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Epilepsy is one of the most common debilitating neurological disorders that lead to

severe socio-cognitive dysfunction. While there are currently more than 30 antiseizure

medications available for the treatment and prevention of seizures, none address the

prevention of epileptogenesis that leading to the development of epilepsy following

a potential brain insult. Hence, there is a growing need for the identification

of accurate biomarkers of epileptogenesis that enable the prediction of epilepsy

following a known brain insult. Although recent studies using various neuroimages

and electroencephalography have found promising biomarkers of epileptogenesis, their

utility needs to be further validated in larger clinical trials. In this literature review, we

searched the Medline, Pubmed, and Embase databases using the following search

algorithm: “epileptogenesis” and “biomarker” and “EEG” or “electroencephalography”

or “neuroimaging” limited to publications in English. We presented a comprehensive

overview of recent innovations in the role of neuroimaging and EEG in identifying reliable

biomarkers of epileptogenesis.

Keywords: epilepsy, epileptogenesis, biomarker, neuroimage, EEG

INTRODUCTION

Epilepsy is one of the most common neurological disorders affecting around 70 million
people worldwide. Approximately 2.4 million new cases of epilepsy are diagnosed annually (1).
Subsequently, epilepsy is getting increased public health attention as patients with epilepsy have
a noticeable reduction in quality of life and employment prospects (2). Although antiseizure
medication (ASMs) are considered the first-line treatment of epilepsy, it is still widely recognized
that nearly one-third of epileptic patients have drug-resistant epilepsy in which seizures are unable
to be controlled with at least two appropriately ASMs (3). One potential reason is that current
accessible ASMs merely prevent one from having further spontaneous seizures but do not directly
affect or alter the underlying cause contributing to epileptogenesis (4, 5). Through plentiful
scientific research on the pathophysiology of epilepsy over the past several decades, there has been
an increasing understanding of the pathophysiology of epileptogenesis.

Epileptogenesis refers to the process by which normal brain tissue becomes capable of generating
spontaneous recurrent seizures and its progression (6). With the advances in technology, potential
promising biomarkers are now available to predict the development of epileptogenesis after
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the epileptogenic insult. Furthermore, there are accessible
therapeutic biomarkers that predict the treatment prognosis
through the identification and exact localization of the
epileptogenic lesion and associated network, as well as the
severity and progression of epileptogenesis (7, 8). The ideal
biomarkers should not just have validity, reliability, and
reproducibility; they should also be non-invasive and cost-
effective (9). Among all the available biomarkers related to
epileptogenesis, neuroimaging and electroencephalogram (EEG)
biomarkers are by far the most appealing biomarkers as they
are non-invasive and routinely performed as part of epileptic
patients’ workup protocol.

In this review article, we searched the Medline,
Pubmed, and Embase databases using the following search
algorithm: “epileptogenesis” and “biomarker” and “EEG”
or “electroencephalography” or “neuroimaging” limited to
publications in English. The last date of the search was May
31, 2021. We screened the titles, abstracts, and references
of all search results to identify potentially relevant studies.
We aimed to provide a comprehensive literature review of
recent innovations in the role of neuroimaging and EEG as
biomarkers of the development of epileptogenesis after the
epileptogenic insult.

NEUROIMAGING BIOMARKERS

Several neuroimaging modalities, including structural magnetic
resonance imaging (MRI), functional MRI, magnetic resonance
spectroscopy (MRS), and positron emission tomography
(PET), have already been applied to investigate biomarkers
of epileptogenesis and have significantly contributed to our
understanding of the pathophysiological mechanisms that
underlie the development of epilepsy (Table 1).

Structural MRI
MRI is an ideal tool for biomarker studies due to its accessibility
and translatability to routine clinic settings. In the lateral fluid
percussion injury (LFPI) rat model of traumatic brain injury
(TBI), the abnormalities in the surface morphology of the
ipsilateral hippocampus at 1-week post-LFPI can predict the
occurrence of epilepsy 6 months after TBI (10). Besides, assessing
individual MRI parameters in the peri-lesional cortex or the
thalamus at 9 days after TBI can also provide high sensitivity
and specificity for predicting increased seizure susceptibility at
12 months (11). In the follow-up LFPI study, the presence of
diffusion abnormality analyzed by using Dav in the perilesional
cortex and thalamus at 2 months after the TBI is found
to have the highest predictive value for the development of
seizure susceptibility at 12 months post-TBI. Similar changes
in the MRI structures have been validated at the human
level. In the early acute post-TBI phase (within 90 days post-
injury), there is evidence showing a positive correlation between
hippocampal/temporal structural abnormalities and the onset of
seizure activity (11). In addition to the injury severity, the left
temporal pole and left frontal cortical thinness are found to
be significantly predictive factors for developing seizures after
TBI (12). In addition to the cortical and subcortical structures,

studies have shown that the distribution and quantification of
paravscular spaces (PVSs) can be used as a potential biomarker
for the development of epileptogenesis in posttraumatic epilepsy
(PTE). Post-TBI epileptic patients are found to have significantly
smaller PVSs and asymmetric distribution of PVSs in the
suspected epileptogenic hemisphere (13, 14).

Mesial temporal lobe epilepsy (TLE) is reported as a common
sequelae of the febrile status epilepticus (FSE) (38). Recently,
in the rat model of FSE, reduced T2 relaxation time in
the amygdala within 2 h of FSE is observed in the high
resolution 11.7T MRI. This finding is shown to have a strong
prediction of the later occurrence of TLE following the FSE.
It is hypothesized that T2 changes are related to the increased
oxygen utilization after FSE termination, which correlates with
the activation of the intracellular inflammatory cascades that
had been previously implicated in epileptogenesis (15). The
result is again validated in the lower resolution 3T MRI (16).
These results suggest that the quantitative T2 MRI can be used
as a reliable neuroimaging biomarker following FSE for brain
injury and structural alterations at the onset of epileptogenesis.
Further studies are warranted to validate the reduction of
the T2 relaxation time in the amygdala in the development
of epileptogenesis in humans before they are ready for the
clinical setting. Overall the translational nature of the MRI
results has also greatly contributed to clinical advancements as
the reported neuro-imaging protocols can be applied safely to
epileptic patients.

Diffusion-weighted imaging (DWI) represents the diffusion
of water molecules and is particularly useful for detecting acute
changes in the brain tissue following status epilepticus (SE)
(17). Yokoi and colleagues analyzed the acute DWI data of 22
children with FSE over the period of 9–13 years following FSE
and reported that focal epilepsy was significantly more frequent
in patients with hippocampal DWI hyperintensity than those
without DWI changes (39). Further studies, including a larger
cohort, are required to investigate the relationship between DWI
changes and subsequent epilepsy in patients with FSE.

Diffusion tensor imaging (DTI) detects the restriction of
water diffusion caused by the microstructural organization of
tissues. Advancement in post-processing technique allows DTI
to detect subtle white matter changes in the early development
of epileptogenesis in a structural network-based approach (40).
Sierra and colleagues studied and compared the fractional
anisotropy (FA) and axial, radial, and mean diffusivities among
three subgroups of rats: SE, TBI, and normal controls, at 6–
12 months post-injury using 9.4T MRI. FA in the hippocampi
was significantly increased in the SE/TBI group compared to the
normal control group. Regarding the diffusivities, there was an
increase in the D || (associated with axonal damage) after the
SE, whereas a decrease in D⊥(associated with demyelination)
was noted after the TBI in the subfield-specific hippocampi.
Thus, the data suggest that the DTI method identifies not only
subtle hippocampal changes and progression after epileptogenic
brain injuries but also different brain insults based on the
different diffusivities (18). Several recent longitudinal studies of
the mesial TLE rate models demonstrated that the epileptogenic
rats have significant changes in DTI-measured FA in the early
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TABLE 1 | Overview of neuroimaging biomarkers of epileptogenesis.

Imaging modality Animal model Human epilepsy References

Structural MRI

Surface morphology LFPI model None (10)

Dav LFPI model None (11)

Cortical thinness None PTE (12)

PVSs None PTE (13, 14)

T2 relaxation time FSE None (15, 16)

DWI None Children with FSE (17)

DTI LFPI model None (18)

Pilocarpine -induced SE mode None (18)

MSO infused model – (19)

Functional MRI (20)

Global network KA-induced SE model None (21–23)

Local network KA-induced SE model None (21)

MRS

NAA Pilocarpine -induced SE model None (24, 25)

GABA-A Pilocarpine -induced SE mode None (26)

Myo-inositol Pilocarpine -induced SE mode None (25, 27)

Antioxidant glutathione Pilocarpine -induced SE mode None (25)

PET

18F-FDG LFPI model None (10)

KA-induced SE model None (23–32)

Pilocarpine-induced SE model None (30)

GABA-A KA-induced SE model None (33–35)

TSPO KA-induced SE model None (36, 37)

LPFI, lateral fluid percussion injury; PTE, posttraumatic epilepsy; PVSs, paravscular spaces; DWI, diffusion-weighted imaging; FSE, febrile status epilepticus; DTI, diffusion tensor imaging;

KA, kainic acid; SE, status epilepticus; MSO, methionine sulfoximine; NAA, N -acetyl aspartate; TSPO, 18-kDa translocator protein.

stages. In addition, the FA changes in both gray and white
matter progress over time as the animals transitioned from
early to late epileptogenesis (19). Although the results suggest
that DTI changes can be used as biomarkers of epileptogenesis,
no prospective studies of epileptogenesis with DTI have been
implemented in humans. Thus, further studies are warranted to
implement the finding in the clinical setting.

Functional MRI
Functional MRI detects hemodynamic changes in different parts
of the brain by means of blood oxygen level-dependent (BOLD)
sequences, an indirect non-invasive measure of neuronal activity
(41). Contrary to measuring the structural connectivity with
DTI, functional MRI measures functional connectivity between
various brain regions. Using the animal intrahippocampal kainic
acid (KA) model of mesial TLE, Li et al. compared the fMRI
of animals with mesial TLE and animals without epilepsy at
1 week after SE. For global network features, animals with
epilepsy showed an overall increase in functional connectivity
strength compared to animals without epilepsy. For local
network features, animals without epilepsy showed decreased
hubness in the hippocampus, whereas animals with epilepsy
showed a complete loss of hippocampus hubs with appearance
of new hubs in the prefrontal cortex (21). Instead of the
hypersynchrony brain network pattern, Christiaen et al. reported
a decreased functional connectivity between 1 and 3 weeks

post SE after comparing 20 intraperitoneal KA animals and
seven healthy control animals (22). The difference might be
the result of the different routes of administration of ketamine
as intraperitoneal injection resulted in more widespread brain
lesions than intrahippocampal injection (21). Furthermore,
Bertoglio et al. demonstrated diverging changes in network
connectivity in relation to the seizure onset in the KA-induced
models of SE. Animals with regular seizure onset (<17 days post-
SE) showed a significant hypersynchrony of network connectivity
at 4 weeks post-SE, while animals with delayed disease onset (≥17
days post-SE) remained hyposynchronous (23). Although there is
a discrepancy across different studies on functional connectivity
after TBI or TLE, the current literature suggests that there may
be a reorganization of the functional network in early period of
epileptogenesis, which may be used as an imaging biomarker in
the near future.

MRS
MRS can provide indirect information, such as neuronal health,
gliosis, energy metabolism, by analyzing different metabolites in
the brain tissue. Several studies have analyzed the changes of N
-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA)
in the pilocarpine-induced SE model, a reduced NAA and GABA
can be detected in the hippocampus from baseline to the period
of epileptic seizures (24–26). However, a decrease in GABA and
NAA levels has also been found in patients after TBI without
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correlation with epileptic seizures (28). A progressive increase
in myo-inositol and antioxidant glutathione before the onset
of seizures has been found in pilocarpine-induced SE (25, 27).
Furthermore, the level of antioxidant glutathione has shown to be
negatively correlated with the frequency of spontaneous seizures
(25). Although MRS analyses in seizure-prone brain areas
following potential epileptogenic injuries may represent clinically
meaningful biomarkers for the early identification of individuals
at high risk for developing epilepsy, further human studies are
warranted to validate the finding for the clinical setting.

PET
Alteration in the brain metabolic activity has been reported in the
early development of the epileptogenesis after the initial epileptic
insults. Nuclear imaging modalities such as PET are optimally
used to assess functional brain metabolic activity using various
radiotracers. Hence, PET has been used in several studies to assess
potential mechanisms of epileptogenesis.

In the LFPI model, epileptic rats’ ipsilateral hippocampi are
reported to have subtle thickening on the surface analysis and
18F-FDG PET hypometabolism at 1 week, 1 month, and 3
months post-injury compared to the non-epileptic group. In
addition, all the TBI rats have reported cortical and hippocampal
hypometabolism, but the non-epileptic group has a partial
recovery of the FDG uptake at 3 months post-injury (10). Thus,
an initial reduction in glucose uptake is perhaps the result of both
injury itself and early epileptogenesis, but in epileptic rats, there
would be no recovery of the initial hypometabolism (29).

Multiple studies using KA and pilocarpine-induced models of
SE have shown an initial increase in the glucose uptake during
the acute seizures followed by the reduced metabolism at around
day 3 of post-SE (24, 30). Furthermore, in the KA models of
SE, glucose hypometabolism during early epilepsy correlates with
the duration of the latent phase and frequency of spontaneous
seizures in the spontaneous recurrent seizure (SRS) model of
epilepsy (31, 32).

Several studies used different PET radioligands other than
18F-FDG to investigate the relationship between the density
of GABA-A receptors and epileptogenesis in animal models of
epilepsy. It is widely observed that GABA-A receptor density is
decreased not only in hippocampi but also in several cortical
regions in the KA models of SE (33, 34). One study using
the focal cortical dysplasia model suggests that the decrease in
the GABA-A receptor density may characterize a latent phase
of epileptogenesis (35). Further studies are warranted to get
more validation, but the promising results suggest that glucose
hypometabolism and reduced GABA-A receptors might be the
important hallmarks of early epileptogenesis.

Neuroinflammation is another pathological hallmark in one
of the major pathophysiologies for epileptogenesis (42). The
investigation of inflammation can be performed using a PET
scan with radioligands that bind to18-kDa translocator protein
(TSPO). TSPO is reported to be highly expressed on the
mitochondrial membrane of activated microglia and reactive
astrocytes. In the SRS model of epilepsy, TSPO levels at 14
days post-SE are predictive of SRS frequency at the onset of
epilepsy (36). Subsequently, the same researcher group reported

that TSPO upregulation at 14 days post-SE was associated with
epileptogenesis, while TSPO overexpression at 14 days post-SE
was associated with seizure frequency (37). Although TSPO-PET
results are promising, clinical PET data on this topic is very
limited due to the cost and availability of specific radioligands.

EEG
EEG, either non-invasive scalp recording or invasive
microelectrode recording, is one of the most utilized modalities
in the clinical setting and can monitor brain activity with
high temporal resolution and relatively high spatial resolution.
Several studies have demonstrated specific changes in the
EEG as the potential biomarkers for the early development of
epileptogenesis (Table 2).

High-Frequency Oscillations (HFOs)
HFOs, i.e., ripples (80–250Hz) and fast ripples (250–600Hz),
have been studied and shown to be promising biomarkers for
epileptogenesis markers over the last decade. In the KA-induced
SE model, Bragin et al. reported the appearance of HFOs in the
ipsilateral hippocampi dentate nuclei in rats that later developed
epilepsy. The author also described that the appearance of the
HFO timingwas found to be associated with the delay in the onset
of the first seizure (43). The same group reported different types
of HFOs named repetitive HFO and spikes (rHFOSs), in which
rhythmic spikes at the frequency of 10–16Hz with superimposed
pathological HFOs (80–300Hz). The appearance of rHFOSs in
the injured cortex and around the adjacent injured cortex within
2 weeks from the initial insult in the LFPImodel rats was reported
to more likely develop spontaneous seizures later in life (20, 44).
Although HFOs are typically detected with invasive intracranial
EEG, the advancements in scalp EEG monitoring equipment
enable one to record HFOs on scalp EEG in human studies
(53). In a cohort of children after a first unprovoked seizure, the
presence of scalp ripples can predict the development of epilepsy
(45). Further studies, including patients with TBI and febrile
seizures, can enhance our knowledge of the role of scalp HFOs
as biomarkers of epileptogenesis.

Sleep Spindles and Theta Activity
Changes in the duration and frequency of the sleep spindles,
one of the non-rapid eye movement stage II EEG features, have
also been reported as a possible biomarker for epileptogenesis.
In the LPFI model, Andrade et al. showed that shortening of the
sleep spindles’ duration and reducing of their frequency during
slow-wave to rapid eye movement sleep transition can predict
the development of epilepsy. Furthermore, receiver operating
characteristics (ROC) analysis showed that spindle duration
of <2.13 s (86% sensitivity, 80% specificity) and frequency of
spindle <9.19Hz (64% sensitivity, 60% specificity) could be used
as biomarkers in differentiating rats with seizures from those
without (46). These findings suggest that sleep spindles changes
may be the indicators of widespread functional disturbance in the
thalamocortical circuits following initial brain insult and could be
used as a potential early biomarker for epileptogenesis.

Milkovsky et al. investigated the role of changes in the
hippocampal dynamic in five animal models of epileptogenesis

Frontiers in Neurology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 738658

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chen et al. Biomarkers of Epileptogenesis

TABLE 2 | Overview of EEG biomarkers of epileptogenesis.

EEG biomarkers Animal model Human epilepsy References

HFO KA-induced SE model None (43)

rHFOSs LFPI model None (20, 44)

Scalp ripples None Children after a first unprovoked seizure (45)

Sleep spindles LPFI model None (46)

Theta band Multiple rat and mouse models None (47)

Epileptiform activity None PTE and TSC (48–51)

Background asymmetry None Epilepsy after stroke (52)

HFO, High-frequency oscillations; rHFOSs, repetitive HFO and spikes; KA, kainic acid; SE, status epilepticus; LPFI, lateral fluid percussion injury; PTE, posttraumatic epilepsy; TSC,

tuberous sclerosis complex.

using the intrahippocampal recording. Among five frequency
bands, changes in the dynamic of the theta band on days 2–4 post
brain injury showed more than 90% sensitivity and specificity
in predicting the animal which would develop epilepsy (47).
Overall this finding is intriguing, but given the invasiveness
nature of intracranial electrodes, further studies using non-
invasive source modeling may help further validating the finding
as early epileptogenesis in the human.

Epileptiform Abnormalities and
Background Asymmetry
The relation between epileptogenesis and scalp EEG findings
such as interictal epileptiform discharges, lateralized periodic
discharges, background EEG asymmetry, and electrographic
seizures has been reported in humans. Although earlier studies
in the 20th century do not give much yield in predicting
the occurrence of epilepsy in patients with TBI (54), a recent
retrospective study reported that during the acute traumatic
phase, the presence of EEG interictal and ictal epileptiform
abnormalities, such as sporadic interictal epileptiform discharges,
lateralized or generalized periodic discharges, and seizures, are
correlated with the development of the PTE at 1 year follow
up (48). Punia et al. reported a similar result in adult patients
that electrographic seizures or lateralized periodic discharges
were related with the development of epilepsy after TBI (49).
Two prospective multicenter studies investigated the role of
scalp EEG in the infants with tuberous sclerosis complex.
Among several EEG abnormalities, the author reported that the
epileptiform discharges, not the hypsarrhythmia, showed the
high positive predictive value and low negative predictive value in
the development of epilepsy (50, 51). Furthermore, in addition to
the interictal epileptiform activities, the presence of background
asymmetry plays a role in the early development of epilepsy after
stroke (52).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Here we aimed to provide a comprehensive review of recent
innovations in the role of neuroimaging and EEG as biomarkers
of epileptogenesis after the epileptogenic insult. Identifying
biomarkers of epileptogenesis would greatly facilitate not only
diagnosis and treatment but also the early prevention of epilepsy

in individuals at risk. Although several studies have identified
potentially promising biomarkers for early epileptogenesis, such
as changes in the amygdala T2 relaxation time, PVSs, TSPO-
PET, global and local network connectivity reorganization, and
HFOs, numerous challenges remain to implement the potential
neuroimaging biomarkers to the bedside clinical setting. Firstly,
the resolution capacity of human neuroimage is significantly
lower than animal neuroimage. Thus, the same biomarker
which is reported from animal studies may not be directly
replicated in human studies. Secondly, each potential biomarker
has both disadvantages and advantages, and it is unrealistic
to expect that a single biomarker will epitomize the various
types of epileptogenesis. Therefore, a combination of EEG and
neuroimaging biomarkers might enhance the predictive power
of epileptogenicity. Thirdly, the majority of published data are
at the animal stage (summarized in Tables 1, 2). Before all these
biomarkers can be utilized in the clinical setting, multicenter
studies with standardized acquisition parameters and analysis
procedures are needed to validate the robustness of biomarkers.

Currently, ongoing multicenter research studies are
aiming to find biomarkers and treatments to prevent
epileptogenesis. The European Union 7th Framework–funded
project Targets and Biomarkers for Antiepileptogenesis
(EPITARGET) is a consortium of 18 partners in nine European
countries. In addition, the Epilepsy Bioinformatics Study for
Antiepileptogenic Therapy (EpiBios4Rx), National Institute
of Neurological Disorders and Stroke funded Centers without
Walls study, is a collaborative multicenter international study
conducted in the United States, Europe, and Australia. To data,
biomarkers for epileptogenesis are still in the initial phase of
the process. However, there will be more conclusive innovative
EEG and neuroimaging early epileptogenic biomarkers and
treatments from the multicenter trials to combat epilepsy in the
foreseeable future.
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