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Abstract 

Bayesian phylogeographic inference is a powerful tool in molecular epidemiological studies, which enables reconstruction of the origin 
and subsequent geographic spread of pathogens. Such inference is, however, potentially affected by geographic sampling bias. Here, 
we investigated the impact of sampling bias on the spatiotemporal reconstruction of viral epidemics using Bayesian discrete phylogeo-
graphic models and explored different operational strategies to mitigate this impact. We considered the continuous-time Markov chain 
(CTMC) model and two structured coalescent approximations (Bayesian structured coalescent approximation [BASTA] and marginal 
approximation of the structured coalescent [MASCOT]). For each approach, we compared the estimated and simulated spatiotemporal 
histories in biased and unbiased conditions based on the simulated epidemics of rabies virus (RABV) in dogs in Morocco. While the 
reconstructed spatiotemporal histories were impacted by sampling bias for the three approaches, BASTA and MASCOT reconstructions 
were also biased when employing unbiased samples. Increasing the number of analyzed genomes led to more robust estimates at low 
sampling bias for the CTMC model. Alternative sampling strategies that maximize the spatiotemporal coverage greatly improved the 
inference at intermediate sampling bias for the CTMC model, and to a lesser extent, for BASTA and MASCOT. In contrast, allowing for 
time-varying population sizes in MASCOT resulted in robust inference. We further applied these approaches to two empirical datasets: 
a RABV dataset from the Philippines and a SARS-CoV-2 dataset describing its early spread across the world. In conclusion, sampling 
biases are ubiquitous in phylogeographic analyses but may be accommodated by increasing the sample size, balancing spatial and 
temporal composition in the samples, and informing structured coalescent models with reliable case count data.
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Introduction
Over the past decade, Bayesian discrete phylogeographic inference 
has greatly benefited viral epidemiological studies in unravel-
ing the origin and subsequent spread of viral epidemics (Faria 
et al. 2019; Lemey et al. 2020; Lu et al. 2021), the spatial 
processes driving the viral spread (Müller et al. 2021), and 

environmental or human-related factors associated with the viral 
spread (Lemey et al. 2014; Dudas et al. 2017; He et al. 2022). 

BEAST is a popular Bayesian phylodynamics software package 

commonly used in the analysis of time-stamped viral molecular 

sequences. It offers different discrete phylogeography approaches: 

a popular and computationally efficient discrete phylogeographic
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inference approach that makes use of continuous-time Markov 
chain (CTMC) modeling (Lemey et al. 2009), also known as the 
discrete trait analysis (DTA), and the structured coalescent model 
under its exact and approximated forms (Vaughan et al. 2014; 
De Maio et al. 2015; Müller, Rasmussen, and Stadler 2018). The 
CTMC models migration among discrete locations in the same 
way as nucleotide substitutions are modeled. In other words, geo-
graphical locations are modeled as a neutral trait that evolves on 
top of the tree from the root to the tips. As such, CTMC mod-
eling does not explicitly model the branching process that gave 
rise to the tree. In contrast, the structured coalescent model—
which is an extension of the coalescent model to a structured 
population—is a tree-generating model that explicitly models how 
lineages coalesce within and migrate among subpopulations from 
the present to the past. Two computationally efficient approxima-
tions of the structured coalescent model are available in BEAST2: 
Bayesian structured coalescent approximation (BASTA) (De Maio 
et al. 2015) and marginal approximation of the structured coales-
cent (MASCOT) (Müller, Rasmussen, and Stadler 2018). Currently, 
they both assume constant prevalence through time for each 
deme/population, while the CTMC approach does not (Lemey et al. 
2009).

Bayesian discrete phylogeography approaches are complemen-
tary to mathematical modeling and epidemiological studies and 
are particularly informative when epidemiological data are scarce. 
In such contexts, viral genetic sequences are expected to com-
pensate for the lack of epidemiological data. However, genetic 
samples may constitute a biased snapshot of the underlying viral 
spread, especially when isolated through passive surveillance 
systems. The impact of such sampling bias on discrete phylogeo-
graphic inference has been discussed and examined ever since. 
Indeed, CTMC estimates were suspected to be biased toward 
the most sampled location (Lemey et al. 2009) and, later, sam-
pling heterogeneity was shown to inform the posterior, and more 
specifically the migration parameters, which is not the case for 
BASTA (De Maio et al. 2015). In BASTA, sampling evenness is 
not informative as such and the estimated migration rates are 
more correlated with the true values under simulated biased and 
unbiased conditions compared to CTMC (De Maio et al. 2015). 
As a result, BASTA has been argued to be more robust to sam-
pling bias (De Maio et al. 2015). Nevertheless, the structured 
coalescent model is known to be sensitive to unsampled loca-
tions, known as ghost demes (Beerli 2004; Ewing and Rodrigo 2006; 
De Maio et al. 2015). In parallel, several studies tested alterna-
tive strategies to mitigate the potential effects of sampling bias, 
mostly focusing on CTMC as it was shown to be potentially less 
robust to sampling bias compared to the structured coalescent 
model (De Maio et al. 2015). Downsampling that was tested early 
on but was limited to large datasets (Lemey et al. 2014; Yang 
et al. 2019) rapidly became a prerequisite in any SARS-CoV-2 data 
analysis study due to the large number of available sequences 
and the high sampling heterogeneity between countries (Hodcroft 
et al. 2021). However, Magee and Scotch (2018) showed that infer-
ence accuracy rapidly plateaus when using up to 25–50 per cent 
of the sequence data available (Magee and Scotch 2018). Other
studies aimed at improving inference accuracy by integrating 
additional reliable epidemiological data. For example, the CTMC 
was extended to incorporate information on recent migration 
events using individual travel records (Lemey et al. 2020; Hong 
et al. 2021). More recently, a simulation study focused on quanti-
fying the impact of sampling bias on the reconstructed location 
of internal nodes, on the reconstruction of migration events that 

lead to large local spread as well as on the estimation of migra-
tion rates in a maximum likelihood framework (Liu et al. 2022). 
The authors showed that inference accuracy actually depends 
on multiple factors: the underlying migration rate, the magni-
tude of sampling bias, and the magnitude of traveler sampling. 
Importantly, they observed a lower relative accuracy with biased 
samples and when samples over-represent travelers. Concerning 
the structured coalescent model, Müller, Dudas, and Stadler (2019) 
informed the deme population sizes with reliable case count data 
from the 2014 Ebola epidemic in Sierra Leone using MASCOT. 
This allows modeling time-varying population sizes instead of 
assuming constant population sizes over time. Sampling bias is 
also a concern in continuous phylogeography analyses in which 
other mitigation approaches were tested. Among recent efforts to 
mitigate sampling bias, we here mention the study by Dellicour 
et al. (2021b) in which they analyzed representative subsamples 
of SARS-CoV-2 genomic records from New York City based on hos-
pitalizations rather than case counts to avoid potential bias from 
the testing strategy, the study by Kalkauskas et al. (2021) in which 
the authors incorporated sequence-free (or ‘ghost’) samples from 
unsampled areas, and the study by Guindon and De Maio (2021) 
where the authors accounted for preferential sampling using a 
doubly intractable model.

Although numerous studies tested strategies to deal with 
sampling bias, the impact of sampling bias on discrete phylo-
geographic reconstructions remains insufficiently characterized. 
Here, we compare the performance of the different phylogeo-
graphic methods using viral epidemics simulated under a stochas-
tic metapopulation model, based on RABV epidemics in dogs in 
Morocco. We investigated the impact of sampling bias on the 
spatiotemporal reconstruction of these viral epidemics using the 
CTMC model, BASTA, and MASCOT, with the latter two assum-
ing populations to remain constant over time. Next, we explored 
different approaches to mitigate sampling bias, maximizing the 
spatial and/or temporal coverage of the sample and informing the 
deme sizes under MASCOT with the true (time-varying) case count 
data per location. The latter is to test to what degree biases origi-
nating from assuming constant population sizes over time can be 
mitigated by allowing them to vary over time. Finally, we applied 
the three algorithms to two empirical datasets: a dataset of RABV 
sequences isolated in the Philippines between 2004 and 2010 and 
a global dataset of SARS-CoV-2 genomes associated with the early 
spread of the pandemic.

Results
Simulation framework
We simulated RABV epidemics across three or seven locations 
using a stochastic metapopulation model (Fig. 1A), whose con-
nectivity matrix is parameterized using human population mobil-
ity that we estimated by fitting the radiation model of Simini 
et al. (2012) with the human population density data from 
WorldPop (Fig. 1B). As each location is associated with a spe-
cific deme/population, we refer to the two simulation frameworks 
as the three demes framework and the seven demes framework 
for the remainder of the text. We simulated fifty epidemics that 
started with the introduction of a single case and led to at least 
60,000 cases over a 20- to 30-year period (Fig. 1C). On top of 
the transmission chains, we simulated viral genomes for each 
case and then subsampled, starting one year after the intro-
duction of the index case, either 150 or 500 sequences in a 
biased or unbiased fashion (Fig. 1D). We then performed Bayesian
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discrete phylogeographic analysis on the location-annotated and 
time-stamped sequence alignments before comparing the true 
and reconstructed evolutionary and migration histories for each 
discrete phylogeographic approach. BASTA unfortunately proved 
impractical to infer such histories from large samples of 500 
sequences in the seven demes framework as a result of extremely 
high calculation times. The results for the seven demes frame-
work are presented in the main text, while those for the three 
demes framework are available in the Supplementary Data. Of 
note, we removed 26 per cent of the MASCOT chains on the large 
samples of 500 sequences in the seven demes framework due to 
convergence issues. Importantly, the vast majority of samples in 
the three demes framework contain at least one sequence of each 
deme, which is not the case for the seven demes framework for 
which sampling bias often led to unsampled locations (which we 
also refer to as ‘ghost’ demes).

Robust estimation of the phylogeny and genetic 
parameters with respect to sampling bias
While the focus of our simulation study is on reconstructing the 
spatial spread, we first assess the potential impact of sampling 
bias on estimating the phylogeny itself, as well as the evolu-
tionary parameters (Supplementary Figs. S1–4). The phylogeny of 
the simulated pathogen is not impacted by sampling bias when 
using the CTMC model, BASTA, and MASCOT (Supplementary 
Figs. S1–3), as well as the estimation of the average evolutionary 
rate (Supplementary Fig. S4) although it is slightly underestimated 
notably in the large samples of 500 sequences.

Spatiotemporal history reconstruction under 
(un)biased conditions
As the inferred spatiotemporal histories of lineages cannot 
be compared in a uniquely simple way among the different 
approaches, we used four types of summary statistics: (1) the total 
migration counts—corresponding to Markov jumps in the case of 
CTMC and their equivalent for BASTA and MASCOT—that account 
for multiple migration events along the tree branches (Fig. 2 
and Supplementary Fig. S5), (2) the lineage migration counts 
(Supplementary Fig. S6), (3) the lineage introduction dates into the 
sampled locations (Fig. 3), and (4) the location inferred at the root 
of the tree (Fig. 4). Using these four statistics, we evaluated the per-
formance of the phylogeographic models using five metrics: (1) the 
correlation between true and estimated values using Kendall’s tau 
coefficient, (2) the proportion of estimated parameters for which 
the true value is in the 95 per cent highest posterior density (HPD) 
interval that we refer to as the calibration, (3) the mean rela-
tive bias (MRB) that measures the accuracy of median estimates, 
(4) the mean relative 95 per cent HPD width that measures esti-
mate precision, and (5) the weighted interval score (WIS). Kendall’s 
tau coefficient is a correlation statistic that measures the ordi-
nal association between the simulated and estimated values that 
can be interpreted in the same way as Pearson’s correlation coeffi-
cient. The WIS is a generalization of the absolute error accounting 
for estimation uncertainty (Bracher et al. 2021). Small WIS val-
ues indicate accurate and precise estimation. The WIS is widely 
used to evaluate epidemic forecasts and favors estimates that are 
slightly biased but with a narrow confidence interval compared to 
estimates without bias but with very large uncertainty (Bracher 
et al. 2021).

First, we assess the reconstruction of the spatial process in 
the absence of sampling bias. In the unbiased/representative

(uniform) scenario, CTMC correctly estimates the four types of 
parameters. Indeed, the MRB and the WIS are close to zero, and 
the correlation between the true and estimated parameter values 
is high (from 0.63 to 0.93 depending on the parameter, Fig. 2A,B,E). 
BASTA and MASCOT show no correlation for the total migra-
tion counts on uniform samples and higher MRB and WIS com-
pared to CTMC (Fig. 2A,B,E), indicating biased median estimates 
and higher uncertainty around median estimates. The correlation 
under BASTA and MASCOT is >0.5 when we consider the lineage 
migration counts under both demes frameworks, suggesting that 
the two algorithms only partly recover the global migration pro-
cess in the absence of sampling bias (Supplementary Figs. S6 and 
S11). Overall, CTMC outperforms BASTA and MASCOT when the 
sampling is representative of the true underlying transmission 
process, as BASTA and MASCOT only recover the location of the 
ancestral nodes and not individual migration events.

Second, we evaluate how phylogeographic algorithms perform 
at increasing levels of sampling bias. While CTMC satisfyingly esti-
mates the total migration counts in the absence of sampling bias, 
the correlation and the calibration drop rapidly with increasing 
levels of sampling bias, and the mean relative 95 per cent HPD 
width tends to decrease, suggesting that bias strongly impacts 
CTMC estimates (Fig. 2B–D). Nevertheless, the WIS and the MRB 
remain smaller than those of BASTA and MASCOT, even at high 
levels of bias. Consequently, CTMC leads to median estimates 
that are closer to the true values but with 95 per cent HPDs that 
are too narrow. The CTMC leads to a biased picture of the geo-
graphical process with some transition events that are drastically 
under- or overestimated (Supplementary Fig. S5). BASTA and MAS-
COT less accurately estimate the total migration counts with 
high MRB and WIS. They are also less confident with an average 
95 per cent HPD width that is ten to thirty times higher com-
pared with the CTMC. This uncertainty is exacerbated in large 
samples analyzed with MASCOT in the seven demes framework, 
for which almost 30 per cent (87 out of 300) of the chains have 
low effective sample size (ESS) values often due to the bimodal 
structured coalescent posterior density. Additionally, BASTA and 
MASCOT partly recover the global migration process (lineage 
migration counts) even at high levels of bias since correlation and 
calibration are not impacted by sampling bias (Supplementary 
Fig. S6). When we consider transmission dynamics among three 
demes, BASTA and MASCOT yield higher correlation levels than 
in the seven demes scenario (Supplementary Figs. S9–11), but 
overall, the CTMC offers better performance compared to BASTA
and MASCOT.

When it comes to the estimation of lineage introduction dates, 
BASTA outcompetes the CTMC model and MASCOT under the 
three demes framework (Supplementary Fig. S12A–D) but not 
under the seven demes framework (Fig. 3A–D). In the three demes 
framework, the uncertainty around the median estimate remains 

high for BASTA and MASCOT and the correlation and the calibra-
tion are barely affected by bias for BASTA, contrary to the CTMC 

model and MASCOT. In the seven demes framework, correlation is 
low for both BASTA and MASCOT but not affected by bias. CTMC 

performs poorly at increasing levels of spatial sampling bias with 
a moderate (seven demes) to sharp (three demes) decrease in cor-
relation and calibration. It also tends to estimate more ancient 
lineage introduction dates compared to BASTA and MASCOT in 
both frameworks. Of note, increasing the sample size from 150 
to 500 sequences improves the correlation for CTMC at low and 
intermediate levels of bias (Conditions 2.5, 5, and 10 in Fig. 3B and 
Supplementary Fig. S12B).
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Figure 1. RABV epidemic simulation framework. We simulated realistic epidemics by emulating the scenario of RABV spread in dog populations in 
Morocco. (A) Metapopulation model of rabies spread in dogs. In each geographical location j, the dog population was divided into three compartments: 
susceptible, exposed but not infectious, and infectious individuals. Individuals were born at a rate of 𝑏 and died from natural causes at a rate of 𝛾. The 
rate of infection corresponds to the per-capita force of infection Λ𝑗,𝑡 that aggregates the force of infection from infectors in location 𝑗 and all the other 
locations. Individuals became infectious at a rate od 𝜀. We identified all infected individuals and simulated their infector, incubation period, infectious 
period, and date of death. (B) Connectivity among the seven arbitrary Moroccan regions estimated by the radiation model and estimated dog 
population size per region. Curvature indicates the flux direction. (C) Example for one simulation of the prevalence (first row) and cumulative number 
(second row) of rabid cases per month and location. (D) Graphical illustration of the potential impact of sampling bias on the reconstruction of the 
phylogenetic relationships among viral samples over an epidemic, assuming no intra-host evolution.

Finally, we analyze the impact of sampling bias on root loca-
tion estimation (Figs. 4A and Supplementary Fig. S13A). Of note, 
the posterior probability of the true root location is very hetero-

geneous among the fifty simulated epidemics when there is no or 

little sampling bias, notably for BASTA and MASCOT. Root location 

reconstruction by CTMC is affected by sampling bias, notably in 

the three demes framework (Supplementary Fig. S13A), which is 
in agreement with previous findings (De Maio et al. 2015). BASTA 
and MASCOT perform less well compared to CTMC, at any level 
of bias; however, sampling bias moderately worsens their esti-
mates. They also perform relatively better in the three demes
framework.

Sample balancing mitigates the impact of 
sampling bias
We tested alternative sampling strategies in order to miti-
gate the impact of sampling bias. Large and biased samples 
of 5,000 sequences were generated, and then discrete phy-
logeographic analyses were performed on subsamples of 150 
or 500 sequences, which aimed at reproducing real-life situ-
ations. For example, researchers may have access to numer-
ous viral specimens from biobanks but cannot analyze all of 
them due to computational limitations, potential underlying 
biased sampling that may lead to spurious results, or financial
limitations.
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Figure 2. Impact and mitigation of spatial sampling bias on the estimation of the total migration counts. (A–E) Impact of the increasing levels of 
spatial sampling bias on the MRB, the correlation, the calibration, the mean relative 95 per cent HPD width, and the WIS between the simulated and 
the estimated total migration counts. Uniform samples are representative of the simulated spatiotemporal dynamics of the virus. Samples 2.5, 5, 10, 
20, and 50 samples biased toward Regions 3 and 4. Samples 2.5 and 5 correspond to low levels of bias, Samples 10 and 20 to intermediate levels of bias, 
and Sample 50 to high levels of bias. (F–J) Mitigation of the impact of spatial sampling bias on the MRB, the correlation, the calibration, the mean 
relative 95 per cent HPD width, and the WIS between the simulated and estimated total migration counts by using alternative sampling strategies. In 
the left and right columns, samples are drawn from biobanks with an underlying bias of ten and twenty, respectively. Overall, the algorithms correctly 
estimate the total migration counts when the correlation and the calibration are high (close to 1 and 100, respectively) and when the mean relative 
95 per cent HPD width, the MRB, and the WIS are close to zero. Finally, the MRB and the mean relative 95 per cent HPD width are not defined when the 
true value is null. We removed 612 out of 3,600 and 380 out of 3,600 simulated migration events in the small and large samples, respectively, due to 
null true values.
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Figure 3. Impact and mitigation of spatial sampling bias on the estimation of the lineage introduction dates. (A–D) Impact of the increasing levels of 
spatial sampling bias on the MRB, the correlation, the calibration, and the mean relative 95 per cent HPD width between the simulated and the 
estimated introduction dates. (E–H) Mitigation of the impact of spatial sampling bias on the MRB, the correlation, the calibration, and the mean 
relative 95 per cent HPD width between the simulated and estimated introduction dates by using alternative sampling strategies. In the left and right 
columns, samples are drawn from biobanks with an underlying bias of ten and twenty, respectively.
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Figure 4. Impact and mitigation of spatial sampling bias on the estimation of the root location. (A) The posterior probability of estimating the true root 
state for increasing levels of spatial sampling bias. (B and C) Mitigation of the effects of spatial sampling bias using alternative sampling strategies 
under a surveillance bias of 10 and 20, respectively. Each dot corresponds to the median root state posterior probability in one simulation (n = 50 per 
sampling protocol and sample size).

Similar to the analyses on systematically biased samples, 
the estimation of the total migration counts (Fig. 2F–J), lineage 
migration counts (Supplementary Fig. S6F–J), lineage introduc-
tion dates (Fig. 3E–H), and root location posterior probabilities 
(Fig. 4B–C) is strongly impacted in biased subsamples (uniform 
surv.) for the three algorithms. By maximizing the spatial (region) 
or the spatiotemporal coverage (region + year), the correlation 
and the calibration for the total migration counts increased 
substantially for the CTMC even when the underlying sampling 
bias was high (weight = 20, i.e. sequences from oversampled 
regions are twenty times more likely to be sampled). For BASTA 
and MASCOT, the maximization of the spatial/spatiotemporal cov-
erage does not improve the correlation, but it reduces the MRB and 
the mean relative 95 per cent HPD width, which indicates more 
precise and more accurate median estimates (Fig. 2F–I). Still, per-
formance remains lower for CTMC. In the three demes framework, 

we obtain even stronger improvements in terms of correlation and 
decreased MRB for BASTA and MASCOT (Supplementary Fig. S9). 
Overall, subsampling strategies that maximize the spatial or spa-
tiotemporal coverage considerably improve the inference of the 
geographical spread by the CTMC and improve inference under 
BASTA and MASCOT to a lesser extent.

True incidence data as a predictor of the 
time-varying deme sizes mitigate sampling bias 
in MASCOT
Due to the lack of statistical power (data not shown), we have 
forced all deme sizes to be equal in BASTA and MASCOT and to 
be constant over time, with the latter being currently the default 
assumption of both structured coalescent models. This hypoth-
esis is potentially impactful, given that deme sizes are directly 
related to the migration history in the structured coalescent 
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model (De Maio et al. 2015; Müller, Rasmussen, and Stadler 2018). 
To relax this assumption and allow for time-varying effective pop-
ulation sizes, we next use the monthly incidence data from our 
simulations as a predictor of the deme sizes over time in the gen-
eralized linear model (GLM) extension of MASCOT and denote the 
resulting model as MASCOT-GLM. This approach is not available 
for BASTA.

Here, we are interested in the impact of the parameterization 
of deme sizes on the sensitivity to sampling bias. We thus apply 
MASCOT-GLM on sampling conditions where we test the impact of 
spatial sampling bias, i.e. subsamples from the systematic surveil-
lance analysis and the ‘uni surv.’ subsamples in the surveillance 
bias analysis. By accommodating time variation of deme sizes, the 
correlation, the mean relative 95 per cent HPD width, the MRB, and 
the WIS are markedly improved with MASCOT-GLM compared to 
BASTA and MASCOT for the total migration counts (Fig. 2), lineage 
migration counts (Supplementary Fig. S6), and lineage introduc-
tion dates (Fig. 3) even at high levels of sampling bias under the 
systematically biased conditions (Scenarios 5, 10, 20, and 50) and 
in the biased subsamples (uniform surv.). In addition to the strong 
correlation between simulated and estimated values, the uncer-
tainty around the true value and the bias (MRB and WIS) are 
low compared to BASTA and MASCOT with constant population
sizes.

Analysis of the spread of RABV in the Philippines
As a case study to compare the performance of the three algo-
rithms, we analyze the spread of RABV in dog populations among 
six Philippine islands using 233 sequences of the RABV glycopro-
tein gene isolated between 2004 and 2010 (Saito et al. 2013; Tohma 
et al. 2014). Discrete phylogeography is particularly adapted 
here to model transmission in animal populations across an 
archipelago. In this dataset, sampling is highly heterogeneous 
across the different islands: Luzon represents up to 65 per cent of 
the total dataset, while Oriental Mindoro is represented by a sin-
gle sequence (Supplementary Fig. S14). This heterogeneity is very 
unlikely to be representative of the underlying transmission but 
rather due to the case under-reporting outside Luzon.

Previous studies on RABV in the Philippines suggested that 
although the circulating lineages likely circulate independently 
in the main islands (Saito et al. 2013; Tohma et al. 2014), 
inter-island transmission events can lead to sustained circula-
tion in previously rabies-free islands (Tohma et al. 2016). Here, 
the CTMC model also predicts a highly spatially structured phy-
logeny with few migration events among islands. It reconstructs 
four island-specific clades located in Catanduanes, Luzon, Min-
danao, and Negros Oriental with high node and location posterior 
support (Fig. 5A). BASTA and MASCOT also predict the Catan-
duanes, Mindanao, and Negros Oriental clades with high node 
and location posterior support (Fig. 5B,C). However, the migra-
tion history of the Luzon clade is more uncertain with poten-
tial intense migrations between Luzon and Oriental Mindoro
islands, the most and least sampled islands, respectively. As 
shown in the simulations, CTMC might be overconfident com-
pared to BASTA and MASCOT, but the uncertainty of the two 
approximations of the structured coalescent model might be 
related to the pseudo-ghost demes, i.e. locations for which very 
few sequences are available. As we do not have information 
regarding the number of cases over time, we could not apply 
MASCOT-GLM to this dataset.

Analysis of the early spread of SARS-CoV-2 
across the world
While there is typically no or scarce reliable data on the number 
of new cases in wild and domestic animal populations, such esti-
mates are generally widely available for pathogens infecting the 
human population, as is the case for SARS-CoV-2, dengue virus, 
HIV, and West Nile virus (Gill et al. 2016; Dellicour et al. 2020). 
Here, we compare the phylogeographic reconstructions of the four 
algorithms tested earlier on a dataset of SARS-CoV-2 genomic 
sequences from the early stage of the pandemic (Lemey et al. 
2020). MASCOT-GLM is informed using the seven-day moving aver-
age of case count data either from Our World in Data (Mathieu 
et al. 2020) or from the WHO (World Health Organization (WHO) 
2023). MASCOT-GLM is then referred to as MASCOT-World In Data 
(WID) and MASCOT-WHO, respectively (Supplementary Fig. S15). 
In the original study, the initial wave of SARS-CoV-2 infections was 
investigated using a novel travel history-aware extension of the 
CTMC model, which we here refer to as the CTMC-TRAVEL.

Due to the low number of mutations accumulated in the SARS-
CoV-2 genome at the start of the pandemic, the posterior support 
of internal nodes for each algorithm is low and the tree topol-
ogy is very uncertain (Morel et al. 2021). Besides, we do not 
intend to reconstruct the origins of SARS-CoV-2, which, in any 
case, cannot be addressed solely with phylogeographic analyses 
(Pipes et al. 2021). That is why our comparison focuses on the 
posterior support of four clades originally identified by Lemey 
and colleagues (2020): Clades A, A.1, B.1, and B.4. Clades A.1, 
B.1, and B.4 are recovered with high posterior support by all 
algorithms, whereas Clade A is reconstructed with a satisfying 
posterior support only by CTMC (Supplementary Fig. S16–21). In 
general, CTMC and MASCOT-WHO reconstructions are closer to 
the original one compared to the other algorithms, notably in 
terms of tree topology (Supplementary Figs. S16 and S21) and 
of total migration counts (Fig. 6). As previously shown, BASTA 
and MASCOT lead to more uncertain ancestral migration histories 
with the extreme case of BASTA for which the posterior evolution-
ary rate and the structured coalescent density are bimodal. The 
first mode of BASTA infers a tree topology and a migration history 
that are similar to the CTMC model and CTMC-TRAVEL (Supple-
mentary Fig. S17). For example, the reconstructed location of the 
most recent common ancestor of lineage B.4 is China for CTMC-
TRAVEL, the CTMC model, and the first mode of BASTA, whereas it 
is located in Oceania for MASCOT and the second mode of BASTA 
(Supplementary Table S1). For the latter two reconstructions, most 
of the ancestral branches were not inferred to occur in China and, 
similar to the RABV dataset, they predict the least sampled loca-
tions (Africa and Oceania) to play a major role in the transmission 
process.

When we incorporate incidence data into MASCOT-GLM, 
reconstructions differ strongly between the Our World in Data 
and WHO datasets. While MASCOT-WID reconstruction is uncer-
tain with multimodal total migration counts (Fig. 6) and does not 
reflect the original spread from China (Supplementary Fig. S20), 
the MASCOT-WHO estimated migration counts that are close to 
the estimates of CTMC-TRAVEL (Fig. 6), and its maximum clade 
credibility (MCC) tree is in agreement with the origin of the pan-
demic (Supplementary Fig. S21). Importantly, the two datasets 
differ strongly in how well early cases are covered (Supplementary 
Fig. S15), with the WHO dataset being more representative of the 
incidence over time. Overall and as also suggested by our simu-
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Figure 5. MCC trees and median total migration counts estimated on the rabies dataset. (A–C) MCC trees and a median number of total migration 
counts estimated on the rabies dataset by the CTMC model, BASTA, and MASCOT, respectively. Branch width is proportional to the maximal ancestral 
location probability estimated by the algorithms, and branches are colored by the maximal ancestral location. Posterior support of the Negros 
Oriental, Catanduanes, Mindanao, and Luzon Island lineages is reported. Pie charts displayed at root nodes represent the posterior probability 
distribution of the root location. Median estimates of the total migration counts are reported as heatmaps. Gray tiles correspond to transitions 
associated with a migration rate that is not statistically supported, i.e. with a BF lower than 3.
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Figure 6. Posterior distributions of the total migration counts estimated on the SARS-CoV-2 data. Source locations are displayed in rows and 
destination locations in columns. For CTMC, BASTA, and MASCOT, posterior distributions of the total migration counts with a BF < 3 are not depicted 
but marked as non-significant. We identify bimodal marginal posterior distributions with an asterisk, and we report for each posterior distribution the 
median and 95 per cent HPD. We normalize the width of the violin plots so that the cumulative density is equal to one.

lations, although the structured coalescent model, in principle, 
allows us to mitigate sampling biases, it can itself be highly biased 
when wrong population dynamics are assumed.

Discussion
Sampling bias is a key challenge in phylodynamic inference (Frost 
et al. 2015), as in discrete phylogeography. In its early develop-
ments, the evaluation of the impact of sampling bias on Bayesian 
discrete phylogeography models was restricted by the availability 
of whole genomes (Lemey et al. 2009). The SARS-CoV-2 pandemic 
has led to a paradigm shift as genomic surveillance became part 

of routine surveillance systems around the world (Hodcroft et al. 
2021). Here, we evaluated the impact of sampling bias on dis-
crete phylogeography inference using simulated and real data to 
provide insightful knowledge on how sampling bias affects such 
inference and how it could be mitigated.

Inference performance in the absence of 
sampling bias
In our simulation study, tree topologies match the correspond-
ing simulated transmission chains for all approaches. In addition, 
CTMC leads to high correlation between the simulated and esti-
mated spatiotemporal parameters as well as low relative and 
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absolute error in the absence of sampling bias. Overall, CTMC 
reconstructs the spatiotemporal histories well and its estimates 
are more accurate in large samples. BASTA and MASCOT do not 
correctly infer the spatiotemporal parameters in the seven demes 
framework, but the correlation between simulated and estimated 
total migration counts is slightly improved in the three demes 
framework while remaining lower than CTMC. This could result 
from three different causes. First, we assumed that all deme sizes 
are equal and constant over time in BASTA and MASCOT, the for-
mer to avoid over-parameterization and the latter being the only 
available assumption in current implementations. Such a param-
eterization is more appropriate in the case of endemic circulation 
with limited time-varying dynamics such as local extinctions. 
However, large variations in time and local extinctions occur in our 
simulations meaning that we had to assume incorrect population 
dynamics in BASTA and MASCOT. This is confirmed by the better 
performance of MASCOT-GLM in uniform samples that accom-
modates for the true population dynamics. Second, we would 
expect BASTA and MASCOT to perform better on ‘even’ samples 
that contain approximately as many sequences of each sampled 
location (De Maio et al. 2015). In our simulation study, uniform 
sampling does not imply an even representation of sampled loca-
tions. Indeed, locations where the virus has not circulated much 
are less represented. Such an effect is more pronounced in the 
seven demes framework than the three demes framework, and we 
effectively observe poorer performances of BASTA and MASCOT 
in the seven demes framework. Finally, the structured coalescent 
model is known to be sensitive to ghost demes, i.e. unsampled 
locations (Beerli 2004; Ewing and Rodrigo 2006; De Maio et al. 
2015). As we considered the sampling process to be naive of the 
number of affected locations, locations where the virus has not 
circulated much may remain unsampled. This is true for the 
seven demes framework only for which we observe poorer per-
formance of BASTA and MASCOT compared to the three demes 
framework. However, the impact of ghost deme inclusion and 
potential misspecification on the estimation of the migration pat-
terns remains unclear. While two studies showed that accounting 
for ghost demes in the structured coalescent model improves the 
inference of deme size (Beerli 2004; Ewing and Rodrigo 2006), 
Ewing and Rodrigo (2006) also showed that adding just a few 
sequences from the ghost deme leads to the overestimation of the
migration rate.

Inference performance under sampling bias
We show that the CTMC model, BASTA, and MASCOT are impacted 
by spatial sampling bias in different ways. CTMC performance 
is dramatically impaired with increasing levels of sampling bias. 
This is directly linked to the geographical sampling frequencies 
that inform the likelihood of the CTMC model (De Maio et al. 
2015). It also tends to be overconfident, and this overconfidence 
worsens with stronger sampling bias as previously shown (De 
Maio et al. 2015). However, the impact of sampling bias can be 
mitigated by either using large samples at low levels of sam-
pling bias or controlling for sampling bias by balancing sample 
composition (region and region + year subsamples) at interme-
diate levels of sampling bias. These results were well-replicated 
in a simpler framework of transmission among three locations, 
which rules out the confounding effect of the simulation complex-
ity and unsampled locations on our results (see Section 2 of the 
Supplementary Data).

BASTA and MASCOT do not accurately estimate the total 
migration counts nor the lineage introduction dates under biased 

and unbiased conditions. Nevertheless, the overall migration pro-
cess evaluated by the lineage migration counts is relatively well 
captured with a correlation around 0.5 that is not impacted by 
sampling bias contrary to CTMC in both the three demes and 
seven demes scenarios. We show that the approximations of the 
structured coalescent model are generally less confident than 
the CTMC, which is in agreement with a previous study (De 
Maio et al. 2015), and their uncertainty around median estimates 
increases with sampling bias. We also show that sample compo-
sition impacts the inference of BASTA and MASCOT in the three 
demes framework since correlation levels are strongly improved 
and bias and uncertainty are reduced for all spatiotemporal 
parameters in ‘even’ samples (region and region + year), despite 
the underlying surveillance bias. Still, BASTA and MASCOT esti-
mates display lower correlation with the simulated values, higher 
uncertainty, and higher relative and absolute bias compared to 
CTMC. In the seven demes framework, the results are less clear, 
which may be due to the presence of ghost demes. Interestingly, 
BASTA seems to outperform CTMC and MASCOT in the infer-
ence of the lineage introduction dates in the three demes frame-
work. This result was, however, not replicated in the seven demes
framework.

While structured coalescent methods potentially allow mit-
igating sampling biases as previously shown (De Maio et al. 
2015), assuming incorrect population dynamics very likely intro-
duces biases. Structured coalescent models currently assume 
constant population sizes in all demes and often require the 
additional assumption of equal population sizes to reach con-
vergence and attain proper mixing. When the true underlying 
population dynamics are complex with large differences among 
populations, the models cannot estimate the population sizes 
with low uncertainty and compensate for this issue in the estima-
tion of the migration rates, so ultimately in the migration history. 
We addressed this issue by modeling population dynamics more 
accurately using a GLM approach. Indeed, using incidence data to 
inform population dynamics in MASCOT counteracts the impact 
of sampling bias even at high levels. This result also underlines 
the fact that sampling frequencies do not inform the structured 
coalescent model when population dynamics are known (De Maio 
et al. 2015). It also shows that the inclusion of ghost demes is 
not necessary when the true population dynamics are incorpo-
rated into the model. Overall, our results showcase the impor-
tance of considering the assumptions of population dynamics on 
the ancestral state reconstruction in structured coalescent model 
approximations.

Analysis of empirical RABV and SARS-CoV-2 
datasets
We further compare the approaches on real datasets of RABV 
and SARS-CoV-2. As dog case counts were not available for RABV, 
we compare only CTMC, BASTA, and MASCOT. CTMC predicts a 
highly spatially structured migration process, whereas BASTA and 
MASCOT predict a non-parsimonious scenario. We observe sim-
ilar results for the SARS-CoV-2 dataset. As we have set equal 
deme sizes in BASTA and MASCOT, but a single tip is sampled 
for Oriental Mindoro in the RABV dataset and for Africa in the 
SARS-CoV-2 dataset, BASTA and MASCOT compensate for location 
under-representation by estimating high backward-in-time migra-
tion rates to the under-represented location (Oriental Mindoro and 
Africa). Our results are in line with those given in previous stud-
ies reporting strong differences between the CTMC model and the 
structured coalescent model on real datasets (De Maio et al. 2015; 
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Dudas et al. 2018). However, there is also evidence in the litera-
ture of a good agreement between the two types of models (Faria 
et al. 2017; Brynildsrud et al. 2018; Yang et al. 2019; Mavian et al. 
2020). Such similarities can result from sample composition (at 
least ten sequences per location in Yang et al. (2019)), the parame-
ters used for comparison (probability of clade ancestral location in 
Faria et al. (2017)), prior information (information on the root loca-
tion in Brynildsrud et al. (2018)), or the underlying transmission 
dynamics. Besides, these studies focused on the overall migration 
process that corresponds to the lineage migration counts in our 
simulation study, and we showed that the overall migration pro-
cess is roughly estimated at any level of bias. In brief, we show 
on real datasets that singletons may be inferred as drivers of 
the migration process in an unparsimonious way by structured 
coalescent model approximations. This result supplements a pre-
vious study on the impact of the inclusion of few ghost deme 
sequences on the inference of migration rates (Ewing and Rodrigo 
2006); however, their impact remains unclear and deserves close
consideration.

Interestingly, the posterior density of the structured coales-
cent model in BASTA is bimodal for the SARS-CoV-2 dataset. Its 
major mode corresponds to a migration history close to CTMC-
TRAVEL and our expectations of SARS-COV-2 spread at the start 
of the pandemic, whereas the minor mode corresponds to the 
non-parsimonious scenario. Such bimodality was not observed for 
MASCOT in the SARS-CoV-2 analysis. This difference in estima-
tion is not unexpected since the two structured coalescent model 
approximations are different. However, it is not clear which char-
acteristics of the two algorithms would lead to different behaviors. 
Another possibility relies on the choice of operators that deter-
mine how well the two approximations explore the parameter 
and tree space in which case MASCOT should lead to a bimodal 
posterior density in the long run.

Practical implications for the analysis of 
empirical datasets
Computation time is an important consideration in real-life sit-
uations. The CTMC model is a fast algorithm that can handle 
many sequences while facing little convergence issues, which 
made it the predominant approach. For example, CTMC and its 
extensions have been extensively used during the SARS-CoV-2 
pandemic (Candido et al. 2020; Lemey et al. 2020; Alteri et al. 
2021; Butera et al. 2021; Dellicour et al. 2021a, 2021b; Kaleta 
et al. 2022; Perez et al. 2022). In general, researchers analyzed 
large datasets whose composition reflected case counts (Candido 
et al. 2020; Lemey et al. 2020) or the number of hospitalizations 
per geographical location (Dellicour et al. 2021b). In our simula-
tions, we did not test sampling strategies based on case counts, 
but we showed that even though the pool of available sequences is 
not representative of the underlying transmission process, CTMC 
inference should be little impacted when using even subsamples 
of the available sequences. Besides, sampling strategies based on 
case counts require the availability of unbiased case count data in 
all studied locations.

With BASTA and MASCOT, computational time can become 
rapidly cumbersome and even impractical when the number of 
sequences and locations increases. In parallel, these approaches 
estimate migration parameters with high uncertainty and can 
lead to bimodal structured coalescent posterior densities with a 
major mode and a minor mode, as observed for MASCOT on large 
samples of 500 sequences in the seven demes framework and for 
BASTA on the SARS-CoV-2 dataset. Repeating these problematic 
analyses with different starting values did not redeem these 

issues. Other studies have reported similar issues (Richardson 
et al. 2018). However, these problematic inferences can poten-
tially be overcome by informing structured coalescent models 
with additional covariate data on viral population size dynamics. 
Indeed, as a result of adding such data, MASCOT-GLM not only 
outperformed the other approaches at estimating spatiotempo-
ral parameters but also displayed improved mixing as expected 
with GLM approaches, which improves the computational bur-
den. However, such improvements depend on the availability and 
informativeness of the case count data used, notably on the early 
viral population size dynamics. This is illustrated in our analysis 
of the SARS-CoV-2 data for which the addition of WHO data led to 
improved chain mixing and past migration inference compared to 
the data from Our World in Data, knowing that the dynamics are 
rather similar in the two datasets, but they go back to 4 January, 
2020, for the WHO data and to 23 January, 2020, for the data from 
Our World in Data.

Limitations
We acknowledge several limitations of our study. First, BASTA 
and MASCOT are expected to perform better on even samples, 
a condition that we did not directly test. In the representative 
(uniform) samples, location frequencies inform CTMC, and thus, 
it would be expected to be favored over BASTA and MASCOT. Still, 
we show that MASCOT and BASTA perform better on even (region 
and region + year) samples in the three demes framework even 
if they are derived from biased large biobanks. This result sug-
gests that BASTA and MASCOT perform better on even samples 
with no ghost demes. Second, our subsampling procedure in the 
simulation analysis could leave some locations unsampled, which 
can be considered as an extreme case of sampling bias. While 
this happened in only a few highly biased samples in the three 
demes framework, it is very common in the seven demes frame-
work even in the absence of sampling bias. To determine whether 
the poor performance of MASCOT and BASTA in the absence of 
bias in the seven demes framework compared to the three demes 
framework is due to ghost demes or is simply due to the higher 
number of locations would require additional extensive analy-
ses, which exceed the goals of this study. Additionally, we cannot 
rule out that the effects of sampling bias we observe are due to 
unsampled locations/unspecified ghost demes rather than unrep-
resentative sampling. We did not include unsampled locations as 
ghost demes under such conditions. However, this is unlikely to 
improve the migration rate estimation (Ewing and Rodrigo 2006). 
Third, the impact of sampling bias certainly depends on the under-
lying overall migration rate as shown by Liu et al. (2022), an impact 
that we did not investigate here.

Another limitation concerns the incorporation of epidemiolog-
ical data in phylogeographic models. Here, deme sizes in MAS-
COT-GLM are informed by case count data, but this kind of data 
may not be readily available (Grubaugh et al. 2019) and is known 
to be often biased due to varying testing effort and strategy, as 
well as differential testing behaviors by age (Buckee, Noor, and 
Sattenspiel 2021). It is difficult to predict how MASCOT-GLM would 
perform if parameterized with biased case counts, a case that we 
did not address in our simulations. The comparison between the 
WHO and WID cases data, however, suggests that biased cover-
age of the true case load could bias such inference. If case count 
data are not reliable, one could use hospitalization data instead 
(Dellicour et al. 2021b). Furthermore, a similar approach is avail-
able under the CTMC framework, but we did not test it here. This 
framework consists in modeling the migration process with CTMC 
and the overall population dynamics with the GLM extension (Gill 
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et al. 2016) of the skygrid coalescent model (Gill et al. 2013). In this 
extension, case count over all locations could be used as a predic-
tor of the viral population size over time. Yet, such an approach 
assumes a panmictic population and remains rare.

It is difficult to generalize our results in regard to the number 
of demes. Our choice of the number of locations was influenced by 
the RABV scenario in Morocco. While a scenario with three demes 
was doable, the one with seven demes turned out to be difficult 
to analyze, notably due to computational burden (Supplementary 
Tables S4–S6). More research and development are needed for 
datasets with a large number of locations (>15), and it currently 
seems unlikely that such analyses are possible at all with BASTA 
and MASCOT.

Finally, our simulation study focuses on a specific epidemio-
logical context, the spread of RABV in dogs, for which we obtained 
relatively limited numbers of migration events in each phylogeny. 
We cannot rule out that the impact of sampling bias would be 
different for other viruses, but examining such scenarios would 
require performing additional studies.

Perspectives
In conclusion, sampling bias can be tackled at different lev-
els of data generation and analysis in phylogeographic analyses: 
sample constitution, inference model choice, and data integra-
tion (e.g. through an integrated GLM). Other studies also assess 
the impact of sampling bias in post hoc analyses (Chaillon et al. 
2020; Vrancken et al. 2020) or explicitly model sampling patterns 
(Guindon and De Maio 2021). Although the exploration of the 
impact of sampling bias has increased over the recent years and 
more robust methodologies have been developed, many aspects 
remain unclear, among which is the impact of unsampled loca-
tions, biased epidemiological data incorporation, or the relative 
performances on even versus representative samples. Whenever 
possible, we would advise to opt for an even sampling strat-
egy across geographical locations, compare the inferences of the 
different approaches, or compare the inferences over multiple 
subsamples when analyzing real datasets. These considerations 
are all the more important in a world of ever-growing genome 
sequence generation and concern not only human viral diseases 
but also zoonoses and epizooties.

Methods
Simulation study
Simulation of viral transmission chains using a metapopu-
lation model
In order to address the impact of spatial sampling bias on dis-
crete phylogeographic inference, we performed a detailed simu-
lation study. Sampling bias concerns all diseases, but it is even 
more challenging to address in the context of zoonotic diseases 
for which most of the transmission process is unobserved. We 
grounded our study in the context of dog rabies in North Africa 
where transmission processes are relatively well-documented. It 
was notably shown that rabies transmission relies on human 
movement over long distances. We simulated rabies epidemics in 
dog populations according to realistic scenarios using a stochastic, 
discrete time, and spatially explicit model implemented in R using 
the Rcpp package (Eddelbuettel and Balamuta 2018). We divided 
the Moroccan dog population into three or seven subpopulations 
corresponding to arbitrary regions (see the Parametrization of the 
Between-Region Mobility Matrix section; Supplementary Fig. S23). 
We divided each subpopulation into three compartments: suscep-
tible, exposed, and infectious individuals (Fig. 1A). At each discrete 

time step, we drew newborns and dead individuals in the sus-
ceptible compartment from Poisson distributions with respective 
means of the birth rate 𝑏 and the death rate 𝑑. We defined the force 
of infection Λ𝑖,𝑡, i.e. the per-capita rate of infection of susceptible 
individuals in region 𝑖 on day 𝑡, as

Λ𝑖,𝑡 = 𝛽
𝐻𝑖

(𝐼𝑖,𝑡−1 + ∑
𝑗≠𝑖

𝐶𝑆𝜈𝑗→𝑖𝐼𝑗,𝑡−1),

where 𝛽 is the transmission rate of rabies scaled by 𝐻𝑖, i.e. the 
human population size in region 𝑖, 𝜈𝑗→𝑖 is the per-capita mobil-
ity rate of individuals moving from region 𝑗 to region 𝑖, 𝐼𝑖,𝑡−1 is 
the number of infectious individuals in region 𝑖 on day 𝑡 − 1, and 
𝐶𝑆 is a scale factor (see later in this paragraph for more infor-
mation). Exhaustive dog census data were not available, and it is 
well known that human-mediated movement plays a major role 
in the spread of rabies in North Africa (Talbi et al. 2010; Dellicour 
et al. 2017); thus, we assumed that dog populations were propor-
tional to human populations (Supplementary Table S2). We scaled 
the rabies transmission rate by population size to ensure that 
the force of infection is density-independent as previously docu-
mented on rabies (Morters et al. 2013). We used the scale factor 𝐶𝑆
to monitor the proportion of inter-region infections. Its value was 
arbitrarily chosen so that 1 per cent of infection events occurred 
among regions, and the basic reproduction ratio is approximately 
equal to 1.05 within and between regions. At each time step, we 
drew the number of newly exposed individuals in each region from 
Poisson distributions with a mean specified by the number of sus-
ceptible individuals in region 𝑖 on day 𝑡 − 1 (𝑆𝑖,𝑡−1) multiplied by the 
force of infection in region 𝑖 on day 𝑡 (Λ𝑖,𝑡). Once an individual 𝑒𝑗,𝑡
entered the exposed compartment, it was uniquely identified. The 
location of its infector was drawn from a multinomial distribution 
with the following probabilities:

𝑃(𝑒𝑗,𝑡 infected by 𝐼𝑖,𝑡−1) =
𝜈𝑖→𝑗 𝐼𝑖,𝑡−1

∑𝑘 𝜈𝑘→𝑗 𝐼𝑘,𝑡−1
.

Once the location of the infector was drawn, the ID of the infec-
tor was randomly sampled from the set of infectors present in the 
location. All infectious individuals in each region had the same 
probability of infection. The incubation period of exposed indi-
viduals was drawn from a gamma distribution with shape 2 and 
a rate of 11.055 (Hampson et al. 2009), and its infectious period 
was drawn from a discretized gamma distribution adapted from 
Hampson et al. (2009) so that it could not exceed 15 days (World 
Health Organization (WHO) 2018). Finally, the life span was drawn 
from an exponential distribution with rate 𝑑. If natural death 
occurred before the end of the incubation or infectious periods, 
the individual was removed prematurely. Otherwise, the individ-
ual went through the exposed and infectious compartment before 
dying from rabies (Supplementary Table S2).

We initiated all simulations with the introduction of a single 
index case in Region 1 (Supplementary Fig. S23). According to 
Darkaoui et al. (2017), there are on average 400 confirmed animal 
cases per year in Morocco, which is certainly an underestimation 
(Broban et al. 2018). We assumed a 20 per cent reporting rate of dog 
cases in Morocco (Taylor et al. 2017) and thus retained epidemics 
with at least 60,000 cases over a 20- to 30-year period (Fig. 1C). We 
analyzed the results for fifty simulations.

Parameterization of the between-region mobility matrix
To avoid computational difficulties and over-parameterization of 
the different discrete phylogeographic models, we aggregated the 
fifteen official Moroccan regions retrieved from the GADM dataset 
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(https://www.gadm.org) into three or seven locations (in two sim-
ulated scenarios, respectively) that are based on human demo-
graphics and ecological features (Supplementary Fig. S23). Dog 
mobility was defined across locations by fitting a radiation model 
with a raster of human population distribution (WorldPop (2022)) 
using the R package movement (Golding, Schofield, and Kraemer 
2015). In the radiation model, commuting is determined by the 
job-seeking behavior modeled as an absorption and radiation pro-
cess (Simini et al. 2012). The average commuting flux 𝑇𝑖,𝑗 from 
location 𝑖 to location 𝑗 with populations 𝑚𝑖 and 𝑛𝑗, respectively, 
is 

⟨𝑇𝑖,𝑗⟩ = 𝑇𝑖
𝑚𝑖 𝑛𝑗

(𝑚𝑖 + 𝑠𝑖𝑗)(𝑚𝑖 + 𝑛𝑗 + 𝑠𝑖𝑗)
where 𝑠𝑖,𝑗 is the total population in the circle of radius 𝑟𝑖,𝑗 centered 
at 𝑖 (excluding the source and destination population).

We used a model of human mobility as it has been shown that 
humans play a major role in dog rabies spread and maintenance 
in North Africa, especially across long distances R package version 
1.3.6 (Talbi et al. 2010; Dellicour et al. 2017). We preferred the radi-
ation model over the gravity model for two reasons: the radiation 
model has been shown to outcompete the gravity model at local 
and large scales (Simini et al. 2012), and it presents the advantage 
of having no free parameter(s). In our study, we inferred the aver-
age daily number of commuters among raster cells of 20 km with 
more than 1,000 inhabitants per kilometer square. The size of the 
cells corresponds approximately to the municipality level, and the 
density threshold corresponds to the urban density in Morocco. 
The number of commuters was then aggregated at the location 
level.

Evolutionary model of RABV genomes associated with cases
Simulation studies that analyze the accuracy of phylogeograph-
ical techniques often use the inference model as the simulation 
model (De Maio et al. 2015; Müller, Rasmussen, and Stadler 2017; 
Kalkauskas et al. 2021). Here, we took an epidemiological per-
spective by simulating rabies epidemics using a metapopulation 
model and by inferring the spatiotemporal history of rabies from 
RABV sequences and not from phylogenetic trees. After simulat-
ing rabies epidemics as described earlier, RABV genomes associ-
ated with each case were simulated according to the HKY model 
(Hasegawa, Kishino, and Yano 1985). We simulated in R sequence 
evolution forward-in-time along the transmission chains, which 
were used in the same way as a phylogeny. We opted for a simple 
evolutionary process in which selection, gene partition, and site 
heterogeneity were not considered. Parameter values are listed in 
Supplementary Table S2. The genome of the index case is a real 
canine rabies genome of 13-kb length isolated in Morocco in 2013 
(GenBank Accession Number KF155001.1) (Marston et al. 2013).

Sampling schemes of viral sequences
The aim of the study is to determine the impact of sampling 
bias on phylogeographic inference and how alternative sampling 
schemes may mitigate the effects of such sampling bias. To 
address the former issue, we sampled either uniformly (uniform) 
or with a sampling bias favoring viral sequences from highly popu-
lated locations (Regions 3 and 4). In the latter scenario, sequences 
from Regions 1, 2, 5, 6, and 7 had a weight equal to one, whereas 
Regions 3 and 4 had a weight equal to 2.5, 5, 10, 20, and/or 50. 
To mitigate the potential effects of sampling bias, we tested a dif-
ferent set-up reproducing a surveillance system. In this set-up, a 
biobank of 5,000 sequences was drawn from each epidemic with a 

weight of one for Regions 1, 2, 5, 6, and 7 and a weight of 10 or 20 
for Regions 3 and 4. Subsets of sequences were sampled from the 
biobank uniformly (uniform surv.), by maximizing the spatial cov-
erage (maximum per region), or by maximizing the spatiotemporal 
coverage (maximum per region and per year). For all sampling 
schemes, a large sample of 500 sequences and a nested sample 
of 150 sequences were drawn over the entire epidemic except for 
the first year, as we assumed that the spread of the virus would 
remain undetected at the start of the epidemic as observed in 
other settings (Townsend et al. 2013).

Discrete phylogeographic analysis in BEAST
Generation of BEAST XML files and phylogeography infer-
ence set-up. Tailored XML template files for the BASTA and 
MASCOT structured coalescent models, as well as for the DTA 
(CTMC) model, were edited using the lxml Python package to 
add sequence alignments along with their metadata. Bayesian 
phylogeographic analyses were performed using BEAST v1.10.5 
(Suchard et al. 2018) for the CTMC model (Lemey et al. 2009) and 
BEAST v2.6.4 (Bouckaert et al. 2019: 5) for MASCOT v2.2.1 (Müller, 
Rasmussen, and Stadler 2018) and BASTA v3.0.1 (De Maio et al. 
2015), making use of the BEAGLE library v3.1.1 (Ayres et al. 2012). 
We assumed an HKY substitution model with a strict molecular 
clock. When the sampling scheme resulted in a deme not being 
sampled, the discrete phylogeography algorithm was parame-
terized with the sampled demes only, i.e. no ghost demes were 
accounted for. Population dynamics in the CTMC model followed 
a constant population size prior. We chose this prior since the 
model of population dynamics is not expected to impact migra-
tion history inference, and the constant population size model is 
often chosen for the analysis of endemic diseases. For the BASTA 
and MASCOT structured coalescent models, all demes were set 
to have an equal size due to numerical issues, leading to a com-
putational time of over 70 hours per million iterations (data not 
shown). For both models, asymmetric migration matrixes were 
inferred and Bayesian stochastic search variable selection was 
used to avoid over-parametrization. The detailed list of prior distri-
butions is available in Supplementary Table S3 for each inference 
framework.

If deme sizes are set to be equal in the structured coalescent 
model, but the actual population dynamics vary through time, the 
model tends to explain population dynamics by migration dynam-
ics. In our simulations, the incidence changed dramatically over 
time and location (Fig. 1C), and thus, the inference by the struc-
tured coalescent model is expected to improve when accounting 
for time-varying population dynamics. To test this hypothesis, we 
used monthly incidence data from our simulations as a predic-
tor of the deme sizes by using a GLM in MASCOT (Müller, Dudas, 
and Stadler 2019). We tested this alternative parameterization 
(MASCOT-GLM) under the following conditions: uniform, biased-
2.5, biased-5, biased-10, biased-20, biased-50, uniform surv. 10, 
and uniform surv. 20.

These different BEAST analyses were run for at least 20 and 
40 million steps and sampled every 2,000 and 4,000 steps for 
small and large alignments, respectively. In total, 8,800 XML files 
were run for this study, for a total of an estimated 1,500 hours 
of computation on multicore CPUs across different computing 
infrastructures (Supplementary Table S4).

Analysis of phylogeographic inference output. For each 
BEAST analysis, adequate mixing was assessed based on the ESS 
values of the continuous parameters. We calculated ESS values 

https://www.gadm.org
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using a Python function adapted from Tracer v1.7.2 (Rambaut et al. 
2018). When at least one continuous parameter had an ESS value 
below 200, chains were resumed to reach at most 120 million iter-
ations. Analyses that exhibited ESS values lower than 200 at this 
point were discarded (Supplementary Tables S5 and S6). Due to 
the higher computational burden of BASTA, the ESS cut-off was 
reduced to 100. We discarded a 10 per cent burn-in in the selected 
chains. The combined posterior tree distributions were summa-
rized into MCC trees using TreeAnnotator for BASTA and the 
CTMC, and the Python library DendroPy (Sukumaran and Holder 
2010) for MASCOT and MASCOT-GLM (Supplementary Materials 
Section 6b). Summary statistics, ESS values, Bayes factors (BFs) 
on migration rates (Lemey et al. 2009), root state probabili-
ties, dates of lineage introduction, and lineage migration counts 
were calculated in Python before plotting the results in R using 
the ggplot2 package R package version 1.3.6 (Wickham 2016: 2).
For more information on the calculation of the migration sum-
mary statistics, see Section 6c in the Supplementary Data.

Performance analysis. To assess the accuracy of the phyloge-
netic reconstruction, the total divergence time in calendar time 
units was computed for every pair of sampled tips on both the 
MCC tree and the simulated transmission chain, and these out-
comes were subsequently compared using the Pearson correlation 
coefficient. In addition, we evaluated the impact of sampling bias 
and alternative sampling strategies on the estimation of the total 
migration counts, lineage migration counts, and dates of first lin-
eage introduction into each sampled location using five metrics. 
We denote 𝜃𝑖 as the true value of the parameter, 𝐷𝑖 as the parame-
ter posterior distribution, ̂𝜃𝑖 as the median estimate, HPD95%as the 
95 per cent HPD, 𝐾 as the number of prediction intervals included 
in the calculation of the WIS, 𝑦 as the observed outcome by fore-
cast 𝐹, 𝑚 as the predictive median on the (1 − 𝛼𝑘)×100% prediction 
interval, IS𝛼𝑘

 as the interval score on the (1 − 𝛼𝑘)×100% prediction 
interval, and 𝑤𝑘 as its weight.

• Kendall’s tau correlation: a rank correlation measure that is 
less sensitive to outliers compared to Pearson’s correlation 
coefficient

𝜏 =

(no. concordant true/simulated value pair)
−(no. discordant true/simulated value pair)

( 𝑛
2

)

1. Calibration

calibration95% = 1
𝑛

𝑛
∑
𝑖=1

1{𝜃𝑖 ∈HPD95%(𝐷𝑖)}

2. MRB

MRB = 1
𝑛

𝑛
∑
𝑖=1

1
𝜃𝑖

(𝜃𝑖 − 𝜃𝑖)

3. Mean relative 95 per cent HPD width

width95% = 1
𝑛

𝑛
∑
𝑖=1

1
𝜃𝑖

(HPD97.5% (𝐷𝑖) − HPD2.5% (𝐷𝑖))

4. WIS: a generalization of the absolute error accounting for 
estimation uncertainty. We present the formula of the WIS 

and refer to the original article for further details, notably 
on the interval score (Bracher et al. 2021).

WIS𝛼{0∶𝐾}
(𝐹 ,𝑦) = 1

𝐾 + 1/2
× (𝑤0 × |𝑦 − 𝑚| +

𝐾
∑
𝑘=1

{𝑤𝑘 ×𝐼𝑆𝛼𝑘
(𝐹 ,𝑦)})

The MRB and the mean relative 95 per cent HPD width are 
defined when the true value is not zero. However, the total migra-
tion counts and the lineage migration counts for some pairs of 
locations can be null in our simulations, whereas the algorithms 
infer a non-null median. These cases were not considered in 
the calculation of the MRB and the mean relative 95 per cent 
HPD width. We reported their numbers in the caption of the 
corresponding figures.

Data analysis
RABV expansion in the Philippines
We extended our comparative analysis of the CTMC model, 
BASTA, and MASCOT by analyzing a set of RABV genetic sequences 
using the three approaches. In total, 233 sequences corresponding 
to the RABV glycoprotein gene were sampled in the Philippines 
from 2004 to 2010 (Saito et al. 2013). In the original discrete phy-
logeographic analysis, the authors studied viral spread across 
eleven out of the seventeen Philippines regions and showed that 
the genetic diversity was highly spatially structured, notably at 
the island level (Tohma et al. 2014). Here, we evaluated the 
spread across the six sampled islands (Luzon, Catanduanes, Ori-
ental Mindoro, Cebu, Negros Oriental, and Mindanao) to compare 
the reconstructions on a highly structured dataset and limit the 
number of demes that considerably slow down BASTA and MAS-
COT. We assumed an HKY nucleotide substitution model with an 
among-site rate heterogeneity modeled by a discretized gamma 
distribution (Yang 1994), and an uncorrelated relaxed molecu-
lar clock with an underlying lognormal distribution (Drummond 
et al. 2006). For the CTMC, we assumed a constant size coalescent 
model for the viral demographics as in the original analysis. For 
MASCOT and BASTA, current implementations assume a constant 
population size model for the viral demographics within demes. 
A detailed description of the priors is reported in Supplementary 
Table S7. For each algorithm, we combined three post-burn-in 
independent chains of 50 million iterations each.

The early dynamics of SARS-CoV-2 worldwide spread
Tracking viral disease spread in animal populations faces many 
challenges, and to our knowledge, no reliable incidence data are 
available for zoonoses such as rabies. In this context, MASCOT-
GLM cannot readily be used. We analyzed the early worldwide 
spread of SARS-CoV-2 to compare the inferences of the CTMC, 
BASTA, MASCOT, and MASCOT-GLM. Lemey et al. (2020) analyzed 
this dataset to characterize SARS-CoV-2 spread across forty-four 
location states by incorporating individual travel histories of sam-
pled individuals to help correct for sampling bias and unsampled 
locations. By using the carefully obtained results of Lemey et al. 
(2020) as a reference, we can evaluate how the four algorithms are 
impacted by sampling bias.

The dataset comprises 282 SARS-CoV-2 genomic sequences 
sampled in the five continents from 24 December, 2019, to 4 
March, 2020. We assumed an HKY nucleotide substitution model 
with a proportion of invariant sites, an among-site rate het-
erogeneity modeled by a discretized gamma distribution, and a 
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strict molecular clock. For the CTMC, we assumed an exponen-
tial growth model for the viral demographics. MASCOT and BASTA 
assume a constant size model for the viral demes demographics. 
Contrary to the original study, we analyzed migration among six 
discrete locations: Africa, the USA, Asia, China, Europe, and Ocea-
nia. For MASCOT-GLM, we used the daily number of confirmed 
cases at the continent level from Our World in Data (Mathieu et al. 
2020) or from the World Health Organization (WHO 2023) as a 
predictor of the deme sizes. The former is referred to as MASCOT-
WID, and the latter as MASCOT-WHO. We smoothed the number of 
new confirmed cases using a seven-day moving average. A detailed 
description of the priors is reported in Supplementary Table S8. 
We combined three post-burn-in independent chains of 50 or 100 
million iterations for each inference.

Data availability
All scripts used to simulate epidemics and perform the analy-
ses presented in this article are available at https://github.com/
mlayan/Sampling_bias, including examples of output files. Out-
put files that are not in the GitHub repository are available upon 
reasonable request to the authors.

Supplementary data
Supplementary data are available at Virus Evolution online.
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