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Abstract

The evolutionary dynamics of a finite population where resident individuals are replaced by

mutant ones depends on its spatial structure. Usually, the population adopts the form of an

undirected graph where the place occupied by each individual is represented by a vertex

and it is bidirectionally linked to the places that can be occupied by its offspring. There are

undirected graph structures that act as amplifiers of selection increasing the probability that

the offspring of an advantageous mutant spreads through the graph reaching any vertex.

But there also are undirected graph structures acting as suppressors of selection where this

probability is less than that of the same individual placed in a homogeneous population.

Here, firstly, we present the distribution of these evolutionary regimes for all undirected

graphs with N� 10 vertices. Some of them exhibit transitions between different regimes

when the mutant fitness increases. In particular, as it has been already observed for small-

order random graphs, we show that most graphs of order N� 10 are amplifiers of selection.

Secondly, we describe examples of amplifiers of order 7 that become suppressors from

some critical value. In fact, for graphs of order N� 7, we apply computer-aided techniques

to symbolically compute their fixation probability and then their evolutionary regime, as well

as the critical values for which they change their regime. Thirdly, the same technique is

applied to some families of highly symmetrical graphs as a mean to explore methods of sup-

pressing selection. The existence of suppression mechanisms that reverse an amplification

regime when fitness increases could have a great interest in biology and network science.

Finally, the analysis of all graphs from order 8 to order 10 reveals a complex and rich evolu-

tionary dynamics, with multiple transitions between different regimes, which have not been

examined in detail until now.
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Introduction

In recent times the evolutionary theory on graphs has become a key field to understand biolog-

ical systems. Although evolutionary dynamics has been classically studied for homogeneous

populations, there is now a wide interest in the evolution of populations arranged on graphs

after mutant spread. The process transforming vertices occupied by residents into vertices

occupied by mutants is described by the Moran model. Introduced by Moran [1] as the Markov

chain that counts the number of invading mutants in a homogeneous population, it was

adapted to subdivided population by Maruyama [2, 3] and rediscovered by Lieberman et al.

[4] for general graphs. For undirected graphs where edges have no orientation, mutants will

either become extinct or take over the whole population, reaching one of the two absorbing

states, extinction or fixation. The fixation probability is the fundamental quantity in the sto-

chastic evolutionary analysis of a finite population.

If the population is homogeneous, at the beginning, one single vertex is chosen at random

to be occupied by a mutant individual among a population of N resident individuals. After-

wards, an individual is randomly chosen for reproduction, with probability proportional to its

reproductive advantage (1 for residents and r� 1 for mutants), and its clonal offspring

replaces another individual chosen at random. In this case, the fixation probability is given by

F0ðrÞ ¼
1 � r� 1

1 � r� N
¼

rN� 1

rN� 1 þ rN� 2 þ � � � þ r þ 1
: ð1Þ

If the population is arranged on vertices of an undirected graph, the replacements are lim-

ited to the vertices that are connected by edges. According to the Isothermal Theorem [2–4],

the fixation probability F(r) = F0(r) if and only if the graph is isothermal (i.e. the temperature

Ti = ∑j*i 1/dj of any vertex i is constant, where j is a neighbor of i and dj is the number of

neighbors of j), or equivalently regular (i.e. the degree di of any vertex i is constant). But there

are graph structures altering substantially the fixation chances of mutant individuals depend-

ing on their fitness. As showed in [4], there are graph structures that amplify this advantage.

This means the fixation probability function F(r)> F0(r) for all r> 1 for the same order N.

Notice that F(1) = 1/N and the inequality must be reversed for r< 1. Due to the exact analyti-

cal computation of the probability F(r) given by Monk et al. [5], it is known that star and com-

plete bipartite graphs are amplifiers of natural selection whose fixation functions are bounded

from above by

F2ðrÞ ¼ F0ðr2Þ ¼
1 � r� 2

1 � r� 2N
: ð2Þ

On the other hand, there are also graph structures that suppress the reproductive advantage

of mutant individuals so thatF(r) < F0(r) for all r> 1. Examples of this kind of graph struc-

tures were known for some fitness values (see [6]). In [7], we presented examples of suppressors
of natural selection of order 6, 8 and 10, denoted by ‘6, ‘8 and ‘10, whose fixation probabilities

remain smaller than F0(r) for every r> 1 (see Fig 1).

The analysis of disadvantageous mutants (with r< 1) is also interesting when comparing

amplification and suppression of selection for graphs, but here, for simplicity, we focus on the

case of advantageous mutant (with r> 1). On the other hand, different initialization and

updating types have been also considered in [8] and [9], see also [10] for a comparative analysis

of update mechanisms. If the initial distribution is uniform (i.e. the probability that a vertex

will be occupied by the initial mutant is equal for all the vertices) and the graph evolves under

Birth-Death updating, Hindersin and Traulsen showed in [9] that almost all small undirected

graphs are amplifiers of selection. Assuming both conditions and focusing on the
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advantageous case, we distinguish two different evolutionary regimes (out of the isothermal

one): given values 1� r0 < r1� +1, a graph is an amplifier of selection for r 2 (r0, r1) if the fix-

ation probability function F(r) > F0(r) and a suppressor of selection for r 2 (r0, r1) if F(r) <
F0(r) for all r0 < r< r1. Star and bipartite complete graphs are amplifiers for r 2 (1, +1) and

graphs ‘6, ‘8 and ‘10 are suppressors for r 2 (1, +1). There are also suppressors that become

amplifiers from some critical value rc> 1 (see Fig 2). In this case, we say rc is a transition
between both evolutionary regimes. In general, we say that the evolutionary dynamics of a

Fig 1. Suppressors of order 6, 8 and 10 for any fitness value. In [7], we called ‘-graph the undirected graph of even order N = 2n + 2� 6 obtained

from the clique K2n by dividing its vertex set into two halves with n� 2 vertices and adding 2 extra vertices. Each of them is connected to one of the

halves of K2n and with the other extra vertex. The ‘-graphs ‘6, ‘8, and ‘10 are shown in the figure, together with the functionsF(r) −F0(r) which have

been symbolically computed to evidence the suppression of selection.

https://doi.org/10.1371/journal.pone.0200670.g001

Fig 2. Suppressors that become amplifiers. (A) Examples of order 6 from [11] with a unique transition at rc� 2.82 and rc� 4.56

respectively. (B) Examples of order 7 from [6] having a unique transition at rc� 79.15 and rc� 1.98 respectively. In both cases, we use

identification numbers from [11] to facilitate any search in our database. Each graph is shown with the functionF(r) −F0(r), which has been

symbolically computed.

https://doi.org/10.1371/journal.pone.0200670.g002
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structured population presents a transition at rc> 1 if there are values 1� r0 < r1� +1 such

that the graph is a suppressor (resp. an amplifier) for r 2 (r0, rc) and an amplifier (resp. a sup-

pressor) for r 2 (rc, r1).

In this paper, we show the complete distribution of the three evolutionary regimes (isother-

mal, amplifier and suppressor) for all graphs of order 10 or less, exactly for order 7 or less and

extremely accurate for fitness values varying from 0.25 to 10 with step size of 0.25 for other

orders. In particular, we corroborate a previous observation by Hindersin and Traulsen [9] on

random graphs of small order by showing that most graphs of order 10 or less are amplifiers or

suppressors that become amplifiers from a unique transition rc> 1.

The exhaustive identification of suppressors in order 6 and 7 allows us to describe a sup-

pression mechanism similar to that of ‘-graphs [7] and clique-wheels [12]. The existence of

topological configurations favoring the suppression of selection opens the way to the search of

specific suppression mechanisms in biological networks.

We also exhibit two other types of transitions which might also have important

consequences:

• There are amplifiers of order greater or equal to 7 that become suppressors from a unique

transition rc> 1.

• There are graphs of order greater or equal to 8 exhibiting more than one transition.

For finite populations, it has been suggested that results obtained for weak selection may

remain valid when the selection is no longer weak. However, in [13], Wu et al. showed that

this is no the case for homogeneous populations under frequency dependent selection. Here,

we show that the phenomenon can happen in a structured population even when the selection

is frequency independent. Moreover, the fact that the survival chances of mutant individuals

may decrease with respect to a homogeneous population when their fitness increases might

have interesting biological consequences.

In fact, a family of graphs of order� 12 that change from amplifier into suppressor as r
increases has recently been shown in [14] by using numerical simulation. But, for the three

graphs of order 7 that exhibit this change of regime, we know that there is a unique transition

as we have symbolically computed their fixation probability for any r> 1. We focus on two

graphs which are constructed from the same building blocks and we analyze some possible

generalizations by computing the fixation probability, either symbolically when they have

enough symmetries or solving the system of linear equations (with extreme precision for a

large range of fitness values) otherwise.

Because of the expected properties of the rational functions F0(r) and F(r) (as monotoni-

cally increasing functions with decreasing derivatives), the last two results were not exactly

expected. But the existence of multiple crosses for these curves leads us to consider these prop-

erties that will be commented in the discussion section (see also S1 Text). The non-uniqueness

of transitions also implies that numerical simulation is not enough to determine the evolution-

ary regime of a graph. Indeed, if there are no transitions or if there is only one transition, we

can infer the regime of a graph of the simulation for a narrow range of fitness values. But if

there are graphs with multiple changes of regime, it is not possible.

Materials and methods

In [11], we presented an extremely precise database of fixation probabilities for all undirected

graphs of order 10 or less for fitness values r varying from 0.25 to 10 with step size of 0.25 (see

details below). From the analysis of this database, we firstly detected suppressors described in

[7], and later regime transitions described here. Initially, we identified two amplifiers of order
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7 with a transition to the suppression regime at some rc� 10. Then we envisaged to describe

the complete distribution of the different evolutionary regimes (isothermal, amplifier, and sup-

pressor) of all graphs of order 10 or less using the barcode technique. This has revealed that

undirected graphs have a complex and rich evolutionary dynamics that are worth studying in

detail. We have also adapted the technique described in [7] (implementing it in C++, see S1

File) to symbolically compute the fixation probability F(r) of all graphs of order 7 or less deter-

mining their evolutionary regime for any fitness value r> 1 (see also details below). Thus, we

have found a third example of order 7 with a transition from amplifier to suppressor at some rc
> 10, and we have proved that these three examples really have a unique transition. The same

method has been also applied to some graphs of greater order generalizing suppressors and

amplifiers that change into suppressors in order to detect some possible suppression mecha-

nisms. When they have not enough symmetries to symbolically compute their fixation proba-

bility, we have proceed according to [11], but solving the system of linear equations for

additional fitness values from 10 to 2,000 with step size of 1).

Mathematical model

Let G be an undirected graph with vertex set V = {1, . . ., N}. In fact, all graphs considered here

will be assumed connected. Denote by di the degree of the vertex i. The Moran process on G is

a Markov chain Xn whose states are the vertex sets S inhabited by mutant individuals at each

time step n. The transition probabilities are obtained from the matrix W = (wij) given by wij =

1/di if i and j are neighbors and wij = 0 otherwise. More precisely, for each fitness value r> 0,

the transition probability between S and S0 is given by

PS;S0 ðrÞ ¼

r
P

i2Swij

wSðrÞ
if S0 S ¼ fjg;

P
i2VnSwij

wSðrÞ
if SS0 ¼ fjg;

r
P

i;j2Swij þ
P

i;j2VnSwij

wSðrÞ
if S ¼ S0;

0 otherwise;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð3Þ

where

wSðrÞ ¼ r
X

i2S

X

j2V

wij þ
X

i2VnS

X

j2V

wij ¼ rjSj þ N � jSj ð4Þ

is the total reproductive weight of resident and mutant individuals. The fixation probability of

each subset S� V inhabited by mutant individuals

FSðrÞ ¼ P½ 9n � 0 : Xn ¼ V j X0 ¼ S � ð5Þ

is a solution of the system of 2N linear equations

FSðrÞ ¼
X

S0
PS;S0FS0 ðrÞ ð6Þ

with boundary conditions F;(r) = 0 and FV(r) = 1. The (average) fixation probability is given

by

FðrÞ ¼
1

N

XN

i¼1

FfigðrÞ: ð7Þ
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Denoting by P(r) = (PS,S0(r)) the transition matrix, Eq 6 can be written as

P (r) ¢©(r) =
1 0 0

b(r) Q(r) c(r)

0 0 1

¢
0
@

0
ª(r)
1

1
A =

0
@

0
ª(r)
1

1
A = ©(r), ð8Þ

with respect to the block decomposition of P(r) and Φ(r) obtained from the decomposition of

the power set PðVÞ into absorbing states S = ;, V and non-absorbing states S 6¼ ;, V. In other

words, Φ(r) = (0, Ψ(r), 1) is the vector with coordinates FS(r), (1, b(r), 0) is the vector with

coordinates PS,;(r), and (0, c(r), 1) is the vector with coordinates PS,V(r) for any subset S� V. It

can be also rewritten as

ðI � QðrÞÞ �ΨðrÞ ¼ cðrÞ; ð9Þ

where I is the identity matrix of size 2N − 2. This equation has a unique solution Ψ(r) whose

coordinates are rational functions on r with rational coefficients [7, S1 Text]. But considering

Eq 3, we can multiply the equation associated to each state S by wS(r) reducing Eq 9 to

Q�ðrÞ �ΨðrÞ ¼ c�ðrÞ; ð10Þ

where the entries of Q�(r) and c�(r) are now degree one polynomials with rational coefficients.

Database

In [11], we presented an accurate database of the fixation probabilities for all connected undi-

rected graphs with 10 or less vertices, which means 11,989,763 graphs excluding the trivial one

with one single vertex. The generation of the edge lists was done with SageMath, whereas the

computation of F(r) was written in the C programming language. Firstly, we compute the

matrix Q�(r) and the vector c�(r). Since their entries are polynomials of degree one with ratio-

nal and positive coefficients, they can be represented as two pairs of 64 bits integers. Therefore

there is no precision loss in this step. Next, we evaluate Q�(r) and c�(r) for each fitness value r
varying from 0.25 to 10 with step size of 0.25, and solve Eq 10 with a high relative precision LU

decomposition algorithm (relative errors for isothermal and complete bipartite graphs, used as

benchmarks, are less that 1014, see [11] for details). Each graph is identified (up to isomor-

phism) with a unique 64 bits unsigned integer, which allows us to recover the edge list without

previous knowledge of its order or size, see again [11] and references therein for details. The

database is available from [15].

Computation method

A method to compute the exact (average) fixation probability F(r) of graphs of small order

with symmetries was described in [7]. As we already said, F(r) = F0(r)/F00(r) is a rational func-

tion where the numerator F0ðrÞ ¼
Pd

i¼0
airi and the denominator F00ðrÞ ¼

Pd
i¼0

biri are poly-

nomials with rational coefficients of degree d� 2N − 2. Symmetries are used to bound the

degree d and therefore the number 2(d + 1) of coefficients involved in the computation of

F(r). Since F(r) converges to 1 as r! +1, we can assume ad = bd = 1 and then Eq 6 can be

replace with a system of 2d linear equations

Xd

i¼0

air
i ¼ FðrÞð

Xd

i¼0

bir
iÞ ð11Þ

that arise from evaluating F(r) for fitness values r 2 {1, . . ., d + 1, 1/2, . . ., 1/d}. There is some

Evolutionary regime transitions in structured populations
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sort of indetermination on the system due to the fact thatF0(r) and F0 0(r) may have common

factors. Then, one could pick up any solution of the system (they are different representations

of the same rational function) or reduce the bound of d until one have one single solution (cor-

responding to the canonical representation of the rational function with coprime numerator

and denominator). We developed a C++ program with this algorithm, available from S1 File,

which allows us to symbolically

• compute the fixation probability F(r) for these values, and

• solve the reduced linear system Eq 11.

OnceF(r) has been computed solving this system, we can determine the regimes and the tran-

sitions of the graph by computing the sign and zeros of the rational function F(r) −F0(r).

Results

As explained by Hindersin and Traulsen in [9], the early constructed examples of amplifiers

and suppressors seem suggest that it could be easier to construct suppressors of selection than

amplifiers of selection. It is true when one focuses on directed graphs, but as shown in [9],

most undirected (Erdös-Rényi) random graphs of small order are amplifiers of selection under

Birth-Death updating. Here, we corroborate this observation by showing that most undirected

graphs of order N� 10 are amplifiers of selection for fitness values r� 10. Furthermore, we

describe the distribution of isothermal graphs, amplifiers of selection, and suppressors of selec-

tion for fitness values varying from 0.25 to 10 with step size of 0.25. In fact, for the 996 graphs

of order 7 or less, the fixation probability has been symbolically computed (see Computation

Method). Results are gathered in Table 1, which is one of our main results. The number, type

and place of transitions for all graphs of order 7 or less are given in S1 Table. We can observe

that transitions do not only occur at high values of the fitness, but also at values close to r = 1.

On the other hand, to confirm the number of transitions in greater orders, we have enlarge the

range of fitness values (varying now from 10 to 2,000 with step size of 1) for which the system

of linear equations Eq 6 is solved. Even so, as we have specified in the introduction, the

Table 1. Number and percentage of isothermal and suppressor graphs, as well as graphs exhibiting one or more transitions. Graphs are determined up to isomor-

phism, so any graph cannot be mapped to each other via a permutation of vertices and edges. For graphs of order 6 and 7, the fixation probability has been symbolically

computed to exactly give type and place of each transition. These data are gathered in S1 Table. All exact results are marked in bold. However, for graphs of order 8 and

more, we must distinguished between suppressors and ‘apparent suppressors’ as fitness values only vary between 1 and 10. Despite this, additional computations for some

higher values of the fitness r (varying from 10 to 2,000 with step size of 1) seem exclude more than two transitions in order 8 and 9 and more than three transitions in

order 10.

N # Iso Sup 1 Trans 2 Trans 3 Trans

6 112 5 (4.46%) 1 (0.89%) 6 S/A (5.36%)

7 853 4 (0.47%) 3 (0.35%) 52 S/A (6.10%)

3 A/S (0.35%)

8 11,117 17 (0.15%) 90 (0.81%) 427 S/A (3.84%)

36 A/S (0.32%)

3 S/A/S (0.03%)

9 261,080 11 (<0.01%) 1,951 (0.75%) 9,489 S/A (3.63%)

854 A/S (0.33%)

43 S/A/S (0.02%)

6 A/S/A (<0.01%)

10 11,716,571 167 (<0.01%) 91,110 (0.78%) 407,001 S/A (3.47%)

40,974 A/S (0.35%)

3,086 S/A/S (0.03%)

578 A/S/A (<0.01%)

19 S/A/S/A (<0.01%)

N = Order, # = Number, Isotherm = Isothermal, Sup = Suppressor, Trans = Transition, S/A = Transition from suppressor to amplifier, A/S = Transition from amplifier

to suppressor, S/A/S = Double transition Suppressor/Amplifier/Suppressor, A/S/A = Double transition Amplifier/Suppressor/Amplifier, S/A/S/A = Triple transition

Suppressor/Amplifier/Suppressor/Amplifier.

https://doi.org/10.1371/journal.pone.0200670.t001
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number of amplifiers and suppressors of selection is only apparent since the fitness values are

limited to a more or less large interval.

Thus, in order 6, there are exactly one suppressor of selection, namely the graph ‘6

described in [7] (see Fig 1), five isothermal graphs, and six suppressors that become amplifiers

from a unique critical value. The remaining 100 graphs are amplifiers of selection. Two of sup-

pressors changing into amplifiers was already described in [11] (see Fig 2(A)). All the graphs

portrayed in the paper are gathered in S1 and S2 Figs with indication of their identification

numbers, names, regimes and transitions.

Amplifiers and suppressors of order 7

A close look to the barcode diagram for the 853 graphs of order 7 (as shown in Fig 3) reveals a

new phenomenon: we distinguish two amplifiers that become suppressors from a critical value

rc� 10. From the symbolic computation of the fixation probability F(r), we find three sup-

pressors of selection, namely Id 1134281908237, Id 1134281902105, and Id 1151998128135,

and a number of suppressors that later become amplifiers of selection, namely 52, including

the suppressors presented in [6] and depicted in Fig 2(B). Moreover, we find indeed three

amplifiers Id 1151592835082, Id 1151860745228, and Id 1151592837126 becoming suppres-

sors at rc� 4.98, rc� 6.37 and rc� 24.79 respectively. A quantitative resume is given in

Table 1.

Is the suppression of selection a specific property of each of graphs listed above? Or can one

infer some suppression mechanism that could even reverse an amplification regime? To

answer these questions, at least partially, we have focused on some of these graphs showing

certain similarities.

Regime transitions for ℓ-graphs

The two first suppressors Id 1134281908237 and Id 1134281902105 are shown in Fig 4. For

reasons of convenience, we have added a third graph Id 1151998648333 with a unique transi-

tion from the suppression to the amplification regime at rc� 5.17. Their construction is very

similar to ‘-graphs defined in [7]. Recall that ‘N ¼ ‘
n;n
N is an undirected graph of even order

N = 2n + 2� 6 obtained from the clique K2n by dividing its vertex set into two halves with

n� 2 vertices and adding 2 extra vertices. Each of them is connected to one of the halves of

K2n and with the other extra vertex (see Fig 1). More generally, we denote by ‘
n;m
N the undi-

rected graph obtained adding two interconnected extra vertices to the clique KN−2 and con-

necting each one to disjoint families of vertices in the clique having n and m elements with

n + m� N − 2. We say that ‘
n;m
N is balanced if n = m and unbalanced otherwise. As is also

Fig 3. Barcodes describing regime transition of graphs of order 7. Each horizontal line corresponds to a graph, and

color represents the evolutionary regime for the given fitness: blue color corresponds to the suppression regime and

red color to the amplification regime. (A) Unsorted data for suppressors and graphs with one transition. (B) Sorted

data for suppressors and graphs with one transition.

https://doi.org/10.1371/journal.pone.0200670.g003
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established in S1 Fig, the third graph depicted in Fig 4 is precisely ‘
2;2

7
. Notice also that only the

case n + m = N − 2 was considered in [7].

For the three graphs in Fig 4, the suppression mechanism seems directly related to the sup-

pressor nature of ‘-graphs [7] and clique-wheels [12]. Indeed, on a star graph, it is more likely

that a peripheral mutant survives and reproduces occupying the central vertex. On the con-

trary, on a complete graph, it is much more unlikely that the initial mutant will survive sur-

rounded by residents. But in ‘-graphs and clique-wheels, the survival chances of the mutants

placed at the central clique are reduced by its connection with peripheral vertices occupied by

residents, as well those of the peripheral mutants connected with central residents, although a

subtle balance seems to be needed to suppress the reproductive advantage of mutant individu-

als. To confirm this idea, we explore evolutionary regimes and transitions of some balanced

and unbalanced ‘-graphs.

In [7], we saw that a subtle balance in the peripheral connections was necessary to the global

suppression. More precisely, some unbalanced ‘-graphs of order 7, namely ‘
1;4

7
and ‘

2;3

7
, were

studied in [7] using Monte Carlo simulation. Both are suppressors: the first one changes into

amplifier from a relatively small fitness value, whereas the second one remains a suppressor

for any fitness value r� 10. Now, due to the new symbolic computation, we know that both

present a unique transition (from the suppression to the amplification regime) at rc� 1.80 and

rc� 25.47 respectively. Therefore, we can surmise that only the balanced ‘-graphs with n +

m = 2n = N − 2 are global suppressors.

In order 8, we consider the graphs ‘
2;2

8
, ‘

2;3

8
, and ‘

1;4

8
which are represented in Fig 5. They still

are suppressors that become amplifiers from critical values rc� 4.15, rc� 5.32 and rc� 1.89

respectively.

Due to the symmetries, the symbolic computation is also applicable to the graphs ‘
2;2

N when

N varies from 6 to 15. The exact differences F(r) −F0(r) are depicted in Fig 6 although the

monotonous behavior of transitions can be better seen in S2 Table. As before, all these graphs

are suppressors with a unique transition to the amplification regime.

In summary, there are reasons to accept the existence of a suppression mechanism shared

by ‘-graphs and clique-wheels (in the sense of [12] and [14]), although we think that new tech-

niques of potential theory on directed graphs will be probably required to identify any mathe-

matical underlying principle. For this purpose, ‘-graphs have some interest since their state

spaces (described explicitly in [7]) are simpler than those of the family of clique-wheels. We

ignore if this particular mechanism could has biological interest (although somewhat similar

rules have been detected in neural networks), but we think that the existence of suppression

mechanisms (especially those that reverse the amplification of selection when the fitness

increases) has a real interest in biology and network science.

Fig 4. Suppressors for weak selection and beyond. From the symbolic computation of the differencesF(r) −F0(r), we know that the graphs Id

1134281908237 and Id 1134281902105 are suppressors for any fitness value, while Id 1151998648333 exhibit a unique transition Suppressor/Amplifier

at rc� 5.17.

https://doi.org/10.1371/journal.pone.0200670.g004
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Transitions from the amplification to the suppression regime

As we have already said, in order 7, there are three amplifiers Id 1151592835082, Id

1151860745228, and Id 1151592837126 that become suppressors from critical values

Fig 6. The exact differences Φ(r) −Φ0(r) for the graphs ℓ2;2N . (A) Even orders. (B) Odd orders. Initial evolutionary

regimes are distinguishable from the graphs of the functionsF(r) −F0(r) associated to the graphs ‘
2;2

N when N varies

from 6 to 15, while transitions can be observed in the zoomed images. The exact places of transitions are specified in S2

Table.

https://doi.org/10.1371/journal.pone.0200670.g006

Fig 5. ℓ-graphs of order 8. From the symbolic computation of the differencesF(r) −F0(r), we know that the graphs ‘
2;2

8
, ‘

2;3

8
and ‘

1;4

8
(with

identification numbers Id 38605195624473, Id 38605195632653 and Id 38605187250242) have a unique transition of type Suppressor/Amplifier at rc�
4.15, rc� 5.32 and rc� 1.89 respectively.

https://doi.org/10.1371/journal.pone.0200670.g005
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rc� 4.98, rc� 6.37 and rc� 24.79. According to our aim, we have focused on the first and

the last of these graphs which are constructed from the same building blocks (see Fig 7). As

before, we would like to infer some suppression mechanism from the analysis of these spe-

cific examples.

We say that Id 1151592835082 is a friendship cycle FC2
7

and Id 1151592837126 is a friendship
star FS4

7
. A friendship cycle FCm

N is a cycle Cn where m disjoint pairs of neighbors are connected

to an extra central vertex so that two vertices have at most one neighbor in common, the total

order N being equal to n + 1. In a friendship star FSmN , two neighbors can share two different

neighbors, but they cannot be connected either to each other, nor to another new neighbor.

Additionally, one single vertex can belong to more than two 3-cycles composing a friendship

subgraph (to distinguish it from a friendship ribbon FRm
N where no vertex can belong to more

than two 3-cliques, see Fig 8). Here N is the number of vertices and m is the number of

3-cliques.

We have symbolically computed the fixation probability F(r) for the friendship cycles FC2
N

with N = 7, 8, 9 proving that they are amplifiers transformed into suppressors from fitness val-

ues rc� 4.98, rc� 3.12, and rc� 2.45 respectively (see Fig 9(A)). For greater orders N varying

from 10 to 15, we have used the symmetries to reduce the size of the system of linear equations

Eq 6 and then we have solved the system for the usual fitness values (from 0.25 to 10 with steps

of 0.25). The differences F(r) − F0(r) are shown in Fig 9(B). The graph FC2
10

shows a transition

in the interval [1, 10], but it is not clear that the others friendship cycles FC2
N evolve from the

amplification to the suppression regime. Similarly, the friendship cycle FC3
10

(see S2 Fig) is an

amplifier that becomes a suppressor from rc� 4.09.

On the other hand, we have also symbolically computed F(r) for the friendship star FS6
10

showing that it becomes a suppressor at rc� 9.96. However, since there are not enough sym-

metries to reduce the system of equations, this approach could not be pushed any further. As

this also happens to FR6
10

, we have computed the fixation probability by solving the system of

linear equation Eq 6 for the usual fitness values, seeing that FR6
10

remains an amplifier for any

r� 10. Then we have extended the interval to r = 2000 without finding any transition, so this

is probably a global amplifier. Both graphs are also depicted in S2 Fig.

As before ‘-graphs, friendship cycles and friendship stars seem to illustrate new mecha-

nisms of suppression, whose underlying principles need to be studied and compared with

those of clique-arms described in [14].

Fig 7. Amplifiers that become suppressors. From the symbolic computation of the differencesF(r) −F0(r), we know that the

friendship cycle FC2
7

(with identification number Id 1151592835082) becomes a suppressor from rc� 4.98, and the friendship

star FS4
7

(with identification number Id 1151592837126) becomes a suppressor from rc� 24.79.

https://doi.org/10.1371/journal.pone.0200670.g007

Evolutionary regime transitions in structured populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0200670 November 26, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0200670.g007
https://doi.org/10.1371/journal.pone.0200670


Amplifiers and suppressors of order 8 and more

Another interesting phenomena is also revealed by the barcode diagrams in order greater or

equal to 8: there are multiple transitions as shown in S3, S4 and S5 Figs. The existence of dou-

ble transitions of type Suppressor/Amplifier/Suppressor is clearly visible in S3 Fig. The three

graphs of order 8 with double transition are portrayed in S6 Fig. For graphs of order 9, to this

type of double transitions we must add a few transitions of type Amplifier/Suppressor/Ampli-

fier, as shown in S4 Fig. A number of double transitions (of both types) is also shown in S5 Fig

for the graphs of order 10. Note the emergence of regular patterns that suggest some kind of

regularity in the distribution of transitions. But in fact, as shown in S5 Fig, there are triple tran-

sitions for a few graphs of order 10. As we said before, the number of transitions are only

apparent because we cannot be sure that there will not exist other transitions for these orders.

However, extending the fitness values for which the system of linear equation Eq 6 is solved,

we have confirmed that there is no new transitions between r = 10 and r = 2000 for these few

graphs. Subject to this caveat, Table 1 gives a detailed account of the proportion of amplifiers

and suppressors of selection, as well as that of graphs exhibiting one or more transitions.

Discussion

Initially motivated by our interest in the robustness of biological and technological networks

against invasion [16], we decided to compute the fixation probability of all graphs with 10 ver-

tices or less, totaling 11,989,764 graphs, to facilitate general searches without specific aims. As

Fig 8. Friendship cycles, stars, and ribbons. The friendship cycle FCm
N , the friendship star FSmN and the friendship

ribbon FRm
N where N is the number of vertices and m is the number of 3-cliques.

https://doi.org/10.1371/journal.pone.0200670.g008
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explained in Materials and Methods, we solved (by Gaussian elimination) the system of linear

equations Eq 6 for each graph and for each fitness value varying from 0.25 to 10 with step size

of 0.25. Collected data has been published in [15] and details has been explained in [11].

Our first search focused on extremal graphs (from the point of view of the evolutionary

regime), and in this way we found some graph structures suppressing the advantage of mutant

individuals occupying their vertices for any fitness value. This property seems particularly

appealing for biological networks like brain and protein-protein interaction networks, but also

in the tumor initiation process within healthy tissues as proposed in [17]. Most graph struc-

tures reduce in a very slight amount the advantage of a invading mutant, but some suppression

mechanisms could be amplified by repetitive rules (such as those described in [18] and [19] for

neuronal networks) involved in the modular architecture of many biological networks.

More concretely, in [7], we have developed symbolical and numerical computations to

show the suppressing nature of a family of graphs, called ‘-graphs, which generalizes the only

suppressor ‘6 of order 6.

Fig 9. The differences Φ(r) −Φ0(r) for the friendship cycles FC2
N with N varying from 7 to 15. (A) For N = 7, 8, 9,

the differencesF(r) −F0(r) have been symbolically computed and therefore they are exact. (B) For 10� N� 15, the

differences F(r) −F0(r) have been computed by reducing the number of linear equations and solving the reduced

system for the usual fitness values between r = 1 and r = 10. They are not exact, but extremely accurate.

https://doi.org/10.1371/journal.pone.0200670.g009
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From the serendipitous discover of amplifiers that change into suppressors, we proposed

ourselves to identify the global distribution of amplifiers and suppressors of selection, with or

without transitions, for order 10 or less. We have used the database mentioned above for this

purpose, showing in particular that most graphs of order 10 or less are amplifiers of selection.

In spite of the complexity of some amplifier structures [4] and the effort required to prove that

nature [5, 6, 8, 20, 21], this confirms the observation made by Hindersin and Traulsen [9] for

random graphs of small order.

Some suppressors that become amplifiers were also known, but we exhibit here new exam-

ples (gathered in S1 Fig) whose suppression mechanism seems similar to that of clique-wheels

[12] and ‘-graphs [7]. However, for graphs of order N = 7, there is another type of transition:

we initially found two amplifiers that become suppressors from critical values rc� 4.98 and

rc� 6.37. But for greater orders, the change of evolutionary regime is more amazing because

some graphs exhibit more than one transition. As before, for N = 8, these graphs has been

detected from the barcodes diagram S3 Fig and then identified and represented in S6 Fig by

means of the database [15]. All double transitions are identical of type Suppressor/Amplifier/

Suppressor.

Contrary to the idea that results obtained for weak selection may remain valid out of this

case (see [13] and references therein for a discussion about this problem), these observations

indicate that some graph structures can dramatically alter the evolutionary regime of a struc-

tured population, even reversing the amplification of the survival likelihood of advantageous

mutants, as their fitness increases. In our opinion, this fact has important biological and theo-

retical implications.

As the analytical computation of the fixation probability for these graphs does not seem fea-

sible for now, we have adapted the method described in [7] running a new C++ program (see

S1 File) to symbolically compute the fixation probabilities of all graphs of order 7 or less. This

method has been also applied to compute the fixation probability of some graphs of greater

order with enough symmetries. In particular, this has allowed us to exactly determine the

number and the place of transitions for these orders, gathered in Table 1 and S1 Table, which

constitute one of the main results of the paper. In this way, we have also found a third amplifier

of order 7 with a transition at rc� 24.79, and consequently we have become interested in the

evolutionary regime of friendship cycles and friendship stars portrayed in Fig 8.

More generally, for graphs of order N = 9, only simple and double transitions are visible

in S4 Fig, whereas triple transitions are distinguishable in S5 Fig for order N = 10. In the first

case, there are 6 graphs with double transitions of type Amplifier/Suppressor/Amplifier

among a total of 49 graphs with more than one transition. In the second one, we found 19

graphs with triple transitions, all of the same type Suppressor/Amplifier/Suppressor/Ampli-

fier. All these remarks are part of Table 1. Given the number of graphs of order 9 and 10

having some double or triple transition, it would be tedious (and hard without enough

symmetries) to symbolically determine the exact number of transitions for each graph, so it

cannot be excluded the (unlikely) existence of new transitions. However, additional compu-

tations for higher fitness values (varying from 10 to 2,000 with step size of 1) seem exclude

this possibility.

As we already said, although transitions between different evolutionary regimes were

known (see [6, 9, 11] and [14]), theses results reveal that undirected graphs have a complex

and rich evolutionary dynamics admitting multiple transitions between different regimes. This

poses new challenges in computing fixation probabilities and times because the numerical sim-

ulation cannot always provide accurate answers to extremal problems on fixation probabilities,

nor probably on absorption or fixation times. In other words, from the simulation on a narrow

range of fitness values, we cannot infer the persistence of a certain evolutionary regime for
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higher values. Only analytical or symbolical computation can evidence the persistence of such

regime.

Our techniques can be easily adapted to compute absorption or fixation times for graphs of

small order with enough symmetries. Analyzing the case of disadvantageous mutants (with

r< 1) is feasible with the same techniques. Although we have focused our analysis on the aver-

age fixation probability, all computations have been made separately once the initial placement

of the mutant has been fixed. How this placement affect the evolutionary regime depending on

the fitness is something that can be described, whether all vertices have the same probability to

be chosen or this probability is proportional to the temperature. The last initialization proce-

dure, called temperature initialization in [8], is perhaps is more plausible from a biological

point of view.

More difficult, however, is to change the updating method from Birth-Death to Death-

Birth because, while the fixation probabilities are still rational functions, the involved polyno-

mials are in general of higher degree. The underlying reason is that one cannot multiply by a

reproductive weight to obtain a system of equations as in Eq 10. This makes the computation

more difficult or even unfeasible.

Finally, all barcode diagrams, but specially those of graphs of order 10, show very particular

patterns in the distribution of transitions, which are worth exploring. On the other hand, the

existence of multiple transitions has been established, but this fact is somewhat surprising. Ini-

tially, we thought that the functions F0(r) and F(r) were not only increasing, but also concave

functions for r> 1 (i.e. with negative second derivative for all r> 1), so we did not expect mul-

tiple crossings. Now we know that F0(r) is not concave for all population sizes, but only for

N = 2, 3, 4, 5.

In the limit for large populations and for weak selection, we have uniform convergence in

class C0, but not in class C1. So qualitative changes may appear near r = 1. Furthermore, from

the symbolic computation of first and second derivative of F(r) for any graph of order N� 7,

we know that all functions associated to graphs or order 4 or less are concave. In order 5, the

complete graph and the cycle (the other graph of constant degree) are concave. In fact, r = 1

is an inflection point. For degree greater than 5, the map F0(r) is convex around r = 1 and

becomes concave at some point (see S1 Text).

So, what are the features of the graphs leading to multiple transitions and their particular

distribution is an important issue for future work. But the main challenge is to translate dif-

ferential features of suppressors (as it has been achieved with some isothermal graphs and

amplifiers) into features of their state spaces in order to compute their fixation probabilities

and to identify the mathematical principles on which their suppression mechanisms are

based.

Supporting information

S1 Text. On some properties of Φ0(r) and its limit as N!∞. Proofs of some facts on the

concavity of the function F0(r).
(PDF)

S1 File. C++ program. To compute the fixation probabilities of small order graphs for any fit-

ness value r> 1, we ran a new C++ program available from https://bitbucket.org/geodynapp/

phasetransition.

(ZIP)

S2 File. Exact fixation probabilities of all graphs of order 7 or less. This repository contains

the output of S1 File, and information about the first and second derivative of all studied
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graphs, including all graphs of 7 or less vertices. Available from https://bitbucket.org/

geodynapp/fixationfunctions.

(ZIP)

S1 Table. Regime transitions from order 2 to order 7. Number, place, and type of transitions

for all connected graphs of order 7 or less.

(PDF)

S2 Table. Regime transitions for graphs ℓ2;2N from order 6 to order 15.

(PDF)

S1 Fig. Suppressors for weak selection (and beyond). All the figures representing suppressors

are gathered with indication of their identification numbers, names, regimes and transitions.

(EPS)

S2 Fig. Friendship cycles, ribbons and stars. Some friendship cycles FCm
N , stars FSmN , and rib-

bons FRm
N of order N = 7 and 10 are compared.

(EPS)

S3 Fig. Barcodes describing regime transitions of graphs of order 8. Each horizontal line

corresponds to a graph, and color represents the evolutionary regime for the given fitness: blue

color corresponds to the suppression regime and red color to amplification regime.

(EPS)

S4 Fig. Barcodes describing regime transitions of graphs of order 9. Each horizontal line

corresponds to a graph, and color represents the evolutionary regime for the given fitness: blue

color corresponds to the suppression regime and red color to amplification regime.

(EPS)

S5 Fig. Barcodes describing regime transitions of graphs of order 10. Each horizontal line

corresponds to a graph, and color represents the evolutionary regime for the given fitness: blue

color corresponds to the suppression regime and red color to amplification regime.

(EPS)

S6 Fig. Graphs of order 8 with a double transition of type Suppressor/Amplifier/Suppres-

sor.

(EPS)
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Methodology: Fernando Alcalde Cuesta, Pablo González Sequeiros, Álvaro Lozano Rojo.
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