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Abstract

Background: The WHO considers leishmaniasis as one of the six most important tropical diseases worldwide. It is
caused by parasites of the genus Leishmania that are passed on to humans and animals by the phlebotomine
sandfly. Despite all of the research, there is still a lack of understanding on the metabolism of the parasite and the
progression of the disease. In this study, a mathematical model of disease progression was developed based on
experimental data of clinical symptoms, immunological responses, and parasite load for Leishmania amazonensis in
BALB/c mice.

Results: Four biologically significant variables were chosen to develop a differential equation model based on the
GMA power-law formalism. Parameters were determined to minimize error in the model dynamics and time series
experimental data. Subsequently, the model robustness was tested and the model predictions were verified by
comparing them with experimental observations made in different experimental conditions. The model obtained

helps to quantify relationships between the selected variables, leads to a better understanding of disease
progression, and aids in the identification of crucial points for introducing therapeutic methods.

Conclusions: Our model can be used to identify the biological factors that must be changed to minimize parasite
load in the host body, and contributes to the design of effective therapies.

Background

The WHO considers leishmaniasis as one of the six
most important tropical diseases worldwide [1]. It is
caused by parasites of the genus Leishmania that are
passed to humans and animals by sandflies of the sub-
family Phlebotominae [2]. Leishmaniasis, which is ende-
mic in 88 countries, has an annual incidence of two
million cases and is estimated to cause over 50,000
deaths per year [3]. The disease has three main forms:
cutaneous leishmaniasis, mucocutaneous leishmaniasis
and visceral leishmaniasis. Visceral leishmaniasis, the
most severe form of the disease, is also known as “kala
azar”, “black fever” or “dumdum fever”. It especially
affects hosts with weak immune systems, such as
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children or adults suffering from malnutrition or HIV.
The human immune response that limits leishmaniasis
is mediated by Thl cells that activate macrophages to
kill the parasite (cellular immunity). When cellular
immunity is deficient, an expansion of Th2 cells occurs
which allows the parasite to survive within the mono-
cytes and fosters disease development [4]. After an incu-
bation period that varies from ten days to two years [3],
typical symptoms are fever, diarrhea, body weight loss,
lymphadenopathy, hepatomegaly and splenomegaly.
Despite all of the current research, there is still a lack of
understanding about the metabolism of the parasite and
disease progression.

Mathematical modeling of the processes involved in
parasite-host interactions has become a necessary tool
in the study of diseases, leishmaniasis being no excep-
tion. A significant part of the modeling work in this
field is epidemiological [5-7]. In addition, models have
also been used to study regulation of gene expression,
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protein synthesis, and metabolism of the parasite at the
genome-wide level [8-10]. The dynamics of parasite-host
interactions in the infection process has also been stu-
died using agent-based modeling approaches [11-13].
For example, Dancik et al. [13] used an agent-based sto-
chastic model of the immune response of mice to L.
major infection to identify parameters that are impor-
tant in changing the dynamics of the infection process,
and to quantify the influence of those parameters. The
authors showed that increasing parasite growth rate
decreases pathogen load in some circumstances.

There are many studies regarding the biology, epide-
miology and immunology of leishmaniasis [5,6,14,7,15],
yet there are fewer studies related to the evolution of
the infection in animal models. A significant reference
for the latter is the work of Courret et al. [16] where
lesion development, cellular response, expression of
cytokines, as well as parasite load in the spleen of
BALB/c mice infected with L. amazonensis is described.
In this vein there are also the works of Arrais-Silva et
al. [17] on the hypoxia-inducible factor-1 from L. ama-
zonensis infection; of Lira et al. [18] on BALB/c mice
symptoms, parasite load and immune response in
C57BL/6 mice infected with L. major; and the work of
Requena et al. [19] and of Dea-Ayuela et al. [20] that
explores the clinical symptoms, parasite loads and anti-
body levels in susceptible, oligosymptomatic and resis-
tant hamsters. The study of Requena et al. [19]
compared these parameters together with lymphocyte
population and proliferation, in two groups infected
with different amounts of parasites and a control group.

In the present work we adopted a systems biology
approach for understanding disease evolution, host-
pathogen interactions, and immune response function.
We performed this task by using experimental time ser-
ies measurements in BALB/c mice infected with L. ama-
zonensis to parameterize a mathematical model that
accounts for immune response and parasite load. Based
on this model we were able to quantify the biological
interrelations between variables, perform predictive
simulations, carry out sensitivity analysis to evaluate the
significance of the system parameters, and solve an opti-
mization problem for minimizing the parasite load. This
analysis contributes valuable information to the drug
discovery pipeline for developing effective therapeutic
methods against leishmaniasis.

Results

Mathematical Model

Experimental measurements obtained in BALB/c mice
were used to fit the parameters of the mathematical
model shown in Figure 1 that accounts for the progres-
sion of Leishmaniasis (see Methods for details). In the
present work we used a general power-law formulation,
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the General Mass Action Power Law formalism (GMA-
PL) that allows for non-integer kinetic orders [21,22]
with the following structure:

dX; ,
w2 = 2o [ &
j k

In the above expression, X;, oy, y; and gj represent the
normalized variable set, the stoichiometric matrix, the
rate constants, and the kinetic orders, respectively. The
variables lymphocytes proliferation (X,), IgG1 (X3) and
IgG2a (X,) were normalized with respect to the respec-
tive value in the control group of mice. Because the
control group is parasite-free, the same approach could
not be used to normalize parasite load. In this case the
variable was normalized with respect to its own mean
value. This standardization reduces the range of varia-
tion of the parameters and computation time, and also
exploits various properties of the GMA-PL formalism
on the behavior of variables and parameters. The speci-
fic numerical values for the parameters oy, y; and g are
determined using prior biological knowledge, informa-
tion about the basal steady-states of the system [21],
and/or dynamical experimental data [22,23]. In power-
law models, kinetic orders can have non-integer values.
One of the main advantages of power-law models is that
they allow for the condensation of several steps into
simplified representations [21,24,25]. The parameters of
the model are kinetic orders and rate constants. Nega-
tive values for the kinetic order represent inhibition,
that is, an increase in its variable leads to a diminution
of the rate involved, while a zero indicates that the vari-
able does not affect the described process. When posi-
tive values are considered for a kinetic order, several
alternatives are possible: values between zero and one
imply a flux that depends on the variable in a saturat-
ing-like manner. Values equal to one imply a flux that
depends linearly on the variable or, in chemical terms, a
first order reaction. By allowing non-integer, positive or
negative, kinetic orders, we are able to consider a larger
class of kinetic models from which we can select a suita-
ble candidate without changing the (original) model
structure.

Figure 1 shows the model scheme of the chosen vari-
ables and the influences among them denoted by arrows
and parameters. g;, ... , g14 stand for kinetic orders
representing influences on the creation or degradation
fluxes (V;) of the four variables.

The total parasite load in the host (X;) stimulates its
immune response. The parasites multiply in macro-
phages by binary division. The parasite load growth (V;)
has a nonlinear dependence on the parasite load
through the kinetic order g;. Increased parasite load
leads to a decrease in the proliferation rate of
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Figure 1 Leishmaniasis progression model. Solid arrows represent synthesis (input arrows) or degradation (output arrows) fluxes (each flux
number notated by its corresponding ¥;); dashed arrows are the signals among processes variables which are quantified by the corresponding
g; value. Positive and negative signs denote activation and inhibition of the corresponding fluxes respectively. See text for the nomenclature.
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lymphocytes (V,); this interaction is represented by the
kinetic order g; [26]. Proliferation (or multiplication) of
T lymphocytes (X,) occurs when naive T cells are acti-
vated by antigens of the pathogen (gs) and then differ-
entiated into effector cells (Thl or Th2) and memory
cells. The activation of lymphocytes is an essential event
in the production of specific immune responses (both
humoral and cellular) against pathogens. Proliferation
was measured following the protocol by Monks et al.
[27] using the Stimulation Index (see Methods). The
lymphocyte proliferation V3 is also stimulated by X,
through ge¢. Cell mediated effectors enhance X; decay
(Vy); this effect is represented by the positive kinetic
order gz [28,29].

The host immune system produces IgG1 (X3) and
IgG2a (X,) antibodies which could be linked to the Th2
and Th1 mechanisms respectively [30,31]. This is repre-
sented in our model through a positive influence of X,
on the rate synthesis of IgG1 (Vs) through gy, and on
the rate synthesis of IgG2a (V;) through g;,. These two
immunoglobulins are antagonistic, so each of them has
a negative influence on the generation rate of the other,
namely X4 on Vs and X3 on V5. These effects are repre-
sented by the kinetic orders gio and g;3, respectively
[32,33]. The IgG2a influences macrophage activity by
stimulating the X; rate decay, V,. This interaction is
represented in our model by the positive kinetic order
g4. It is assumed that the transformation rates V,, Vg,
V5 and Vg are proportional to X;, X5, X3 and X,. These

dependences are represented in the model by the posi-
tive kinetic orders g, gs, g11 and g4, respectively.

Given that every variable has an influx and an outflow,
the stoichiometric coefficients are 1 and -1 for the
synthesis and transformation processes respectively.
Model parameters were determined by fitting the model
to experimental data from mice using a genetic algo-
rithm as described in the methods section.

Accordingly, the power law model derived from the
above scheme is given by:

dX;
dt

dx
d—tz =7.7353 - X{ P X3027 — 6.7737 - X0 . X,
2)

=0.1688 - X9533% _ 0.0432 . X; - X3:0463 . x0.081

dx

7: = 6.7417 - X}8413 . X 00456 _ 83127 . X,
dx.

7: = 43688 - X} . X;010 — 57547 . X,

Figure 2 shows the model data fitting, displaying a
good correlation between the experimental and esti-
mated data.

Model validation

We validated the model by using it to make predictions
about the way the system would behave under initial
parasite loads that were different from those used to cal-
culate parameter models (106 as compared to 103, see
Methods for details). We then performed the corre-
sponding experiments in vivo (see Methods), measuring
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Figure 2 Data fit and predicted model dynamics of the four model variables. The panels under Model Data Fitting shows the data fit for
the time series data of the four model variables. Panels under Predicted Model dynamics show the comparison of predicted and measured
system variable dynamics for an initial parasite load of 10°. The continuous lines indicate the estimated dynamics while the dotted lines indicate
the experimental data. Error bars indicate the standard deviation among mice.
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the four variables described by the model and compar-
ing their observed behavior to model predictions. This
initial number of parasites (which mimics a severe leish-
maniasis condition) was chosen to check the model
capacity to correctly describe the behavior in extreme
and differing conditions of initial parasite load. Since the
model’s main purpose is for the design of therapeutic
strategies, a model able to describe a wide range of
parasite load dynamics is of foremost interest. Figure 2
shows the results obtained. There it can be seen that
the deviation of model prediction from the experimental
data is reasonably good during the initial 20 weeks after
infection (which means that new treatments are applic-
able in this time period) with a parasite load of 10°.
Since the model describes the evolution over the first 20
weeks after infection, the observed discrepancies in the
two experimental conditions considered (model fitting
and validation) can be deemed as reasonable in light of
the associated experimental error. In this regard, we
want to stress the fact that in the experimental data
used for model verification, other elements of the
immune system may be playing a significant role not
addressed by the model, but which could be relevant in
conditions of massive infection.

Sensitivity Analysis

Figure 3 shows the dynamic sensitivity analysis for the
kinetic orders (g;) and rate constants (y;). The System
Parameter Dynamic Sensitivity is noted as S,.; pk is
the parameter under scrutiny and Xi is the considered
variable (see equation 6 in Methods). As is shown, all
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sensitivities have absolute values between 4-10 (S(g;o;
X,)) and 1.83 (S(yy; X1)). The lower value corresponds
to the influence of g4 on the lymphocyte proliferation,
and the higher value measures the influence of the rate
constant associated to the parasite multiplication rate on
the parasite load. This range of values, together with the
observation that the median of the absolute values of
sensitivities is 0.067, indicates a robust model.

In general, the higher sensitivities correspond to the
variable indicated by the arrow, except for the para-
meters directly influencing lymphocyte proliferation (ys,
Y 85 86 g7 and gg). For the parasite load, sensitivities
with absolute values greater than 1 are Sylx1 and Sglx.
This implies that the generation rate of parasites, and
the effect of parasites on their own generation, strongly
influence parasite load. Sensitivity S,,™" is much lower
than SV1X1. All the other parameters yield sensitivities
with absolute values of less than 0.1 for parasite load.
The sensitivity of IgG1 and IgG2a to most of the para-
meters is higher than the sensitivity of lymphocyte pro-
liferation or parasite load to the same parameters. This
could be a consequence of the fact that most of the
values for parameters directly influencing the parasite
load (v1, Y2, 81, €2 g3, and g,) are small (< 1), as opposed
to those directly influencing lymphocyte proliferation.

Systematic search of parameter profiles for the
minimization of parasite load

In order to apply the model for therapeutic purposes,
we carried out a systematic search of parameter values
that minimize the parasite load. The aim was to discover
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the set of parameter values (kinetic constants, g; and
rate constants, v;) that yields a reduced, minimum value
of the parasite load, both during the time of infection
evolution and at the final, 24-week stage.

The search program was organized in two phases. In
the first phase, we changed only one of the parameters
at a time (g; or v;), with the others maintaining their ori-
ginal values. In this case the value of the candidate para-
meter is initially set to 10% of the model estimated
parameter, the following to 20%, 30% and so on, until
the parameter reaches the upper-bound range that was
assumed feasible and physiologically relevant. Then, for
each changing factor, the model solutions were calcu-
lated. In order to evaluate the effectiveness of the
change in parameter value, the mean, maximal and final
parasite loads were calculated. The mean parasite load
reflects the average severity of the disease, the maximal
value accounts for the maximal number of parasites
along the infection dynamics (which has to be lower
than the maximum number of parasites the organism
can bear), and the final parasite load represents the final
outcome of the disease.

Single-parameter search for identification of optimum
parameter values

gi parameter scanning

After a systematic search among all kinetic constants,
we found that g; and gs were the most suitable para-
meters to be changed for reducing parasite load. g;,
describes the influence of parasites on their own prolif-
eration and is the most significant in this regard, since
changes in its value causes the greatest reduction. This
is achieved by increasing g; value from 0.53 to 3. Figure
4A shows the progression of parasite load during a time
period of 24 weeks for values of g; ranging from 0.01 to
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3. Our model suggests that increases in g; from its
initial value (0.53) have a therapeutic effect, because
they lead to a decrease in parasite load and therefore to
healing. It is important to note that for values of g; <
0.5, final parasite load is proportional to g;. However,
for values of g; > 0.5, final parasite load becomes inver-
sely proportional to the value of this parameter. This
latter region includes the actual g; value. This implies
that therapeutic strategies should aim to increase g;. If
decreases are sought, such decreases must be well below
0.5 in order to have a similar effect.

Figure 4B shows that the evolution of the parasite load
decreases right from the beginning, almost linearly
through the 24-week period.

At first glance this result could appear paradoxical and
certainly counterintuitive. But, in fact, the sensitivity of
g, with respect to the parasite load (X), SgIXI, is nega-
tive (see Figure 2), therefore an increase in g; should
lead to a decrease in parasite load. This prediction holds
true for the mean parasite load over a time period of 24
weeks. However, it has been observed that both the
maximum and the final value of parasite load increase
in the beginning until they reach a threshold value and
decrease from that point on. Again, such a decrease in
parasite load indicates that increasing g; produces a
therapeutic effect. The same result has recently been
observed by Dancik et al. [13]. Their model showed that
increasing parasite growth rate (V; in our model, which
is influenced by g;) impairs the pathogen load in certain
stages of the disease. Since the modeling strategy used
by Dancik et al. [13] is different from our approach,
there is not a straightforward translation of the para-
meters. However, there are some correlations between
their findings and our model predictions. In particular,
their analysis [13] indicates that increasing growth rate
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Figure 4 Evolution of the parasite load over time for different values of g,. A. Final parasite load during a time period of 24 weeks for
different values of g;. The dot indicates the position of the original system (g; = 0.53). B. Parasite load over time for g; = 3.
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can, in some circumstances, suppress pathogen loads,
which is what our model also predicts. Due to the parti-
cular formalism we have used, we are able to point to
the increase of g; as the mechanism that increases para-
site growth rate. They reported the same evolution pat-
tern in the parasite load that we found: a higher parasite
growth rate yields a higher increase in pathogen load in
the beginning but also a higher decrease afterwards in
such a way that, as a whole, parasites are eliminated ear-
lier. They observed that infection was cleared after eight
weeks versus the 17-20 weeks in our model, but this
can be attributed to the different Leishmania strain and
the lower initial parasite load (1000 versus 50). The
authors explain this behavior by stating that a pathogen
that proliferates rapidly is more likely to be detected by
the immune system. Therefore, pathogen load decreases
as growth rate increases, with slowly replicating patho-
gens persisting longer than fast growing ones.

Another g; parameter with similarly minimizing effects
on the parasite load is ge. g¢ stands for the influence of
lymphocytes on their own production. It has been
observed that the parasite load (final, maximal and
mean) can be reduced by increasing g¢ from its original
value of 0.02 to 1.02 (Figure 5). This figure shows that
parasite load first increases until reaching a maximum
after 18 to 20 weeks and then abruptly decreases. The
effect of the augmentation of g¢ could be related to sys-
tem immune response enhancement. Lymphocytes need
some time to identify the pathogens, thus there is a
time lag between the start of immune response, the
identification of parasites, and their elimination.
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Accordingly, the parasite load augments until reaching a
point where it suddenly decreases.

¥; parameter scanning

We also carried out a systematic search among all rate
constants. We observed that changes in all 7 parameters
reduce the final parasite load (see Figure 6). The rate
constant that yields the minimum for final, maximal
and mean parasite load is Y, (after slightly increasing its
value), which is the rate constant for parasite degrada-
tion (see Figure 1). Figure 6A shows final parasite load
for different values of 7. Figure 6B shows the effect on
the parasite load for two increased values of 9,: 0.43 and
4.3.

Combined two-parameter searches for identification of
optimum parameter values

We carried out a systematic scanning of all the combi-
nations of two parameters that yielded the minimum
final parasite load. The rationale is that a combination
of drugs makes it possible to reduce the parasite load in
greater quantity, more quickly, and with lighter dosage
than using only one drug. The search was limited to
smaller parameter changes in the range of 60% - 180%
of a parameter’s original estimated value.

We found that a total reduction of the observed final
(as well as the maximal and mean) parasite load can be
attained by simultaneously increasing g; from its origi-
nal value by a factor of 1.6 (approximately), and by
changing any other of the remaining 21 parameters by
different factors (Table 1). The other three variables
(IgG1, IgG2a, lymphocytes) remain almost unchanged

Final parasite load

% 05 1 15

%

Figure 5 Evolution of the final parasite load over time for different values of ge¢. A. Final parasite load during a time period of 24 weeks
for different values of ge. B. Comparison of the predicted evolution of the final parasite load over time for an optimized value of gg (1.02, line)
with the experimentally observed parasite load values (dots). In the experimental set-up the estimated value for gg is 0.022.

0 5 10 15 20 25
Time (weeks)




Langer et al. BMC Systems Biology 2012, 6:1 Page 8 of 14
http://www.biomedcentral.com/1752-0509/6/1
N
4 25 =
3.5
A 2 B
3
=
5 25 °
2" 213
g 2 2
z o
-
515 4 1
=
[
1
0.5 *
0.5
. . e =
0 1 2 3 4 5 0 5 10 15 20 25
s time (weeks)
Figure 6 Evolution of the parasite load over time for different values of y,. A. Final parasite load during a time period of 24 weeks for
different values of v,. B. Parasite load over time for (y,)original (0.043, dotted line); 0.43 (discontinuous line); 4.3 (continuous line) and experimental
data (dots).

(results not shown). Figure 7 shows all possible combi-
nations of two parameters and the optimum predicted
final parasite load. Aside from the best combinations
(see Figure 7, black column and file) g; and g, are also
good choices for the minimization of parasite load. The
remaining combinations also produce a reduction of
parasite load, but to a lesser degree, and are considered
to be of minor interest.

By way of illustration, Table 1 show the parameter
change factor for the two-parameter combinations invol-
ving g; (black column and file in Figure 7). Interestingly,
the solutions that lead to the lowest parasite loads have

Table 1 Parameter change factors for the two parameter
combinations involving g;.

Parameter FC(g,)/ Parameter FC(g4)/
combination FCpy combination FCpy
gy 173/067  91/9s 1.77/0,81
9y 178/160  g1/9s 178/1,74
91/73 179120 gi/g, 1.78/1,49
/s 179/079  g1/9s 1.76/1,20
9/Ys 178/126  g1/ge 177/1,18
I/Ye 179/094  g1/g1o 177176
a/ys 179120 gi/gn 1.79/1,58
I/ys 179153 gi/gr» 1.77/1,65
91/9; 177/083  g1/9:3 1.79/1,54
91/95 179/095  g1/gw4 1.74/092
91/94 1.79/1,21

The Parameter combination columns stand for the combination of parameter
while the FC(g,)/FCpk columns indicate the ratio between the factor change
(FQ) of the original value or g1 over the FC of the corresponding parameter
(<]

values for most parameters that are approximately 80%
higher than their basal values. Exceptions include vy, y4,
Yo 82 83, 85, and gi14. Their values are reduced by factors
ranging from 5 to 85% (see Table 1).

Discussion

The standard leishmaniasis treatments are chemother-
apy based, though some new treatments are based on
the use of immunotherapy. In our model, the che-
motherapeutical agents are those that target parasite
destruction (g,) or inhibit proliferation (g;), whereas
immunotherapeutic treatment implies changing para-
meters g, ... gg and 83, 84> 86 88 Zo» 812 IN most cases
the exact interaction mechanism of the drug is not yet
known, though it is possible to associate them to the
corresponding parameters that are being influenced. It is
important to mention that if a given therapeutic agent
has an influence that is not represented by any of our
model’s parameters but corresponds with the in- or out-
flux of a model variable, the effect of this agent can be
translated in our model by a change in the respective
rate constant vy;.

Regarding drug therapy, we have found three para-
meters which cause parasite load reduction: g;, which
describes the influence of parasites on their own prolif-
eration; g¢, which represents the influence of lympho-
cytes on their own proliferation; and y,, the rate
constant for parasite degradation.

Examination of the standard drugs used for leishma-
niasis treatment shows that most are aimed at parasite
destruction. In our model that translates a an increase
in y,, the rate of parasite destruction [34], an
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Figure 7 Optimized final parasite load obtained for each possible combination of two parameters of the system. The parasite load of

Parameter

observation that is coherent with our model’s predic-
tions. This is the case for several standard treatments
such as amphotericin B (partially inhibits the completion
of the parasite’s membrane), antimonials (decrease bio-
synthesis of energy in the amastigote), and itraconazole
and pyrazolopyrimidines (inhibit the parasite growth).
Other substances currently under evaluation, such as
betle leaves extract (reduces viability of promastigotes),
interferon (actives macrophages that reduce parasite
load), and IL-12 (stimulates Thl) also increase y,. These
observations constitute a pragmatic, a posteriori verifica-
tion of our model’s predictions.

Most of the therapeutic drugs used also seem to
inhibit, albeit through different mechanisms, parasite
proliferation: aminoglycosides alter parasite messenger
RNA, pentamidine inhibits polyamine and DNA synth-
esis in the parasite, imidazole and itraconazole inhibit
demethylation of membrane, and pyrazolopyrimidines
block protein synthesis and destroy parasite RNA. All
these effects can be interpreted, in terms of our model,
as a decrease in g;. The discrepancy in our model’s
predictions can be explained by several facts. First, in
all cases where a decrease in g; could be assumed,
there is also the concomitant effect of increasing y,, as
noted above. Thus, a trade-off of these two actions
should be previously evaluated in order to have an
accurate account of the whole drug effect. Second, it

should be taken into account that the effect of a g;
modulation could be different depending on the stage
of the disease. It has also been shown that if parasites
replicate quickly, the immune system is able to recog-
nize them more easily [13]. Parasites use mechanisms
like inhibition of antigen presentation to escape
immune response, however, a high growth rate induces
massive macrophage recruitment [13]. At this point it
should be stressed that our model considers the infec-
tion from the very initial stage. A third explanation
could be that the parasites produce a certain molecule
that stimulates an immune response of the body.
(While investigating a model of tuberculosis infection
[35], it was also found that the partial rank correlation
between growth rate and extracellular bacteria is nega-
tive in a certain time interval.)

The factor that increases the influence of parasites on
their own proliferation (gl) is crucial according to our
model’s results; and currently, no pharmaceuticals that
increase gl have been tested against Leishmania. Insu-
line-like growth factor 1, interferon, and possibly TNF-a
cytikine could be considered as potential targets for sti-
mulating parasite replication inside macrophages, and it
would be of great interest to test their anti-leishmanial
effectiveness. Insuline-like growth factor also increases
the number of parasites (y;) and reduces parasite-toxic
production of nitric oxide (yy).
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Furthermore, no existing drug is known to have an
effect on gg, which, in our analysis, is also seen as a pos-
sible effective pharmaceutical target. This clearly points
to the new, potential application of existing and current
therapeutic strategies.

The approach used for detecting key processes that
must be regulated in order to reduce parasite load also
allowed us to identify combinations of two drugs that
would eventually be more effective than a single drug
treatment. As is showed in Figure 7, combinations of
drugs able to increase g; or g, and simultaneously
change any other parameter, or, alternatively, combina-
tions of drugs that decrease g; together with the
change in another parameter, would cause significant
reduction in the final parasite load. These findings
greatly amplify the number of therapeutic options
available, although they still remain to be tested. By
way of illustration, we could suggest the combination
of any of the available drugs that increase g, (ampho-
tericin B, aminoglycosides, antimonials, pentamidine
imidazole, itraconazole, and pyrazolopyrimidines)
together with any of the following: interleukin-5,6,13
and MHC class II molecules (both increasing g3),
rLmSTI1 (increase in g4), and chemokines (that
increase g3 and g, simultaneously). In the same mouse
model we will test the effects on the variables of differ-
ent drug combinations to verify the model’s predic-
tions and to eventually refine and extend the model by
including new variables and mechanisms.

A limitation of the present approach is that our model
is a simplification and does not include a detailed
description of all the factors involved in the interaction
mechanism of the drug in the body. However, given that
these mechanisms are often not known, the modeling
approach constitutes an approximation to the under-
standing of a complex dynamic system based on avail-
able information and informed hypothesis.

Conclusions

In the present work we have illustrated a novel
approach for the design of effective therapeutic strate-
gies for leishmaniasis treatment. The approach is
based on the integration of experimentally available
information on infection development in an animal
model using a mathematical model that describes the
system dynamics observed. Many of the predictions
concur with the standard practice, while others
remain to be explored. We are confident that this
rational, model-based approach is of great interest
given that it overcomes the limitations of a trial and
error strategy, and provides an extra layer of rational-
ity in the search for new therapeutic formulas. This
approach is also readily applicable to other parasitic-
related illnesses.
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Methods

Mice

BALB/c mice, 6-8 weeks old, were obtained from the
animal breeding facilities of the Universidad de La
Laguna. The experimental protocols used were approved
by the Animal Care and Use Committee of the Univer-
sity of La Laguna (Approval ID number 132).

Parasites and experimental infection of mice
Amastigotes of MPRO/BR/77/LTB0016 strain of L.
amazonensis were prepared from infected BALB/c mice,
retaining full virulence. Promastigotes derived from tis-
sue amastigotes were then grown in Schneider’s insect
medium, pH 7.2, supplemented with 10% heat-inacti-
vated fetal bovine serum, 100 U/ml penicillin and 100
pg/ml streptomycin at 26°C.

In order to follow up the evolution of the infection,
10° (10° in case of the verification experiments) station-
ary phase L. amazonensis promastigotes contained in 30
ul of PBS, were injected subcutaneously into the tarsi of
right hind leg of 20 BALB/c. In 8 of the 20 mice the
response of IgG1 and IgG2a antibodies was evaluated
every 2 weeks during the 28-week period of study. The
cellular response and parasite load were also measured,
for which we had to sacrifice four mice at 8, 16 and 24
weeks of infection.

Parasite quantitation

Estimates of the parasite number present in infected
organs were done as described in Buffet et al. [36]
which allowed for quantifying the parasite load from tis-
sue homogenates.

Serial threefold dilutions ranging from 1 to 1/3 x 107
were prepared twice for each homogenate in wells of 96-
well plates, containing 200 pl of Schneider’s insect medium,
pH 7.2, supplemented with 10% heat-inactivated fetal
bovine serum, 200 U/ml penicillin and 200 pg/ml strepto-
mycin. After 7 and 10 days at 26°C, each well was examined
and defined as positive or negative based on the presence or
absence of viable promastigotes. A limiting dilution analysis
was applied to the data to estimate the number of viable
Leishmania expressed as Limiting Dilution Assay Unit. The
total number of parasites per gram (parasite load) was cal-
culated by equation 4, where D+ is the last dilution positive
and Po is the weight of the piece of tissue.

1/D+ 3)

Parasite load =

Antigen

The soluble antigen of the parasite (LaAgS) used for
enzyme-linked immunosorbent assay (ELISA) determi-
nation and splenocytes proliferation assay was obtained
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from stationary phase cultures of MHOM/BR/77/
LTBO0016 strain promastigotes of L. amazonensis and
according to Larreta et al. [37].

Antibodies

The specific antibody response levels of IgG1 and IgG2a
against LaAgS were determined by indirect ELISA in
serum of BALB/c mice. ELISA assays were carried out
using standard conditions. Microtiter plates were coated
with 0.8 pug per well of the antigen. The sera from the
mice were assayed at 1:80 dilutions. As secondary anti-
body the HRPO-conjugated goat anti-mouse IgG1 and
IgG2a were used to 1:8000 and 1:1000, respectively. We
used two groups of 8 mice, one experimental and one
control.

Lymphoproliferation

In vitro lymphoproliferation assays were carried out to
measure the capacity of the LaAgS to stimulate the lym-
phocyte multiplication or proliferation, as indicative of
the capacity of the parasite to produce a specific
immune response. The lymphocytes were aseptically
removed from spleens of experimental and control
BALB/c mice and disrupted in PBS with 1% FCS. The
cells were centrifuged, the erythrocytes were lysed in a
lysis solution (150 mM NH,4Cl, 10 mM KHCOj3;, 1 mM
EDTA, pH 7.4) and remaining cells were finally resus-
pended to a density of 2.5 x 10° cells/ml in DMEM con-
taining 10% FCS, 2 mM L-glutamine, 0.05 mM 2-
mercaptoethanol, 12 mM HEPES, pH 7.1, 100 IU/ml
penicillin and 100 pg/ml streptomycin. Lymphocytes
were divided into 100 pl aliquots (2.5 x 10 cells) in 96-
well plates and they were allowed to proliferate for 3
days at 37°C in an atmosphere containing 5% CO, and
95% humidity in the presence or absence of LaAgS
(final concentration 40 pg/ml).

Proliferation was measured by SRB assay, following
the protocol by Monks et al. [27]. Absorbance due to
the incorporation of the SRB coloring to anionic pro-
teins of viable lymphocytes, as an index of proliferation
stimulation, was measured using a micro plate reader at
570 nm (Model 680; BIO-RAD). Stimulation index of
the lymphocyte proliferation (SI) of experimental mice
was calculated according the following equation:

_ XAbsTw — XAbsCw

SI
Cutoff

(4)

where X Absr, and X Absc, stand for the average
absorbance value for the antigen treated wells and the
average of the average absorbance value for the control
wells (only DMEM), respectively. The Cutoff point was
calculated as the average difference between the treated
wells absorbance minus the control wells absorbance

Page 11 of 14

plus 3 SD (standard deviation) of the absorbance of lym-
phocytes of control mice. The Cutoff was established for
each assay. We used two groups of 12 mice, one experi-
mental and one control. All assays were performed in
triplicate with four mice representing each group.

Parameter estimation

In the power-law model used, the parameters of the
model, kinetic orders (g;) and rate constants (y;) were
estimated from experimental data using a genetic algo-
rithm adapted for power-law models [22,38]. The initial
population of solutions is generated through a random
exploration of the search space, which is defined using
feasible intervals of values for the parameters. The best
individuals of the population are selected in the consid-
ered iteration based on the value of the following objec-
tive function:

2
1 Nyar  Mip ()(] (tt) - X,EXP (t1)>

Nya,

(5)

Foyj =

Tj=1 =1

where n,,, is the number of variables monitored and
1y, the number of time points when each variable was
measured. In turn, Xj(t;) is the predicted value for the jth
variable at the i time point obtained after numerical
integration of the solution, while X;P(t;) is the value of
the j observable variable at the i time point measured
in the experiment. This objective function has been
tested in other case studies [22,38] showing that it is
independent of time and therefore will not be affected
by the measurements schedule. We consider it to be
well suited for this type of fitting problem. The objective
function takes into account the 24-week period for
which there is available experimental data of all vari-
ables; in the fitting process all variables are weighted
equally. The fitting process stops if either the objective
function converges below a threshold value or the maxi-
mum number of iterations is exceeded. The first criter-
ion is fulfilled when it reaches objective function values
smaller than a previously defined one. The second
occurs when it reaches a certain number of generations.
However, it is possible to set up a combination of both
so that parameter estimation stops when a solution with
an objective function value below a predetermined para-
meter is reached, or a certain number of generations
have been explored. Every few generations a controllable
number of individuals of the total population are
selected, and the objective function-defined surface is
submitted to local scrutiny taking as starting points
selected individuals. For each starting point, parameters
are changed in a small and random amount and the
new objective function is evaluated. If the new value is
lower than its initial value, the new set of parameters is
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adopted, otherwise the original parameters are kept. In
our present case we used a combination stopping criter-
ion, namely 1000 generations, as the maximal number
of iterations, and an objective function value smaller
than 0.2.

Parameter estimation was executed from the pre-
viously obtained time series of experimental data after
normalization [39]. All y; were permitted to vary within
the range [0,10] and the g; within the range [0,3], except
the parameters g,, gs, g11 and g4 which were set to 1
since they relate variables with their own outflow (V,,
V4, Ve and Vg, respectively). This model hypothesis is a
biologically plausible one that permits reduction in
terms of the number of parameters. These ranges come
from physiological as well as kinetic considerations. Pro-
cesses in which kinetic orders are greater than 3 are
rarely observed since this corresponds to processes or
reactions with extreme sensitivity to changes in one of
the reactants. A similar reasoning applies to higher y;
values, although in this case the admissible range is
wider. However, in the optimization search we used
greater ranges. The rationale is that in the optimization
search we can assume possible wider ranges as physiolo-
gically acceptable because the optimized system would
correspond with altered kinetic behavior with the use of
drugs or other therapeutic agents.

Parameter estimation using 1000 iterations which
required a computation time of 96 hours. The objective
function value finally reached was 0.0517, with a maxi-
mal absolute error between interpolated data and model
of 0.5828. In accordance with the objective function
definition, this measures the average distance between
the experimental data and the model. Since the standar-
dized experimental variation values range between 0 and
2.5, an objective function value of 0.0517 means an
average relative error lower than 5%, which is less than
the experimental error and therefore enough to ensure
that the model represents the experimental data.

All variables in the model are normalized. Parasite
load is normalized with respect to its proper mean and
the remaining variables are normalized with respect to
the control group of mice. This standardization reduces
the range of variation of the parameters and computa-
tion time and also exploits various properties of the
GMA-PL formalism concerning the behavior of variables
and parameters. Initial values of parasite load between
10'° and 0.01 were implemented, comparing them in
terms of the objective function. The smaller the mini-
mum of the objective function, the better the model
(with the respective initial value) fits the experimental
data. Of the initial values for which simulations meet
the criterion f,,; < 0.2, we found that the best fit and
lowest objective function was attained with 10 as the
initial value for parasite load in the group infected with
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10® parasites. Therefore 10® was used as the initial
value in that group.

Model selection strategies

The topology of the model is assumed to be as it appears
in Figure 1. There are different models according to the
number of parameters used; the most general model has
22 parameters. In other simplified models the value of
certain parameters were assumed to be zero or one [21].
Among the different strategies of model selection for
finding the one that yielded the “best” fit, we finally chose
to specify a fixed value of the objective function and,
accordingly, selected models that fell below this value.
Out of these, we chose the simplest model, that is, the
model with the least number of parameters.

Dynamic Sensitivities

Sensitivity analysis is a tool useful for model robustness
evaluation and system dynamics characterization. Since
our model studies the system dynamics, this tool enables
us to identify the parameters with major influence on
the transient dynamics. We have used the System Para-
meter Dynamic Sensitivity, S,,, defined in equation 6:

Ago — Ak) Dy,

P2 =k ) |pr2 — pil (6)
Pr

S¥(X,, pe) = sgn (

In the above expression, Xi is the considered variable,
while pk is the parameter under scrutiny. Ak,2 is the
area below the solution curve after a change of pk to
pk2. Ak is the area under the solution curve using the
original value pk. Dk is the area between the two solu-
tion curves, using pk and pk,2, respectively. In our ana-
lysis we have considered changes in the two kinds of
parameters, kinetic orders and rate constants. The Skai
value corresponds to the variation of the area under the
variable time course after perturbation in parameter
space. For each model variable the absolute values of
the area A; between the original curve and the abscissa,
the area Ay, between the new curve and the abscissa
and the area D between the original and the new curve
are calculated using the trapezoidal method. Positive
sensitivity means that the area under the “new” curve is
greater than the area under the original curve, i.e., that
the parameter pk has a positive influence on variable Xi.
Negative sensitivity means the opposite. Zero sensitivity
means that small changes in the parameter have no
influence on the variable. All sensitivities were com-
puted for standardized variables.
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