

Later, the mean and standard deviations (SD) of allele frequencies

were calculated for the SNP in each group, and were used to

Figure 1. Population sampled. The animals in blue boxes were
phenotyped and genotyped and included in the analyses. G:
Generation; P: Parity. Please refer to references [2,10] for the population
structure, which defines generation and parity.
doi:10.1371/journal.pone.0061756.g001
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obtain Z scores for allele frequency differences in each group. The

P-values corresponding to each Z score were log transformed and

plotted using R software [21]. Multiple testing was corrected for by

using the Benjamini-Hochberg false discovery rate [22], as

explained by Agilent Technologies Inc. technical support docu-

mentation (http://www.chem.agilent.com/cag/bsp/sig/

downloads/pdf/mtc.pdf, Accessed 2012 October 20th).

Whole genome association studies
Two approaches were followed for association analyses.

Primarily, a Bayesian approach based on genomic selection called

Bayes B [23], as implemented in GenSel software [24], was used to

obtain the variance explained by SNPs in every genomic window

of one mega base (Mb). The statistical model used for the Bayes B

approach was:

y~Xbz
XK~50,953

i~1

ziaize

where y is a vector of phenotypes; X is an incidence matrix of

fixed effects (b); K is the total number of SNPs; zi is a vector of

genotypes of a fitted marker i, coded -10/0/10; ai is a random

substitution effect of fitted marker i with its own variance s2
ai

and a

priori zero effect with probability p or a non-zero effect with

probability 1-p , as explained by [25]; and e is the vector of

random residuals assumed to be normally distributed. The fixed

effects used in this model were sex and pen by group. Fixed

covariates were age when animals were put on-test, with a

different slope for each combination of selection line and parity. As

explained in detail in our earlier papers [11,12,13] for reproduc-

tive and structural traits, the current analyses for Bayes B utilized

the same prior probability pi of 0.995, so as to fit 250–300 markers

per iteration of the Markov chain in a mixture model for the

estimation of individual SNP effects. A total of 51,050 iterations of

a Markov chain were run for the analyses, with 1000 iterations

burn-in and 50 iterations as an output frequency. The current

analyses used a Bayes B rather than a Bayes C approach because

of its better performance over Bayes C for QTL mapping with

1 Mb genomic windows in a comparative study of different

Bayesian methods for QTL mapping [26].

The pig genome includes 2,815 non-overlapping 1 Mb windows

based on the 50,953 genotyped markers. Therefore, the expected

percent of genetic variance accounted for by one window was

100%/2815, which was nearly 0.04%. Hence, 1 Mb windows that

explained at least 0.2% of genetic variance, which is 5 times

greater than expected (0.04%*5 = 0.2%), were considered to

contain putative QTL. The markers from unassigned contigs

and those completely unmapped to any contig or the genome were

considered as unmapped markers and were not included in the

results. The SNP in QTL regions were considered for further

haplotype analyses to determine their association with the studied

traits.

Positional candidate genes were searched in the putative QTL

regions and neighboring upstream and downstream 1 Mb regions

based on Sus scrofa genome build 10.2 (http://www.ensembl.org/

Sus_scrofa/Info/Index, Accessed 2012 September 20th). Protein

sequences of those genes, which were not annotated with a specific

name in these regions in Sus scrofa genome build 10.2, were used in

NCBI-BLAST to identify their names based on homologous

sequences from other species with an E value ,1e09. The gene

functions were examined by using a literature search. Previously

reported QTL in these regions were obtained from the GBrowse

option in Animal QTLdb (http://www.animalgenome.org/cgi-

bin/gbrowse/pig/, Accessed 2012 October 10th) on the basis of

Sus scrofa genome build 10.2.

Single SNP association analyses were performed using PLINK

software [27]. Prior to PLINK analyses, phenotypes were adjusted

for fixed factors of sex and pen by group and a covariate of age

when animals were put on-test with a different slope for each

combination of selection line and parity by using SAS 9.2 software

(Version 9.2, SAS Institute Inc, Cary, NC, USA). The adjusted

phenotypes were used in the association analyses with the PLINK

basic ‘‘–assoc’’ command. To control for population structure and

to perform multiple testing, genomic control (GC) followed by

FDR was implemented on the empirical P values using the ‘‘–gc –

adjust’’ command in PLINK software [28]. As no SNP was

significantly associated with the studied traits after GC and FDR,

except for LMA, associations were considered significant based on

GC corrected P values at a threshold of 0.01, as earlier reported by

[28].

Haplotype Association Analyses (HAA)
For each trait, SNP from 1 Mb genomic window regions that

explained at least 0.2% of genetic variance in the Bayes B

approach were selected for construction of linkage disequilibrium

(LD) blocks. The LD blocks were constructed using the method of

confidence intervals and default parameters of the Haploview v4.1

software [29]. Haplotypes for each LD block were determined by

PHASE software version 2.1 [30,31] for all animals. Haplotypes

with a frequency greater than 5% in the population were

considered for further association analyses with phenotypes

adjusted for the same fixed factors and covariates as used for

BayesB, but by using PLINK software. Similar to the top single

SNP associations, the top haplotypes were considered based on

GC-corrected P value at a threshold of 0.05. These analyses

consider only 1 Mb genomic regions that were pre-selected for

association, thus the results need to be considered cautiously.

Raw data will be shared upon request.

Results and Discussion

Population stratification
Population stratification with IBS clustering showed that all

animals belonged to one cluster (Figure 2A). However, MDS

clustering identified three clusters, separating animals from

generations G0–G2 and G3–G8 of the low RFI line and G4–G8

of the high RFI line (Figure 2B). The IBS clustering is based on a

similarity matrix depending on the identical-by-state nature of the

genotypes among the individuals. There may be high IBS

similarity even between unrelated individuals just by chance. But

MDS is based on a dissimilarity matrix (1- similarity or IBS matrix)

in multiple dimensions. Hence, MDS clustering is more preferable

than the IBS clustering [27]. For the single marker and haplotype

association analyses, stratification was corrected by genomic

control, using the PLINK software, as illustrated by Q-Q plots

in Figures S1 and S2. Stratification is implicitly accounted for by

fitting all markers simultaneously in the genomic selection analyses

based Bayesian approaches in the GenSel software [32].

Allele frequency differences
Some SNP on SSC13 (ASGA0060074) and SSC7

(ASGA0030976, ALGA0043495) showed very significant

(P,0.000001, FDR P value,0.01) differences in allele frequencies

between the high and low RFI lines at generation 8 (Figure 3 and

Table 1), the last available generation. Interestingly, the KCNJ15

gene (potassium inwardly rectifying channel, subfamily J, member

15) is located within 0.05 Mb upstream of SNP ASGA0060074

WGAS for RFI Traits in the Pig
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(T/C) on SSC 13, which had the most significant difference in

allele frequencies between the lines (0.40 in Low RFI line; 1.0 in

High RFI line for the allele ‘‘T’’) (Figures 3 and 4). The KCNJ15

gene encodes one of the potassium inward rectifying channels and

is a type-2 diabetes risk gene and its up-regulation causes down

regulation of glucose induced insulin release in mice and humans

[33]. Similarly, the ELOVL2 gene (elongation of very long chain

fatty acids 2) is located within 0.01 Mb upstream from SNP

ASGA0030976 on SSC7 and is involved in enhancing the

synthesis of triglycerides and deposition of lipid droplets in

adipocytes [34]. The adipocytes usually produce leptin due to fat

deposition [35]. It is well known that circulating insulin and leptin

reduce food intake through their central actions in the brain

[36,37]. This may explain why the RFI selection lines might differ

in alleles related to insulin and leptin gene regulation. Addition-

ally, the genes TFAP2A (transcription factor AP-2 (activating

enhancer binding protein 2) - alpha), a master regulator of other

transcription factors in mouse liver [38], and GPX2 (glutathione

peroxidase 2), an isozyme responsible for the majority of the

glutathione dependent hydrogen peroxide reducing activity in the

gastrointestinal tract (http://www.ncbi.nlm.nih.gov/gene/2877,

Accessed 2012 June 10th), are located within 0.4 Mb downstream

of SNP ASGA0030976 and within 0.2 Mb downstream of SNP

ALGA0043495, respectively, on SSC7. This indicates that the RFI

selection lines showed significant differences in allele frequencies

near genes involved in metabolism in the liver and the

gastrointestinal tract. Further functional studies with different

tissues from RFI selection lines need to be conducted to confirm

the role of these genes in the RFI phenotype.

WGAS and HAA for RFI
WGAS were carried out with a larger population comprising

both the lines and all genotyped individuals from generation 0 to

generation 8. The Bayes B approach in the GenSel software

revealed that the genomic heritability or proportion of phenotypic

variance captured by genome wide markers was 0.52 for RFI,

which is a little higher than the genomic heritabilities obtained for

ADFI, ADG, BF and LMA and indicates that RFI is moderate to

highly heritable (Table S1). For the Bayes B approach, a 1 Mb

SNP window (H3GA0040291-MARC0009335) at 59 Mb on

SSC14 explained more than 1% of the genetic variance in RFI

with a posterior probability of association 0.68 (p.0; PPA) or a

false positive probability (1-p.0) of 0.32 (Figure 5 and Tables 2

and S2). The GNG4 (guanine nucleotide binding protein 4) gene in

this region is a trimeric G protein with alpha, beta and gamma

subunits. In its active state, the Gbetagamma subunit of GNG4 can

activate potassium inward rectifying channels (http://www.

genecards.org/cgi-bin/carddisp.pl?gene = GNG4, Accessed 2012

June 20th) in conjunction with M1 (Muscarinic 1 acetylcholine)

receptors. The importance of potassium inward rectifying

channels was emphasized in the allele frequency differences

between high and low RFI lines in generation 8 for KCNJ15 and

again here with results involving GNG4 for RFI. The second most

significant 1 Mb SNP window (ALGA0040519-ASGA0032851),

explaining 0.59% of the genetic variance for RFI with a PPA of

0.48, is on SSC7 at 39 Mb. This window also includes two

potassium channels (KCNK5, KCNK17), one of which (KCNK17 also

known as TALK2) is highly expressed in pancreas in humans [39].

Interestingly, the gene GLP1R (glucagon-like peptide 1 receptor) in

this window on SSC7 increases synthesis and release of insulin

from the pancreas by activating the adenylyl cyclase pathway [40]

and has also been reported to be involved in appetite control. The

third most significant 1 Mb SNP window (ALGA0038863-

DRGA0007204) was also located on SSC7 but at 16 Mb. This

window explained 0.45% of the genetic variance, with a PPA of

0.41. This window also contains an insulin release-regulating gene

called CDKAL1 (cyclin-dependent kinase 5 regulatory subunit

associated protein 1-like 1), which is involved in the first phase

insulin release through provision of ATP and potassium-ATP

channel responsiveness [41]. Based on the allele frequency

Figure 2. Clustering of the residual feed intake (RFI) population by the PLINK software. Figure A indicates identical-by-state (IBS)
clustering. The X and Y axes represent IBS mean and IBS variance. Figure B shows multi-dimensional clustering. The X and Y-axes
indicate dimensions 1 and 2, respectively. The black color cluster includes animals from generations 3–8 of the Low RFI line, the green cluster includes
animals from generations 4–8 of the High RFI line, and the red cluster includes animals from generations 1 and 2 of the Low RFI line and generation 0,
which is the founder population from which RFI selection lines originated.
doi:10.1371/journal.pone.0061756.g002

WGAS for RFI Traits in the Pig
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Figure 3. Allele frequency differences between the Low and High residual feed intake lines at generation 8. The X axis indicates in
different colors from left to right, SNP locations from chromosomes 1 to X, unassigned contigs, Y, and completely unmapped SNPs, using Sus scrofa
genome build10.2. The Y axis represents the minus log of the P-value for the allele frequency difference between the two lines for each SNP,. The
dashed line shows the P-value threshold. SSC: Pig chromosome; FDR: False discovery rate; KCNJ15: Potassium inwardly rectifying channel, subfamily J,
member 15; ELOVL2: Elongation of very long chain fatty acids 2; TFAP2A: Transcription factor AP-2 (Activating enhancer binding protein 2)—alpha;
GPX2: Glutathione peroxidase 2.
doi:10.1371/journal.pone.0061756.g003

Figure 4. Allele frequency differences between the residual feed intake selection lines for the significant SNPs in each generation.
Parts A, B and C show the allele frequency differences for the SNPs near to the KCNJ15 gene on SSC13 (ASGA0060074), near the ELOVL2 and TFAP2A
gene on SSC7 (ASGA0030976), and near the GPX2 gene on SSC7 (ALGA0043495), respectively. KCNJ15: potassium inwardly rectifying channel,
subfamily J, member 15; ELOVL2: elongation of very long chain fatty acids 2; TFAP2A: transcription factor AP-2 (activating enhancer binding protein
2)—alpha; GPX2: glutathione peroxidase 2. The X axes represent generations and Y-axes show allele frequencies.
doi:10.1371/journal.pone.0061756.g004

WGAS for RFI Traits in the Pig
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differences and Bayesian analyses, the genomic regions containing

genes involved in insulin release could partly explain the biology of

differences in RFI in the RFI selection lines, although these regions

have only modest PPA (Figure 5, and Tables 2 and S2). Significant

(P,0.05) plasma insulin differences were also observed between

low and high RFI selection lines in another pig population [42].

The PLINK analyses supported the association (P,0.01 after

GC) of individual SNP in the 1 Mb SNP window (ALGA0040519-

ASGA0032851) at 39 Mb on SSC7 that contains the GLP1R gene

(Figure 5 and Table S2). Similarly, HAA also revealed a significant

(P,0.05 after GC) association of the -GTATATTT- haplotype in

this 1 Mb SNP window, and also of the -GGGCGTAA- haplotype

in the 1 Mb SNP window that contains the CDKAL1 gene on

SSC7. Both PLINK and HAA analyses showed significant

associations for SNP (P,0.01 after GC) and haplotypes (P,0.05

after GC) in the 1 Mb SNP windows on SSC14 that explained

0.4% and 0.32% of genetic variance in the Bayes B approach, with

a PPA of 0.28. However, the SNPs and haplotypes in the 1 Mb

SNP window that contains the GNG4 gene on SSC14 did not show

significant associations in the PLINK analyses (Figure 5 and Table

S2). No SNP showed a significant association with RFI after

genomic control followed by FDR in the PLINK analyses. Hence,

GC corrected P values were considered for an association

threshold as a previous report had followed the similar consider-

ation [28]. This observation suggests that analyzing windows of

neighboring SNPs using genomic selection based Bayesian

methods may be more useful than frequentist approaches for

understanding the biology of traits using these types of data sets.

WGAS and HAA for ADFI
In the Bayes B approach, several 1 Mb SNP windows, including

at 107 Mb (ASGA0065520-ALGA0080315) on SSC 14 and at

63 Mb (ALGA0096110-M1GA0022378) on SSC17, explained

more than 0.8% of the genetic variance in ADFI, with a PPA

greater than 0.5 (Figure 6 and Table S3). The genes in these

regions, specifically SGMS1 (spingomyelin synthase 1) on SSC14

and CBLN4 (cerebellin 4) on SSC 17, are important for brain

functions (RefSeq [43]) and for insulin secretion from pancreatic

cells [44,45]. Specially, sgsm1 null mice showed impaired insulin

secretion due to increased reactive oxygen species and mitochon-

drial dysfunction [44]. The genes PRKG1 (cGMP-dependent

protein kinase 1, alpha isozyme) and PTEN (tumor-suppressor

phosphatase and tensin homologue) are located within 1 Mb

upstream and downstream, respectively, to the genomic window at

107 Mb on SSC 14. In beef cattle, an intronic SNP (rs29013727)

in the PRKG1 gene was significantly (P,0.05) associated with dry

matter intake (DMI) by whole genome single SNP association

analyses [46]. Mutations in the PTEN gene enhanced insulin

sensitivity by modulating the PI3K-AKT pathway [47]. The

BMP7 (bone morphogenic protein 7) and MC3R (melanocortin-3

receptor) genes are located within 1 Mb downstream of the

genomic window (ALGA0096110-M1GA0022378) on SSC17 at

63 Mb. The BMP7 protein reduces food intake and increases

energy expenditure through its leptin-independent mechanism

such as central mTOR-p70S6 kinase pathway [48]. The MC3R

protein is involved in regulating feeding behavior and metabolism

by anticipating nutrient intake through the extracellular regulating

kinase (ERK) pathway in the dorsomedial hypothalamus (DMH)

and is thus helpful in adaptation during restricted feeding [49].

These observations reinforce the importance of also studying genes

located in neighboring regions of the most highly associated

genomic windows.

The third most significant 1 Mb SNP window (MARC0044077-

ALGA0077929) on SSC14 at 61 Mb, explained 0.79% of the
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genetic variance, with a PPA of 0.469, and contains another

potassium channel KCNK1 (potassium channel, subfamily K,

member 1) gene. Interestingly, a 1 Mb SNP window region

(ALGA0006599 - INRA0004954) close (,0.1 Mb upstream) to

MC4R (melanocortin 4 receptor) at 177 MbMb on SSC1)

explained 0.77% of the genetic variance, with a PPA of 0.30.

Figure 5. Whole genome association studies for residual feed intake (RFI). Part A depicts association analyses performed by the PLINK
software for each SNP. The X axis shows SNPs across chromosomes 1 to X, unassigned contigs, Y and completely unmapped SNP. The Y axis
represents the negative logarithm of the P-values corrected for genomic control. Each spot is a SNP. The green color SNPs are those located in 1 Mb
window regions that explain more than 0.2% of genetic variance in part B. Part B illustrates results from the Bayes B model averaging approach used
in the GenSel software. Different colors on the X axis indicate genome wide 1 Mb SNP windows from chromosome 1 to X, unassigned contigs, Y and
completely unmapped SNP. The markers from completely unmapped and unassigned contigs were not included in the cumulative genetic variance.
The Y axis represents percent genetic variance explained by each 1 Mb window. Part C shows association analyses with the PLINK software based on
haplotypes, which were derived for 1 Mb windows that explained a higher than 0.2% of genetic variance in part B. The X axis shows chromosomal
positions of the haplotypes. The Y axis shows the negative logarithm of the P-values corrected by genomic control. The arrows in parts A, B and C
show the similarities in the significant locations. The 1 Mb windows that explained a higher than 0.2% percent of genetic variance in the Bayesian
analyses and/or were significant in the PLINK analyses were considered to be important putative QTL for RFI. GNG4: guanine nucleotide binding
protein 4; GLP1R: glucagon-like peptide 1 receptor; CDKAL1: cyclin-dependent kinase 5 regulatory subunit associated protein 1-like 1.
doi:10.1371/journal.pone.0061756.g005

Table 2. Important candidate QTL regions associated with the residual feed intake (RFI) by 1 Mb SNP windows.

SSC
Location (start-
end) in Mb@ 1 Mb SNP window

Percent genetic
variance explained

PPA*
(P.0)

Genes within the

SNP window
$

Previously reported important QTL
at the SNP window

14 59.00–59.98 H3GA0040291-
MARC0009335

1.16 0.682 GPR137B, LYST, GNG4,
B3GALNT, TBCE

Daily feed intake and body weight

7 39.01–39.98 ALGA0040519-
ASGA0032851

0.59 0.480 BTBD9, GLO1, DNAH8,
GLP1R, KCNK5, KCNK17

Average daily gain and body weight

7 16.06–16.97 ALGA0038863-
DRGA0007204

0.45 0.412 ID4, MBOAT1, E2F3,
CDKAL1

Average daily gain and body weight

14 90.03–90.96 ASGA0064826-
ALGA0079379

0.40 0.336 5S - rRNA Average daily gain and body weight

@ The 1 Mb windows are presented in descending order based on the percent genetic variance explained greater than 0.4%.
*Posterior probability that the SNPs in 1 Mb window could explain the genetic variance greater than zero (PPA: Posterior probability of association).
doi:10.1371/journal.pone.0061756.t002
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The current Illumina PorcineSNP60 BeadChip does not have a

SNP in the MC4R gene. Therefore, this nearby window might not

capture the full effect of MC4R on ADFI, considering that MC4R is

well known to be associated with feed intake in pigs [50,51]

through its involvement in leptin [52] and insulin actions [53].

The 1 Mb SNP window containing GNG4 on SSC14, which was

also associated with RFI, explained 0.68% of the genetic variance

for ADFI and had a PPA of 0.38 (Figure 6 and Table S3). All these

mapped genomic regions, except those on SSC17, contained

previously reported QTL for feed intake (Table S3). Moreover, the

genes in these regions that were identified using the Bayesian

approach reinforce hypothesis of the regulation of insulin release

and sensitivity for feed intake. The PLINK and HAA analyses

showed significant association for individual SNP (P,0.01 after

GC) and haplotypes (P,0.05 after GC) in the 1 Mb window at

185 Mb on SSC1 (ALGA0006854 - H3GA0003303 at 185 Mb).

This window contains the PAQR5 gene (progestin and adipoQ

receptor family member V) and it explained 0.35% of genetic

variance in the Bayesian analysis, with a PPA of 0.265. Although

the PLINK and HAA analyses showed no significant associations

after accounting for multiple testing, this modest association of

PAQR5 containing genomic window with ADFI can be cautiously

considered to be important due to the physiological function of

PAQR5. This non-genomic progesterone membrane receptor

facilitates the actions of progesterone on glucose homeostasis

through the secretion of incretin (hormones enhancing insulin

secretion) from enteroendocrine cells [54].

WGAS and HAA for ADG
The most significant 1 Mb window (ALGA0006599-

INRA0004954) in the Bayesian approach was on SSC1 at

177 Mb (Figure 7 and Table S4), which explained 2.4% of

genetic variance of ADG, with a PPA of 0.427. The MC4R gene is

near (,0.1 Mb downstream) this genomic window, as described

above for ADFI. In pigs, SNPs in MC4R have not only been shown

to be associated with ADFI but also with ADG in many studies

Figure 6. Whole genome association studies for average daily feed intake (ADFI). Part A depicts association analyses performed by the
PLINK software for each SNPs. The X axis shows SNPs across chromosomes 1 to X, unassigned contigs, Y and completely unmapped SNP. The Y axis
represents the negative logarithm of the P values corrected for genomic control. Each spot is a SNP. The green color SNPs are those located in 1 Mb
window regions that explain more than 0.2% of genetic variance in part B. Part B illustrates results from the Bayes B model averaging approach used
in the GenSel software. Different colors on the X axis indicate genome wide 1 Mb SNP windows from chromosome 1 to X, unassigned contigs, Y and
completely unmapped SNP. The markers from completely unmapped and unassigned contigs were not included in the cumulative genetic variance.
The Y axis represents percent genetic variance explained by each 1 Mb window. Part C shows association analyses with the PLINK software based on
haplotypes, which were derived for 1 Mb windows that explained a higher than 0.2% of genetic variance in part B. The X axis depicts chromosomal
positions of haplotypes. The Y axis shows the negative logarithm of the P values corrected by genomic control. The arrows in parts A, B and C show
the similarities in significant locations of the associated SNPs, SNP windows and their haplotypes. The 1 Mb windows that explained higher than 0.2%
percent genetic variance in GenSel analyses and/or were significant in the PLINK analyses were considered to be important putative QTL for ADFI.
SGMS1: spingomyelin synthase 1; CBLN4: cerebellin 4; KCNK1: potassium channel, subfamily K, member 1; MC4R: melanocortin 4 receptor; PAQR5:
progestin and adipoQ receptor family member V; GNG4: guanine nucleotide binding protein 4; SORCS3: sortilin-related vps10 domain containing
receptor 3.
doi:10.1371/journal.pone.0061756.g006
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[51,55,56,57]. This significant association was supported by the

single SNP analyses with PLINK (P,0.01 after GC) and by HAA

(P,0.05 after GC) in this window (Figure 7 and Table S4).

Neighboring 1 Mb SNP windows at 176 Mb (INRA0004873 -

ASGA0004980) and at 167 Mb (MARC0096493 -

MARC0054709) explained 1.56% and 0.76% of genetic variance

in the Bayesian approach, with PPA 0.30 and 0.16, respectively.

These results suggest that the QTL spanning these genomic

windows on SSC1 can quite confidently be associated with ADG

in the RFI selection lines. Furthermore, the 1 Mb SNP windows

on SSC11 (H3GA0031714-ALGA0061627 at 28 Mb), on SSC2

(ASGA0098016-ASGA0085390 at 143 Mb), on SSC6

(DIAS0000949-DRGA0006954 at 137 Mb), and on SSC14

(INRA0043392-ALGA0076686 at 31 Mb), respectively, explained

1.94% (PPA = 0.664), 1.02% (PPA = 0.532), 0.96% (PPA = 0.443)

and 0.66% (PPA = 0.341) of genetic variance (Figure 7 and Table

S4). The window on SSC11 does not have any annotated protein

coding genes in the current pig genome build. However, the

OLFM4 (olfactomedin 4) gene is within 1 Mb upstream to the

genomic window at 28 Mb on SSC11. The OLFM4 gene encodes

a secreted glycoprotein that helps cell adhesion through lectins and

cadherins on the cell surface, and some observations have linked it

to innate immunity and gut microflora [58]. A strong association

of a SNP close (500 kb) to the OLFM4 gene with childhood obesity

in a genome-wide meta-analysis supported its possible role in the

relationship between gut microbiome and obesity risk [59].

Among the genes in the window (ASGA0098016-ASGA0085390)

at 143 Mb on SSC2, TGFBI (transforming growth factor beta

induced protein ig-h3) is an extracellular matrix protein, which has

a role in myofibril bundling and muscle fiber growth [60]. A key

glucose metabolism gene called PGM1 (phosphoglucomutase 1) is

one of the genes in the window (DIAS0000949-DRGA0006954) at

137 Mb on SSC6. Differential expression of PGM1 is associated

with the glycolytic potential of muscle and its energy dependence

on either fat or glucose, which is a determinant of lean meat

production [61]. Another energy metabolism gene, GPR81 (G-

protein coupled receptor 81), whose expression is restricted to only

adipose tissues, is located on SSC14 (INRA0043392-AL-

GA0076686) at 31 Mb. GPR81 facilitates the anti-lipolytic activity

of lactate, a product of glycolysis during exercise and oxygen

deficit [62]. Individual SNPs and haplotypes in this window on

SSC14 also showed significant associations based on the GC

corrected P values (Figure 7 and Table S4). Taken together, the

genomic regions that include genes associated with energy

homeostasis genes (e.g., MC4R (SSC1), OLFM4 (SSC11), PGM1

(SSC6) and GPR81 (SSC14)) and muscle growth (e.g., TGFB1

(SSC2)) might be associated with ADG in the RFI population.

WGAS and HAA for BF
The Bayesian approach identified 1 Mb windows on SSC7

(ALGA0044374-DRGA0008090) at 112 Mb, on SSC3

(MARC0085867-ALGA0018683) at 47 Mb, and on SSC18

(ALGA0119800-ALGA0123577) at 55 Mb to explain higher

genetic variance (.0.8% with PPA.0.50) than other 1 Mb

Figure 7. Whole genome association analyses for average daily gain (ADG). Part A depicts association analyses performed by the PLINK
software for each SNP. The X axis shows SNPs across chromosomes SSC1 to X, unassigned contigs, Y and completely unmapped SNP. The Y axis
contains the negative logarithm of the P values adjusted for genomic control. Each spot is a SNP. The green color SNPs are those located in 1 Mb
window regions that explain more than 0.2% of genetic variance in part B. Part B illustrates results from the Bayes B model averaging approach used
in the Gensel software. Different colors on the X axis indicate genome wide 1MB SNP windows from chromosome 1 to X, unassigned contigs and
completely unmapped SNP. The markers from completely unmapped and unassigned contigs were not included in the cumulative genetic variance.
The Y axis represents percent genetic variance explained by each 1 Mb window. Part C shows association analyses with the PLINK software based on
haplotypes, which were derived for 1 Mb windows that explained a higher than 0.2% of genetic variance in part B. The X axis has haplotypes on
specific chromosomes. The Y axis shows the negative logarithm of the P values corrected by genomic control. The arrows in parts A, B and C show
the similarities in significant locations of the associated SNPs, SNP windows and their haplotypes. The 1 Mb windows that explained higher than 0.2%
percent genetic variance in Gensel analyses and/or were significant in the PLINK analyses were considered to be important putative QTL for ADG.
MC4R: melanocortin 4 receptor; TGFBI: transforming growth factor beta induced protein ig-h3; PGM1: phosphoglucomutase 1; GPR81: G-protein
coupled receptor 81; U6: spliceosomal RNA.
doi:10.1371/journal.pone.0061756.g007
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windows (Figure 8 and Table S5). Windows contributed by

unmapped markers were ignored as they do not represent true

consecutive SNP windows. No fat related genes have been

annotated in the 1 Mb window (ALGA0044374-DRGA0008090)

on SSC7 at 112 Mb. However, 1 Mb windows on SSC3 at 47 Mb

(MARC0085867-ALGA0018683) and on SSC18 at 55 Mb

(ALGA0119800-ALGA0123577) contain important fat metabo-

lism genes which increases the likelihood that these regions affect

back fat deposition. The ACOXL (acyl-coenzyme A oxidase-like)

in the 47 Mb window on SSC3 has acyl-CoA dehydrogenase

activity and catalyzes an important step in the ß-oxidation

pathway for the oxidation of long chain fatty acids (http://www.

genecards.org/cgi-bin/carddisp.pl?gene = ACOXL, Accessed on

2012 June 10th ). Additionally, the GPAT2 gene (glycerol-3-

phosphate acyltransferase 2, mitochondrial), an isoform that

catalyzes the first step in triglyceride synthesis [63] is located

within 1 Mb downstream of this window (MARC0085867-

ALGA0018683) on SSC3. Similarly, the gene AEBP1 gene

(adipocyte enhancer binding protein 1) is located in the 1 Mb

window (ALGA0119800-ALGA0123577) at 55 Mb on SSC18

and is a transcriptional repressor that regulates the expression of

fatty acid binding protein 4 (FABP4) by binding to a regulatory

element called adipocyte enhancer 1 (AE1) in the proximal

promoter FABP4 gene (http://www.ncbi.nlm.nih.gov/gene/

165#reference-sequences, Accessed on 2012 June 10th). Higher

expression of FABP4 in adipose tissue has been found to be

associated with leanness in humans [64] and higher marbling in

pigs [65]. Although these associated genomic regions from the

Bayesian analyses were not supported by single SNP analyses with

the PLINK and HAA approaches after genomic control (Figure 8),

the physiological functions of the genes and PPA greater than 0.5

support the consideration of these regions as QTL for BF in the

RFI selection lines (Figure 8).

WGAS and HAA for LMA
A 1 Mb window (ALGA0039868-ASGA0032245) at 31 Mb on

SSC7 that contains the KLHL31 (kelch like 31) gene explained

6.82% of the genetic variance for LMA, with a PPA of 0.93

(Figure 9 and Table S6) based on the Bayesian approach. Two

SNPs (H3GA0020592 and MARC0010879) in this region were

very significantly (P,0.00001 after GC) associated with LMA in

the PLINK analyses, even after GC followed by FDR (P,0.05)

(Figures S1 and 9). Haplotypes in this region were also very

significantly (P,0.01 after GC) associated with LMA (Figures S2

and 9). Based on these observations, this genomic region can be

considered as a new QTL for LMA, as no previous QTL were

reported in this region for LMA (Table S6). The KLHL31 gene is

the best candidate gene in this region for further fine mapping

based on its role in skeletal myogenesis [66]. The closest region

that was previously identified to be associated with LMA on SSC7

contains the major histocompatibility complex [67] and is located

2 Mb upstream of the region identified in this study.

Figure 8. Whole genome association studies for back fat (BF). Part A depicts association analyses performed by the PLINK software for each
SNP. The X axis shows SNPs across chromosomes SSC1 to X, unassigned cintigs, Y and completely unmapped SNP. The Y axis contains the negative
logarithm of the P values adjusted for genomic control. Each spot is a SNP. The green color SNPs are those located in 1 Mb window regions that
explain more than 0.2% of genetic variance in part B. Part B illustrates results from the Bayes B model averaging approach used in the Gensel
software. Different colors on the X axis indicate genome wide 1 Mb SNP windows from chromosome 1 to X, unassigned contigs and completely
unmapped SNP. The markers from completely unmapped and unassigned contigs were not included in the cumulative genetic variance. The Y axis
represents percent genetic variance explained by each 1 Mb window. Part C shows association analyses with the PLINK software based on
haplotypes, which were derived for 1 Mb windows that explained a higher than 0.2% of genetic variance in part B. The X axis has haplotypes on
specific chromosomes. The Y axis shows the negative logarithm of the P values corrected by genomic control. The arrows in parts A, B and C show
the similarities in significant locations of the associated SNPs, SNP windows and their haplotypes. The 1 Mb windows that explained higher than 0.2%
percent genetic variance in Gensel analyses and/or were significant in the PLINK analyses were considered to be important putative QTL for BF.
ACOXL: acyl-coenzyme A oxidase-like; AEBP1: adipocyte enhancer binding protein 1; Env: envelope protein.
doi:10.1371/journal.pone.0061756.g008
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General comparisons among different analyses
In general, the results from allele frequency difference method

showed very significant differences between the high and low RFI

lines at certain SNPs (P,0.000001, FDR P value,0.01) (Figures 3

and 4). These significant SNPs (ASGA0060074 on SSC13,

ASGA0030976 and ALGA0043495 on SSC7) did not show

significant associations in other analyses, as allele frequency

differences used only generation 8 animals. The empirical P values

in the single SNP and haplotype analyses by the PLINK software

were inflated from the expected significance level due to

population stratification (Figures S1 and S2). Genomic control

correction of population stratification followed by multiple

corrections with FDR resulted in no significant associations for

single SNP and haplotypes for all traits except for LMA. Hence,

the associations of genomic regions detected using the Bayesian

approach were emphasized as the Bayesian approaches not only

use the information that could be obtained from the data but also

they can borrow the information (priors) from other similar studies

[68], and these approaches can select a certain proportion of the

markers from whole genome markers in an iterative manner.

Additionally, the BayesB approach considers different genetic

variation for the different markers, which is closer to the biological

situation of quantitative traits [69]. The results from genomic

control corrected P values for single SNPs and haplotypes within

these genomic regions were considered as supportive evidence.

Only the single SNPs within the associated genomic regions from

the Bayesian approach were highlighted in the PLINK-WGAS

illustrations (Figures 5 to 9); and their supportive biological

importance was explained in the above sections. The other single

SNPs with genomic control P values,0.01 which were not part of

the associated genomic regions in our Bayesian analyses were not

emphasized in a biological context in the above sections. Due to

high computational requirements of haplotype construction, the

haplotypes were only derived for the genomic regions found to be

significant using the Bayesian approach. In addition to the

consideration of single SNPs using the criteria of genomic control

P values, the importance of haplotypes with genomic control P

values,0.05 were explained in the above sections. Overall, the

single SNP and haplotype analyses were supportive for the

Bayesian approach results.

Conclusions

The proportion of the phenotypic variance captured by markers

across the genome was relatively high for RFI (0.52) compared to

its related traits ADFI (0.47), ADG (0.34), and BF (0.49). Allele

frequency differences at generation 8 identified that RFI selection

lines likely differ in genes related to insulin and leptin regulation

and in genes involved in metabolism in the liver and gastrointes-

tinal tract. Although the posterior probabilities of association were

modest, genomic selection based Bayesian methods were more

powerful to detect associations by WGAS than frequentist in this

data set. The WGAS revealed that genes involved in insulin

release (e.g., GLP1R, CDKAL, SGMS1) partly explained variation in

RFI and ADFI. Other energy homeostasis genes (e.g., MC4R,

Figure 9. Whole genome association studies for loin muscle area (LMA). Part A depicts association analyses performed by the PLINK
software for each SNP. The X axis shows SNPs across chromosomes SSC1 to X, unassigned contigs, Y and unmapped SNP. The Y axis contains the
negative logarithm of the P values adjusted for genomic control. Each spot is a SNP. The green color SNPs are those located in 1 Mb window regions
that explain more than 0.2% of genetic variance in part B. Part B illustrates results from the Bayes B model averaging approach used in the Gensel
software. Different colors on the X axis indicate genome wide 1 Mb SNP windows from chromosome 1 to X, unassigned contigs, Y and completely
unmapped SNP. The markers from completely unmapped and unassigned contigs were not included in the cumulative genetic variance. The Y axis
represents percent genetic variance explained by each 1 Mb window. Part C shows association analyses with the PLINK software based on
haplotypes, which were selected from the 1 Mb windows that explained a higher than 0.2% of genetic variance in part B. The X axis has haplotypes
on specific chromosomes. The Y axis shows the negative logarithm of the P values corrected by genomic control. The arrows in parts A, B and C show
the similarities in significant locations of the associated SNPs, SNP windows and their haplotypes. The 1 Mb windows that explained higher than 0.2%
percent genetic variance in Gensel analyses and/or were very highly significant even after genomic control followed by FDR (P value,0.05) in the
PLINK analyses were considered to be important QTL for LMA. KLHL31: kelch like 31.
doi:10.1371/journal.pone.0061756.g009
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PGM1 and GPR81) and muscle growth genes (e.g., TGFB1), were

found to be associated with ADG. Genomic regions containing fat

metabolism genes (e.g., ACOXL, AEBP1) and a gene for skeletal

myogenesis (KLHL31) were associated with BF and LMA,

respectively, in this population. Overall, the current study

provided a list of genomic regions and candidate genes associated

with RFI and its related traits for future validation studies in other

populations prior to incorporation in marker assisted selection

programs. Specifically, the study provided a very highly signifi-

cantly associated QTL for LMA for fine mapping.

Supporting Information

Figure S1 Q-Q plots based on unadjusted P-values and
corrected P-values using genomic control for the whole
genome single SNP association analyses performed by
the PLINK software. The X and Yaxes represent expected and

observed P-values, respectively. Population stratification repre-

sented by deviations of most of the unadjusted empirical P-values

from expection was corrected by genomic control for all traits. The

deviation of the two SNPs associated with LMA from the

expectations after genomic control indicates that they are not

likely to be false positives. RFI: Residual feed intake; ADFI:

Average daily feed intake; ADG: Average daily gain; BF: Back fat;

LMA: Loin muscle area.

(TIFF)

Figure S2 Q-Q plots based on unadjusted P-values and
corrected P-values using genomic control for the haplo-
type association analyses performed by the PLINK
software. The X and Yaxes represent expected and observed

P-values, respectively. Population stratification represented by

deviations of most of the unadjusted empirical P-values from

expection was corrected by genomic control for all traits. The

deviation of the two SNPs associated with LMA from the

expectations after genomic control indicates that they are not

likely to be false positives. RFI: Residual feed intake; ADFI:
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