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Abstract 35 

Accumulation of pathological tau isoforms, especially hyperphosphorylated tau at serine 396 36 

(pS396-tau) and tau oligomers, has been demonstrated in the retinas of patients with mild cognitive 37 

impairment (MCI) and Alzheimer’s disease (AD). Previous studies have noted a decrease in retinal 38 

ganglion cells (RGCs) in AD patients, but the presence and impact of pathological tau isoforms in 39 

RGCs and RGC integrity, particularly in early AD stages, have not been explored. To investigate 40 

this, we examined retinal superior temporal cross-sections from 25 patients with MCI (due to AD) 41 

or AD dementia and 16 cognitively normal (CN) controls, matched for age and gender. We utilized 42 

the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl 43 

staining to assess neuronal density in the ganglion cell layer (GCL). Our study found that 44 

hypertrophic RGCs containing pS396-tau and T22-positive tau oligomers were more frequently 45 

observed in MCI and AD patients compared to CN subjects. Quantitative analyses indicated a 46 

decline in RGC integrity, with 46-55% and 55-56% reductions of RBPMS+ RGCs (P<0.01) and 47 

Nissl+ GCL neurons (P<0.01-0.001), respectively, in MCI and AD patients. This decrease in RGC 48 

count was accompanied by increases in necroptotic-like morphology and the cleaved caspase-3 49 

apoptotic marker in RGCs of AD patients. Furthermore, there was a 2.1 to 3.1-fold increase 50 

(P<0.05-0.0001) in pS396-tau-laden RGCs in MCI and AD patients, with a greater abundance 51 

observed in individuals with higher Braak stages (V-VI), more severe clinical dementia ratings 52 

(CDR=3), and lower mini-mental state examination (MMSE) scores. Strong correlations were 53 

noted between the decline in RGCs and the total amount of retinal pS396-tau and pS396-tau+ 54 

RGCs, with pS396-tau+ RGC counts correlating significantly with brain neurofibrillary tangle 55 

scores (r= 0.71, P= 0.0001), Braak stage (r= 0.65, P= 0.0009), and MMSE scores (r= -0.76, P= 56 

0.0004). These findings suggest that retinal tauopathy, characterized by pS396-tau and oligomeric 57 

tau in hypertrophic RGCs, is associated with and may contribute to RGC degeneration in AD. 58 

Future research should validate these findings in larger cohorts and explore noninvasive retinal 59 

imaging techniques that target tau pathology in RGCs to improve AD detection and monitor 60 

disease progression. 61 

 62 
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Introduction 65 

Alzheimer’s disease (AD), the most prevalent and progressive form of senile dementia, affects an 66 

estimated 6.9 million Americans aged 65 and older [1]. It is characterized by the accumulation of 67 

amyloid beta-protein (Aβ) deposits and abnormal tau protein aggregates in the brain [18, 50]. 68 

During AD progression, microtubule-associated tau proteins undergo hyperphosphorylation (p-69 

tau) and form toxic oligomers that spread between neurons, accelerating disease progression [14, 70 

41, 42, 54, 58, 64]. These tau species eventually aggregate into neurofibrillary tangles (NFTs) [79], 71 

disrupting cellular functions and axonal transport, which leads to synaptic dysfunction and 72 

neuronal death [83, 95, 105, 116]. The presence of abnormal tau strongly correlates with the 73 

progression of neurodegeneration and cognitive deficits in AD [20, 35, 41, 51, 65]. AD 74 

neuropathology develops many years before neurobehavioral and cognitive disturbances become 75 

salient [51, 110, 111, 124], therefore early identification of AD pathological hallmarks in the 76 

central nervous system (CNS) is crucial for early intervention and disease management. 77 

The retina, a posterior neurosensory eye tissue, is an extension of the brain and shares many 78 

structural and functional features with the brain. New studies have revealed the genetic basis for 79 

eye-brain connections, suggesting bidirectional genetic causal links between retinal structures and 80 

neurological disorders, including AD [33, 93, 127]. Growing evidence indicates the presence of 81 

AD-related pathological features in the retinas of patients with mild cognitive impairment (MCI 82 

due to AD) and/or AD dementia, including various abnormal Aβ and tau species, vascular damage, 83 

micro- and macro-gliosis, and neurodegeneration [2, 4, 6, 7, 16, 17, 22, 27, 29-31, 37, 40, 43, 46, 84 

48, 60-62, 67, 70, 71, 81, 85, 86, 94, 103, 104, 106-108, 113, 122, 123]. Regarding tauopathy, a 85 

wide range of abnormal tau isoforms have been identified in the retinas of AD patients, including 86 

pretangles and mature tangle forms: 3- and 4-repeat tau, p-tau and citrullinated tau forms, 87 
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oligomeric tau, paired helical filaments (PHF) of tau, as well as paperclip folding of tau and NFT-88 

like structures [27, 29, 40, 45, 46, 60, 86, 108, 122]. We recently found that the retinas of patients 89 

with MCI (due to AD) and/or AD dementia exhibit significant increases in pathogenic p-tau at 90 

specific epitopes, including S202/T205, S214, S396, S404, and T231, as well as citrullinated 91 

R209-tau and tau oligomers (T22-positive), alongside PHF+ and MC-1+ pretangle and mature tau 92 

tangles. Epitopes S199 and T212/S214 did not show such changes [108]. Moreover, oligomeric 93 

tau and pS396-tau, commonly elevated in AD brains [96, 120], were consistently increased in AD 94 

retinas and strongly associated with more severe brain pathology, advanced disease stages, and 95 

cognitive decline [108]. However, the impact of AD-related tauopathy on specific retinal cell types 96 

in patients has not yet been described. 97 

Retinal ganglion cells (RGCs) are neurons located in the retinal ganglion cell layer (GCL; as seen 98 

in optical coherence tomography – OCT imaging) and existing in various subtypes such as midget, 99 

parasol, bistratified, and melanopsin-containing intrinsically photosensitive RGCs (mRGCs). 100 

These cells serve diverse functions, including high spatial frequency resolution, color 101 

differentiation, low spatial frequency contrast, and photoentrainment of the hypothalamus, which 102 

governs circadian rhythms [102, 121]. Dendritic protrusions from the RGC soma receive synaptic 103 

input from the axons of bipolar and amacrine cells in the inner plexiform layer (IPL). The RGCs 104 

project their axons to form the nerve fiber layer (NFL), which collects at the optic discs and 105 

continues as the optic nerve. This pathway ultimately transmits all visual information to the brain 106 

[55]. Notably, the RGCs, located in the inner retinal surface, are uniquely positioned as neurons in 107 

the CNS that can be noninvasively imaged and quantitatively assessed in vivo with high resolution 108 

using the advanced adaptive optics (AO)-OCT technology, as demonstrated in recent studies [44, 109 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613293doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613293
http://creativecommons.org/licenses/by-nc/4.0/


 

 5 

76]. This advanced imaging capability enables detailed examination of RGC pathology and may 110 

facilitate future AD diagnosis and monitoring. 111 

In the context of AD, pioneering studies have demonstrated the loss of RGCs in patients [15, 16, 112 

48]. Other reports have shown visual dysfunctions such as impaired contrast sensitivity, abnormal 113 

color discrimination, and diminished visual fields, which can be attributed to RGC degeneration 114 

[37, 53, 97, 100, 118]. Subsequent investigations into the AD retina found NFL thinning, reduced 115 

density of melanopsin-containing RGCs, GCL cell loss, and elevated apoptotic markers, along 116 

with intraneuronal Aβ oligomers and other Aβ species within RGCs in these patients [4-6, 23, 25, 117 

37, 56, 60, 61, 66, 67, 70, 74]. A recent report in several transgenic murine models of AD showed 118 

RGC susceptibility, manifested as RGC dendritic field reduction, occurring in parallel with 119 

hippocampal dendritic spine loss [13]. An additional study detected an increased total tau burden 120 

in RGCs in an AD-murine model [24]. However, the vulnerability of RGCs to pathogenic tau 121 

accumulation in AD patients, particularly in the earliest stages of functional impairment (MCI due 122 

to AD), and the potential relationships with disease status, have not yet been studied. 123 

In the current study, we addressed these gaps by first investigating the density, size, and 124 

distribution of RGCs in the superior temporal postmortem retinas of patients with MCI (due to 125 

AD) and AD dementia, compared with cognitively normal (CN) individuals. We then explored 126 

whether AD-specific pathological tau forms, pS396-tau and oligomeric tau, are present specifically 127 

in RGCs, and quantified pS396-tau-containing RGCs in this cohort. The interplay between pS396-128 

tau-containing RGCs, retinal Aβ and tau pathology, and RGC integrity was assessed, and 129 

correlations to disease status were determined. Our analyses indicated an early and substantial 130 

decrease in RGCs, concomitant with an increase in pS396-tau-laden RGCs in MCI and AD patients 131 

compared to age- and sex-matched CN controls. The levels of total retinal pS396-tau and pS396-132 
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tau-laden RGCs correlated with the extent of RGC decline. RGCs in AD patients exhibited 133 

hypertrophic soma and nucleus displacement. Notably, increased pS396-tau+ RGC counts strongly 134 

correlated with corresponding brain pathology and cognitive status. 135 

 136 

Materials and Methods 137 

Postmortem Eyes. Human eye and brain tissues were collected from donor patients with 138 

premortem clinical diagnoses of MCI and AD dementia (confirmed by postmortem AD 139 

neuropathology), along with age- and sex-matched CN controls (total n=41 subjects). These tissues 140 

were primarily obtained from the Alzheimer’s Disease Research Center (ADRC) Neuropathology 141 

Core in the Department of Pathology (IRB protocol HS-042071) at the Keck School of Medicine, 142 

University of Southern California (USC, Los Angeles, CA). Additional eyes were obtained from 143 

the National Disease Research Interchange (NDRI, Philadelphia, PA) under the approved Cedars-144 

Sinai Medical Center IRB protocol Pro00019393. Both USC-ADRC and NDRI maintain human 145 

tissue collection protocols approved by their managerial committees and subject to oversight by 146 

the National Institutes of Health. Histological studies at Cedars-Sinai Medical Center were 147 

performed under IRB protocols Pro00053412 and Pro00019393. Demographic, clinical, and 148 

neuropathological information on human donors is detailed in Table 1 and Suppl. Table 1. 149 

Subjects with macular degeneration, glaucoma, and diabetic retinopathy were excluded from this 150 

study. The available retinal tissues from individual donors are specified in Suppl. Table 1. For the 151 

histopathological analysis, the human cohort consisted of AD dementia (n=15), MCI due to AD 152 

(n=10), and CN controls (n=16). All patients’ identities were protected by de-identifying tissue 153 

samples, ensuring they could not be traced back to the donors. 154 

 155 
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Clinical and Neuropathological Assessments. The ADRC provided clinical and 156 

neuropathological reports on patients’ neurological examinations, neuropsychological and 157 

cognitive tests, family history, and medication lists, as collected in the ADRC system using the 158 

Uniform Data Set (UDS) [12]. The NDRI provided the medical history of additional patients. Most 159 

cognitive evaluations were performed annually and, in most cases, less than one year prior to death. 160 

Cognitive testing scores from evaluations made closest to the patient’s death were used for this 161 

analysis. Two global indicators of cognitive status were used for clinical assessment: the Clinical 162 

Dementia Rating (CDR scores: 0 = normal; 0.5 = very mild impairment; 1 = mild dementia; 2 = 163 

moderate dementia; or 3 = severe dementia) [82] and the Mini-Mental State Examination (MMSE 164 

scores: 24–30 = CN; 20–23 = MCI; 10–19 = moderate dementia; or 9 ≥ severe dementia) [34]. In 165 

this study, the composition of the clinical diagnostic groups (AD, MCI, or CN) was determined by 166 

source clinicians based on a comprehensive battery of tests, including neurological examinations, 167 

neuropsychological evaluations, and the cognitive tests. Specifically, the diagnosis of MCI due to 168 

AD was assigned to patients who had an antemortem clinical diagnosis of MCI (based on the 169 

comprehensive battery of behavioral and cognitive tests) caused by AD. These patients had a 170 

postmortem confirmation of AD neuropathology (according to the ADNC—Alzheimer's disease 171 

neuropathological change guidelines) and showed no evidence of other diseases, such as Lewy 172 

body dementia, Parkinson's disease, FTD/FTLD (PSP or Pick’s disease), or cognitive impairment 173 

due to stroke or small vessel disease. 174 

To obtain a final diagnosis based on the neuropathological reports, we used the modified 175 

Consortium to Establish a Registry for Alzheimer's Disease (CERAD) criteria [77, 99], as outlined 176 

in the National Institute on Aging (NIA)/Regan protocols with revisions by the NIA and 177 

Alzheimer’s Association [49]. The assessment included Aβ burden (measured as diffuse, 178 
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immature, or mature plaques), amyloid angiopathy, neuritic plaques, NFTs, neuropil threads 179 

(NTs), granulovacuolar degeneration, Lewy bodies, Hirano bodies, Pick bodies, balloon cells, 180 

neuronal loss, microvascular changes, and gliosis. These pathologies were assessed in multiple 181 

brain areas, including the hippocampus (particularly the Cornu ammonis CA1, at the level of the 182 

thalamic lateral geniculate body), entorhinal cortex, superior frontal gyrus of the frontal lobe, 183 

superior temporal gyrus of the temporal lobe, superior parietal lobule of the parietal lobe, primary 184 

visual cortex (Brodmann Area-17), and visual association (Area-18) of the occipital lobe. In all 185 

cases, uniform brain sampling was conducted by a neuropathologist. 186 

Cerebral amyloid plaques, NFTs, and NTs were evaluated using anti–β-amyloid mAb clone 4G8 187 

immunostaining, Thioflavin-S (ThioS) histochemical staining, and Gallyas silver staining in 188 

formalin-fixed, paraffin-embedded tissue sections. The ADRC neuropathologists assigned severity 189 

scores based on semi-quantitative observations. The scale for Aβ/neuritic plaques was determined 190 

by the presence of 4G8- and/or Thioflavin-S-positive and/or Gallyas silver-positive plaques 191 

measured per 1 mm2 of brain area (0 = none; 1 = sparse [≤ 5 plaques]; 3 = moderate [6–20 plaques]; 192 

5 = abundant/frequent [21–30 plaques or greater]; or N/A = not applicable), as previously 193 

described [80] in the NACC NP Guidebook, Version 10, January 2014: https://naccdata.org/data-194 

collection/forms-documentation/np-10.  The brain NFT or NT severity scoring system was derived 195 

from observed burden of these AD neuropathologic changes, as detected by Gallyas silver and/or 196 

Thioflavin-S staining [79, 80, 119], and measured per 1 mm2 of brain area. The assigned NFT or 197 

NT scores were as follows: 0 = none; 1 = sparse (mild burden); 3 = moderate (intermediate burden); 198 

or 5 = frequent (severe burden). For both histochemical and immunohistochemical staining, each 199 

anatomical area of interest was assessed for relevant pathology using a 20X objective (200X high 200 

power magnification), and representative fields were graded using the semiquantitative scale as 201 
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detailed above. Validation of AD neuropathic change (ADNC), especially NTs, was performed 202 

using a 40X objective (400X high power magnification), and an average of two readings was 203 

assigned to each individual patient. 204 

A final diagnosis of AD neuropathological change was determined using an “ABC” score derived 205 

from three separate 4-point scales. We used the modified Aβ plaque Thal score (A0 = no Aβ or 206 

amyloid plaques; A1 = Thal phase 1 or 2; A2 = Thal phase 3; or A3 = Thal phase 4 or 5) [115]. 207 

For the NFT stage, we applied the modified Braak staging for silver-based histochemistry or p-tau 208 

IHC (B0 = no NFTs; B1 = Braak stage I or II; B2 = Braak stage III or IV; or B3 = Braak stage V 209 

or VI) [19]. For neuritic plaques, we used the modified CERAD score (C0 = no neuritic plaques; 210 

C1 = CERAD score sparse; C2 = CERAD score moderate; or C3 = CERAD score frequent) [77]. 211 

Neuronal loss, gliosis, granulovacuolar degeneration, Hirano bodies, Lewy bodies, Pick bodies, 212 

and balloon cells were all evaluated (0 = absent; 1 = present) in multiple brain areas by staining 213 

tissues with hematoxylin and eosin (H&E). Brain atrophy was evaluated (0 = none; 1 = mild; 3 = 214 

moderate; 5 = severe; or 9 = not applicable).  215 

Processing of Eye Globes and Retinal Tissues. The processing of eye globes, isolation and 216 

preparation of retinal strips, and retinal immunostaining were extensively detailed in [60, 61, 108]. 217 

Briefly, donor eyes were collected within an average of 9 hours after death and subjected to the 218 

following preservation methods: 1) preserved in Optisol-GS media (Bausch & Lomb, 50006-OPT) 219 

and stored at 4°C for less than 24 hours, or 2) punctured once and fixed in 10% neutral buffered 220 

formalin (NBF) or 4% paraformaldehyde (PFA) and stored at 4°C. Regardless of the source of the 221 

human donor eye (USC-ADRC or NDRI), the same tissue collection and processing methods were 222 

applied.  223 
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Preparation of Retinal Strips. Eyes fixed in 10% NBF or 4% PFA were dissected as previously 224 

described [60, 61, 108]. Flatmounts were prepared after careful dissection of the eye globes and 225 

thorough cleaning of the vitreous humor. Flatmount strips (~2 mm wide) extending diagonally 226 

from the optic disc (OD) to the ora serrata (~20–25 mm long) were prepared in 4 predefined 227 

regions: Superior Temporal (ST), Inferior Temporal (IT), Inferior Nasal (IN), and Superior Nasal 228 

(SN). In this study, we focused our analysis on the ST retinal strip due to the high presence of AD 229 

pathology in this region [60, 61, 108]. The flatmount-derived strips were then paraffinized using 230 

standard techniques and embedded in paraffin after flip-rotating 90° horizontally. The retinal strips 231 

were sectioned (7-10 µm thick) and mounted on microscope slides coated with APES. This sample 232 

preparation technique allowed for extensive and consistent access to retinal quadrants, layers, and 233 

pathological subregions.  234 

Immunofluorescent Staining. Retinal sections were deparaffinized using 100% xylene twice (10 235 

minutes each), rehydrated with decreasing concentrations of ethanol (100% to 70%), and washed 236 

with distilled water followed by PBS. After deparaffinization, tissue sections were treated with 237 

target retrieval solution (pH 6.1; S1699, Dako) at 98°C for 1 hour and then washed with PBS. 238 

Next, tissues were incubated in blocking buffer (Dako #X0909) supplemented with 0.1% Triton 239 

X-100 (Sigma, T8787) for 1 hour at room temperature (RT), followed by overnight incubation 240 

with primary antibody (Ab) at 4°C (Abs information provided in Suppl. Table 2). The sections 241 

were then washed three times with PBS and incubated with secondary Abs against each species 242 

(1:200, Suppl. Table 2) for 1 hour at RT. After rinsing with PBS three times, the sections were 243 

mounted with ProLong Gold antifade reagent with DAPI (Thermo Fisher #P36935).  244 

Peroxidase-based Immunostaining. After deparaffinization and antigen retrieval treatment, the 245 

tissues were treated with 70% formic acid (ACROS) for 10 minutes at room temperature. The 246 
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tissues were then washed with wash buffer (Dako S3006) supplemented with 0.1% Triton X-100 247 

(Sigma, T8787) for 1 hour, followed by treatment with H2O2 for 10 minutes and a rinse with wash 248 

buffer. Primary Ab (Suppl. Table 2) were diluted with background reducing components (Dako 249 

S3022) and incubated with the tissues overnight at 4°C. The tissues were rinsed thrice with wash 250 

buffer on a shaker and incubated for 30 minutes at 37°C with secondary Ab (goat anti-rabbit HRP 251 

conjugated, Dako Envision K4003), followed by three more rinses with wash buffer on a shaker. 252 

Diaminobenzidine (DAB) substrate (Dako K3468) was then applied. Some slides were 253 

counterstained with hematoxylin and mounted with Faramount aqueous mounting medium (Dako, 254 

S3025). Routine controls were processed using an identical protocol, while omitting the primary 255 

antibodies to assess nonspecific labeling. 256 

Nissl Staining. A basic (alkaline) dye was used to label nuclei and granules (i.e., ribosomal RNA) 257 

in neurons. The cytoplasm of neurons is specifically stained with the Nissl staining technique, 258 

while the perikarya of other cellular elements are either weakly visualized or not at all [52]. 259 

Deparaffinized and rehydrated sections were stained in 0.1% Cresyl Violet acetate (Sigma 260 

#C5042) for 5 min, rapidly rinsed in tap water, and briefly dipped in 70% ethanol. The sections 261 

were then dehydrated through 2 changes of absolute ethanol for 3 minutes each, followed by 262 

immersion in xylene twice for 2 minutes and mounted in mounting medium xylene (Fisher 263 

scientific company, L.L.C. #245-691). An average of 12 images (from the superior quadrant), 264 

covering the retinal neurons from the optic disc to the ora serrata, were captured at a 20x objective 265 

and analyzed to quantify the area and number of retinal GCL neurons. 266 

Microscopy and Stereological Quantification. Fluorescence and brightfield images were 267 

acquired using a Carl Zeiss Axio Imager Z1 fluorescence microscope (with motorized Z-drive) 268 

equipped with ApoTome, AxioCam HRc, and AxioCam MRm monochrome cameras (version 3.0; 269 
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resolution of 1388 × 1040 pixels, 6.45 µm × 6.45 µm pixel size, and a dynamic range of >1:2200, 270 

which delivers low-noise images due to a Peltier-cooled sensor) with ZEN 2.6 blue edition 271 

software (Carl Zeiss MicroImaging, Inc.). Multi-channel image acquisition was used to create 272 

images with multiple channels. Images were consistently captured at the same focal planes with 273 

identical exposure time, using a 20x objective at a resolution of 0.25 µm. Approximately 15 images 274 

were obtained from each retina. The acquired images were converted to grayscale and standardized 275 

to baseline using a histogram-based threshold in Fiji ImageJ (NIH) software (version 1.53c). For 276 

each biomarker, the total area of immunoreactivity was determined using the same threshold 277 

percentage from the baseline in ImageJ (with the same percentage threshold setting for all 278 

diagnostic groups). The images were then subjected to particle analysis to determine the 279 

immunoreactive (IR) area and/or area fraction (%).  280 

RGC Soma Size Measurement. The size of RGC somas was measured using Fiji ImageJ (NIH) 281 

software (version 1.53c) with the polygonal selection tool. For each 20x retinal image, the soma 282 

area of up to three cells was manually assessed, focusing on the three largest cells in each field. 283 

The average soma area for each subject was then computed, followed by statistical analysis. On 284 

average, 30 somas were analyzed per patient, with a total of 542 somas measured. 285 

Statistical Analysis. GraphPad Prism Software version 9.5.1 was used for statistical analyses. 286 

One-way or two-way ANOVA followed by Tukey’s multiple comparison post-test was used to 287 

determine statistical significance between three or more groups. Two-group comparisons were 288 

analyzed using a two-tailed unpaired Student’s t-test. The statistical association between two or 289 

more Gaussian-distributed variables was determined by Pearson’s correlation coefficient (r) test. 290 

Scatterplot graphs present the null hypothesis of pair-wise Pearson’s r, with unadjusted P values 291 

indicating the direction and strength of the linear relationship between two variables. Results are 292 
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expressed as the mean ± standard deviation (SD) in tables and as median, lower, and upper 293 

quartiles in violin plots. Degrees of significance are presented as: *P < 0.05, **P < 0.01, 294 

***P < 0.001, and ****P < 0.0001. Data analysis was conducted using coded identifiers, and 295 

analysts remained blinded to the diagnostic groups until all analyses were completed. 296 

 297 

Results 298 

To investigate the integrity of RGCs, including their number, morphology, and distribution in 299 

relation to abnormal retinal tau isoforms and their accumulation within RGCs in early and 300 

advanced-stage AD, we selected and analyzed retinal superior temporal (ST) cross-sections (Fig. 301 

1a, b) from patients with MCI due to AD (n=10, mean age 88.4 ± 6.6 years, 7 females/3 males) 302 

and AD dementia (n=15, mean age 87.5 ± 8.0 years, 8 females/7 males), compared to CN controls 303 

(n=16, mean age 80.5 ± 11.1 years, 10 females/6 males). Demographic, clinical, and 304 

neuropathological information are detailed in Table 1 (list of individual donor eyes and respective 305 

brains detailed in Suppl. Table 1).  306 

1. Severe RGC decline in MCI and AD patients. 307 

We first assessed RGC numbers and distribution across ST subregions in a sub-cohort of patients 308 

with MCI (n=6, mean age 89.5 ± 5.24 years, 3 females/3 males), AD (n=10, mean age 86.0 ± 8.89 309 

years, 4 females/6 males), and age- and sex-matched CN controls (n=9, mean age 85.89 ± 11.85 310 

years, 5 females/4 males), using a selective pan-RGC marker, ribonucleic acid binding protein 311 

with multiple splicing (RBPMS), for immunohistochemical (IHC) analysis. According to previous 312 

studies, RBPMS is specifically expressed in the entire RGC population, despite the heterogeneity 313 

of other neurons under pathological conditions, including displaced amacrine cells within the GCL 314 

[88, 91, 98]. In comparison to the retinas of CN individuals, the density of RGCs was lower in 315 
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MCI and AD dementia patients, with their cytoplasm appearing enlarged or swollen (Fig. 1c and 316 

Suppl. Figure 1a). Analysis of RBPMS+ RGC cell counts per retinal subregion (central, mid-, and 317 

far-periphery) and the total ST region revealed substantial reductions in RGC count and percent 318 

area–ranging from 42% to 65%–in MCI and AD patients compared to CN individuals (Fig. 1d, e 319 

and Suppl. Fig. 1b; P<0.05-0.01). RGC loss in MCI and AD retinas appeared more extensive in 320 

the mid- and far-periphery regions, which are further distal from the optic nerve head.  321 

We next examined neurodegeneration in the GCL using histological Nissl staining, an alkaline dye 322 

that labels nuclei and granules (i.e., ribosomal RNA) in neurons, in a sub-cohort of patients 323 

diagnosed with MCI (n=10, mean age 88.4 ± 6.6 years, 7 females/3 males), AD (n=15, mean age 324 

87.5 ± 8.0 years, 8 females/7 males), and CN controls (n=14, mean age 80.6 ± 12.1 years, 9 325 

females/5 males) (Fig. 1f-i). Representative images showed a reduction in cells numbers across all 326 

retinal layers (Fig. 1f), particularly in the GCL (Fig. 1g), in MCI and AD patients compared to CN 327 

controls. Quantitative analysis of Nissl+ percent area in the GCL across retinal subregions indicated 328 

a marked 53%-64% neuronal loss in the central and mid-peripheral subregions of MCI and AD 329 

patients compared to CN controls (Fig. 1h); no statistically significant reduction was observed in 330 

the far-peripheral subregion. In the total ST region, a substantial 55%-56% reduction in Nissl+ 331 

percent area in the GCL was observed for both AD and MCI groups compared to CN controls (Fig. 332 

1i; P<0.01-0.001). Pearson’s correlation coefficient (r) analysis demonstrated a strong correlation 333 

between the two RGC integrity parameters, RBPMS+ RGCs and Nissl+ neurons in the GCL 334 

(r=0.63, P=0.0011; Fig. 1j). To assess whether GCL residing neurons were lost due to apoptotic 335 

cell death mechanisms, we performed IHC using an antibody against cleaved caspase 3 (CCasp3), 336 

an early apoptotic marker [117]. Analysis of the percent of CCasp3+ cells in the GCL revealed a 337 

significant 1.5-fold and 1.3-fold increase in AD retinas compared to CN and MCI retinas, 338 
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respectively (Fig. 1k; P<0.05-0.01), with no differences noted between the MCI and CN retinas. 339 

When the CCasp3+ cell immunoreactive area in the total retina was normalized to retinal thickness, 340 

there were highly significant 3.1-fold and 2-fold increases in AD compared to CN and MCI, 341 

respectively (P<0.001-0.0001), with a trend toward a 1.5-fold increase in MCI compared to CN, 342 

reaching significance by Student’s t-test (Suppl. Fig. 1c).  343 

2. Increased pS396-tau laden RGCs of MCI and AD patients is linked to RGC hypertrophy 344 

and loss.  345 

We recently found significant increases in AD-related tau isoforms, particularly pretangles such 346 

as pS396-tau and tau oligomers (oligo-tau), in the retinas of MCI and AD patients, which strongly 347 

correlated with corresponding brain pathology and cognitive deficits [108]. In this study, we 348 

investigated whether RGCs are vulnerable to these tau isoforms in early and advanced AD (Fig. 349 

2; extended data in Suppl. Fig. 2). Utilizing the same sub-cohort of patients outlined above for the 350 

RBPMS analysis, we performed an IHC analysis employing a combination of RBPMS and pS396-351 

tau, which recognizes the hyperphosphorylated tau protein at serine residue 396 in the C-terminal 352 

region. Representative microscopic images depicted increases in pS396-tau burden within the 353 

OPL, IPL, GCL, and NFL, along with cell swelling (hypertrophic soma), whereas a reduction in 354 

the number of RBPMS+ RGC was observed in MCI and AD patients was seen compared to CN 355 

controls (Fig. 2a). The three-parallel-string staining pattern of retinal pS396-tau in the IPL of MCI 356 

and AD patients appeared to accumulate in neuronal dendrites of RGCs connecting with axons of 357 

bipolar and amacrine cells. Notably, morphological changes were observed in the RGCs of MCI 358 

and AD patients compared to CN controls (Fig. 2a-d and Suppl. Fig. 2a, b). These ganglion cells 359 

exhibited granulovacuolar vesicles degeneration (GVD)-like bodies and nucleus displacement, as 360 

indicated by white and red arrows, respectively (Fig. 2b and Suppl. Fig. 2a). Analysis of the 361 
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enlarged and granulomatous soma areas of RBPMS+ RGCs revealed a significant 1.5-fold increase 362 

in RGC soma size in AD patients compared to CN controls (P=0.018), with no difference observed 363 

in RGC size in MCI patients (Fig. 2b’).  364 

To assess whether p-tau inclusions exist and increase within RGCs of MCI and AD patients, we 365 

next immunolabeled retinal cross-sections for pS396-tau in combination with RBPMS and 366 

parvalbumin, the latter being a marker of horizontal cells within the OPL and RGCs [57]. Our 367 

analysis identified pS396-tau accumulation within hypertrophic RBPMS+ RGCs and horizontal 368 

cells of MCI and AD patients, and occasionally in RBPMS+ RGCs of CN individuals (Fig. 2c, d 369 

and Suppl. Fig. 2b). Moreover, pS396-tau build-up within the somas of RGCs in the GCL was 370 

evident in non-fluorescence, peroxidase-based IHC staining (Fig. 2e, red arrows). Quantitative 371 

analysis of retinal cross-sections in this cohort showed a highly significant 2.4-fold increase in 372 

total pS396-tau+ % area in MCI and AD patients compared to CN controls (Suppl. Fig. 2c; 373 

p<0.0001). Importantly, compared to the CN retina, pS396-tau-positive RBPMS+ RGC counts 374 

were significantly increased in MCI (2.1-2.3-fold; P<0.05-0.01), and AD (2.9-4.1-fold; P<0.01-375 

0.0001) retinas when analyzed per retinal subregion and in the total ST region (Fig. 2f, g). 376 

Increases in the pS396-tau+ RBPMS+ RGC count, as well as the percentage area of pS396-tau+ in 377 

the GCL of MCI and AD patients, were more significant in the central ST retina (Fig. 2f and 378 

Suppl. Fig. 2d, e). Additional analysis of T22+ oligo-tau in the retinas of MCI and AD patients 379 

compared to CN controls identified oligo-tau aggregates within swollen RGCs of the GCL (Fig. 380 

2h and Suppl. Fig. 2f). 381 

To investigate the interrelations between pS396-tau-containing RBPMS+ RGCs, retinal pS396-tau, 382 

retinal Aβ burden, retinal oligo-tau, and RGC loss, we applied Pearson’s correlation coefficient (r) 383 

analyses (Fig. 2i-m and Suppl. Fig. 2g-j) in our cohort. As expected, we found a strong positive 384 
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correlation between retinal pS396-tau burden and the number of pS396-tau+ RBPMS+ RGCs 385 

(Suppl. Fig. 2g; r=0.72 and P<0.0001). An unexpected strong correlation was detected between 386 

retinal Aβ42 burden and pS396-tau+ RBPMS+ RGC number (Suppl. Fig. 2h; r=0.69 and P=0.003). 387 

We then assessed whether there was a connection between the presence of pS396-tau in RBPMS+ 388 

RGCs, RGC loss, and the level of CCasp3+ in the GCL. Pearson’s correlation analyses revealed 389 

moderate associations between pS396-tau+ RBPMS+ RGCs and GCL Nissl+ cells (Fig. 2i; r=-0.53 390 

and P=0.0091), or RBPMS+ RGCs (Fig. 2j; r=-0.40 and P=0.049). Notably, the apoptotic marker 391 

CCasp3+ cells in the GCL strongly correlated with pS396-tau+ RBPMS+ RGCs (Suppl. Fig. 2i; 392 

r=0.66 and P=0.036). We next assessed the relationship between overall retinal pS396-tau+, retinal 393 

Aβ42, retinal intra-RGC Aβ oligomers, and retinal oligo-tau burdens and RGC integrity. Pearson’s 394 

correlation analyses revealed moderate to strong correlations between retinal pS396-tau+ (Fig. 2k; 395 

r=-0.60 and P=0.0017), retinal 12F4+-Aβ42 (Suppl. Fig. 2l; r=-0.53 and P=0.033), retinal 396 

scFvA13+Aβ oligomers in RGCs (Fig. 2l; r=-0.74 and P=0.0022), and retinal T22+ tau oligomers 397 

(Fig. 2m r=-0.64, P=0.002), with RGC reduction. 398 

3. Retinal p-tau-containing ganglion cells correlate with AD status.  399 

We further tested the potential relationship between pS396-tau+ RBPMS+ RGCs or diminished 400 

RGCs and the severity of brain pathology and cognitive deficits (Fig. 3, Tables 2-3; extended data 401 

in Suppl. Fig. 3). Pearson’s correlation coefficient (r) analyses revealed that pS396-tau+ RGC 402 

count strongly associated with brain Aβ-plaque and NFT severity scores (Fig. 3a, b; r=0.62, 403 

P=0.0017 and r=0.71, P=0.0001, respectively). Stratifying patients based on Braak stage severity 404 

showed significant 1.9-2.7-fold increases in pS396-tau+ RBPMS+ RGCs in the high (V-VI) and, to 405 

a lesser extent, the intermediate (III-IV) Braak stage groups compared to the low (0-II) group (Fig. 406 

3c; P=0.0033 and P=0.042, respectively). The pS396-tau+ RBPMS+ RGCs were strongly correlated 407 
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with Braak stage (Fig. 3d; r=0.65, P=0.0009), while no correlation was detected between RBPMS+ 408 

RGC count and Braak stage (Suppl. Fig. 3a). Similarly, pS396-tau+ RBPMS+ RGC counts were 409 

strongly correlated with disease severity ABC scores (Fig. 3e; r=0.65, P=0.0007), as well as with 410 

the cerebral amyloid angiopathy (CAA) grades (Fig. 3f; r=0.63, P=0.0014). Moderate inverse 411 

correlations were detected between GCL Nissl+ neuronal % area or RBPMS+ RGC counts and 412 

CAA grades (Suppl. Fig. 3b, c; r=-0.42, P=0.06 and r=-0.54, P=0.011, respectively).  413 

Finally, we assessed the potential associations between pS396-tau+ RBPMS+ RGC or RBPMS+ 414 

RGC counts and cognitive status. Stratification of patients based on their clinical dementia rating 415 

(CDR) group revealed a significant 2.2-fold increase in pS396-tau+ RGCs in the CDR 3 score 416 

group compared to the CDR 0-0.5 group (Fig. 3g; P=0.03), with a strong correlation between 417 

pS396-tau+ RBPMS+ RGC count and CDR score (Fig. 3h; r=0.60, P=0.0031). A moderate 418 

correlation was observed between RBPMS+ RGC count and CDR score (Suppl. Fig. 3d; r=-0.49 419 

and P=0.022). Importantly, stratifying patients based on the mini-mental state examination 420 

(MMSE) cut-off score of 26, which has been reported to have high sensitivity and specificity for 421 

detecting dementia [87], was utilized in our cohort. This analysis showed a significant 2-fold 422 

increase in pS396-tau+ RBPMS+ RGC counts in the MMSE ≤ 26 group compared to the MMSE 423 

>26 group (Fig. 3i; P=0.0059). Whereas no significant association was detected between RBPMS+ 424 

RGC counts and MMSE score (Suppl. Fig. 2e), a highly significant and strong association was 425 

observed between pS396-tau+ RBPMS+ RGC count and MMSE score (Fig. 3k; r=-0.76, 426 

P=0.0004). 427 

 428 

Discussion 429 
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In this study, we present the first evidence of abnormal tau inclusions within RBPMS-positive 430 

RGCs, concomitant with ganglion cell loss in the retinas of donor patients with MCI (due to AD) 431 

and AD dementia. Increases in pS396-tau-containing RBPMS-positive RGCs in both MCI and AD 432 

patients were accompanied by elevated apoptotic cell markers, necroptotic-like morphological 433 

changes in RGCs, including hypertrophic soma and nuclei displacement, and decreased RGC 434 

counts. Tau oligomers were also detected in swollen RGCs within the GCL. Notably, we found 435 

moderate to strong associations between RGC loss and pS396-tau burden in both RGCs and the 436 

retina as a whole. Moreover, we observed that retinal tau oligomers, as well as retinal Aβ42 and 437 

intra-RGC Aβ oligomers, were strongly associated with RGC reduction, suggesting a link between 438 

retinal tau and amyloid pathologies and ganglion cell degeneration in AD. Importantly, our data 439 

indicated tight correlations between pS396-tau-containing RBPMS+ RGCs and the respective brain 440 

pathology, disease stage, and cognitive status. Overall, our findings suggest that abnormal tau 441 

isoforms accumulate within RBPMS+ RGCs and are associated with early and marked RGC loss 442 

in AD patients.  443 

Among the RGC populations, the midget cells projecting to the parvocellular (P-cell) layers of the 444 

lateral geniculate nucleus (LGN) and the parasol cells projecting to the magnocellular (M-cell) 445 

layers of the LGN serve as two distinct visual pathways that process color and low spatial 446 

frequency contrast vision, respectively [69]. In AD patients, abnormalities in color vision, eye 447 

movement, contrast sensitivity, and visual integration have been detected early in disease 448 

progression [37, 47, 78] [32, 72, 101]. Therefore, fluctuations in color perception and abnormal 449 

contrast sensitivity in AD patients may be attributed to damage and loss of these RGC types, in 450 

addition to the involvement of horizontal and amacrine neurons. Here, the analysis of the RBPMS 451 

marker, a conserved RNA binding protein with a single RNA recognition motif expressed in RGCs 452 
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of humans and animal models [84, 91], facilitates differentiation from other retinal cells [63, 92, 453 

98] and further validates our findings in RGCs. Notably, our analysis of RGC integrity in the 454 

superior temporal retina indicates marked decreases in RBPMS+ RGC counts or immunoreactive 455 

area (by 47-55% in MCI and 46-50% in AD) compared to CN controls, with similar degrees of 456 

decreases observed in GCL Nissl+ neurons (by 56% in MCI and 55% in AD patients). These results 457 

are consistent with previous studies reporting significant reductions in RGCs and the GCL in AD 458 

patients versus control subjects [6, 15-17] [101].  459 

Specifically, the RBPMS+ RGC count per retinal subregion indicated a 46% loss in MCI and a 460 

57% loss in AD in the mid-periphery, as well as a 62% loss in MCI and a 45% loss in AD in the 461 

far periphery. Similarly, a study by Blanks et al., described GCL neuronal loss in AD as most 462 

pronounced in the superior and inferior quadrants, ranging between 40% and 49% throughout the 463 

mid-peripheral subregions and reaching 50-59% in the far-peripheral retina of AD patients [16]. 464 

These peripheral retinal subregions, which have anatomically fewer ganglion cells and a thinner 465 

nerve fiber layer, appear more vulnerable to RGC loss in AD, potentially due to a higher density 466 

of abnormal Aβ and tau species (e.g., Aβ42, Aβ oligomers, PHF-tau, pS396-tau and p-tau 467 

(S202/T205)), and microgliosis [60, 61, 70, 108]. Interestingly, whereas the total and mid-468 

peripheral ST retina consistently demonstrated significant and similar RGC reductions in both 469 

MCI and AD patients, as shown by the GCL Nissl+ area and RBPMS+ RGC count analyses, non-470 

significant trends were noted for the far and central subregions, respectively. These differences 471 

may be due to variations in the types of analysis and staining patterns. The loss of RGCs in MCI 472 

and AD patients may explain previous reports of visual dysfunctions in AD, specifically impaired 473 

color and low spatial frequency contrast vision, as well as motion perception that can be attributed, 474 

at least in part, to the loss of M-cell and P-cell RGCs. In addition, a previous study of postmortem 475 
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AD retinas identified a reduction in melanopsin retinal ganglion cells (mRGCs), intrinsically 476 

photosensitive cells that contribute to the photoentrainment of circadian rhythms, potentially 477 

explaining the sleep disturbances observed in these patients [67]. 478 

In the brains of AD patients, the increase in hyperphosphorylated tau isoforms has been shown to 479 

lead to tau aggregation, oligomerization, propagation, and NFT formation, ultimately causing 480 

neuronal dysfunction and degeneration [90, 114]. Previous studies detected intracellular pretangles 481 

and mature tangles in the retinas of AD patients [27, 29, 40, 45, 46, 60, 86, 108, 122]. Recently, 482 

we also identified tau oligomers and citrullinated-tau, along with other tau isoforms, in the retinas 483 

of MCI and AD patients. Notably, both pS396-tau and oligomeric-tau forms were frequently 484 

observed within the GCL, with significant increases in MCI and AD patients [108]. The pS396-485 

tau isoform is increased in the AD brains and is linked to neuronal cell loss and Braak stage severity 486 

[8, 36, 96, 120]. Here, we found a specific build-up of these pathological tau isoforms within RGCs 487 

of MCI and AD patients, demonstrating their connection with RGC integrity, entailing similar 488 

links to neurodegeneration and tauopathy as seen in the brain.  489 

In this study, we detected higher numbers of RBPMS+ RGCs containing pS396-tau in patients with 490 

AD dementia and those at the earliest stages of functional impairment (MCI due to AD). The level 491 

of pS396-tau in RGCs was even higher in AD patients compared to MCI patients, suggesting that 492 

more RGCs are affected by pS396-tau as the disease progresses. Our data on pS396-tau+ RGC 493 

counts per retinal subregion indicated that the most significant and substantial changes were 494 

detected in the central subregion across all analyzed groups, with less pronounced changes in the 495 

mid-periphery and the far periphery. This could be attributed to the density of RGCs in each 496 

subregion, as there are up to eight layers of ganglion cells in the central subregion and only one or 497 

two layers with space between them in the far periphery [55]. Hence, there is a higher probability 498 
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that RGCs in the central subregion are impacted by pS396-tau compared to those in the peripheral 499 

subregions. These findings may guide potential future in vivo imaging of pS396-tau-positive 500 

RGCs in the central ST retina for early AD detection and monitoring of disease progression. 501 

In both fluorescent and peroxidase-based staining methods, we observed a three-parallel-string 502 

staining pattern of retinal pS396-tau in the IPL of MCI and AD patients. Consistent with retinal 503 

neuroanatomy, these findings suggest that pS396-tau accumulates within the neuronal dendrites of 504 

RGCs, which connect with the axons of bipolar and amacrine cells. These tau aggregates in 505 

synaptic-rich regions may interfere with information transmission and could help explain the 506 

decrease in contrast sensitivity observed in MCI and AD patients. Moreover, in MCI and AD 507 

patients, the pS396-tau isoform was also observed in the OPL, specifically in horizontal cells. A 508 

recent study suggested that pS202/T205-tau (AT8+) spreads from the OPL to the IPL/GCL in the 509 

AD retina [122]. The patterns of retinal pS396-tau burden in the NFL of CN subjects and the 510 

IPL/OPL of MCI and AD patients merit further investigation to understand how pS396-tau spreads 511 

across retinal layers and neuronal processes during AD progression. 512 

Our analysis showed a moderate inverse correlation between pS396-tau+ RGCs and RGC integrity, 513 

and a stronger negative correlation between overall retinal pS396-tau burden and RGC integrity, 514 

suggesting that the extent of retinal pS396-tau load, including in neuronal dendrites connecting 515 

with RGCs, may have additive effects on RGC susceptibility. Beyond retinal p-tau, the strong 516 

negative associations of Aβ oligomers in RGCs and retinal tau oligomers with RGC reduction 517 

suggest their substantial and detrimental effects on RGC degeneration. These retinal findings in 518 

AD are consistent with similar reports connecting elevated Aβ and tau oligomers with neuronal 519 

loss in AD brains [3, 9, 68, 83, 105, 116]. As expected, the overall burden of retinal pS396-tau 520 

strongly correlated with the extent of pS396-tau-loaded RGCs. Unexpectedly, the levels of retinal 521 
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Aβ42 also strongly correlated with the extent of RGC containing pS396-tau, suggesting that retinal 522 

Aβ may be a driver of tauopathy in RGCs, similar to the interactions between Aβ and the spread 523 

of tau in neurons of AD brains [18, 126]. 524 

Levels of the early apoptotic marker, cleaved caspase 3 [117], have been shown to be elevated in 525 

AD brains, with a high degree of colocalization to neurofibrillary tangles within neurons [38, 112]. 526 

In the current study, we observed increased cleaved caspase 3 expression in GCL cells in AD, but 527 

not MCI, patients compared to cognitively normal controls. This is consistent with previous studies 528 

showing cleaved caspase 3+/Tuj1+ RGCs [40] and overall retinal cleaved caspase 3 expression [61] 529 

in AD patients compared to controls. The elevated expression of retinal cleaved caspase 3 in GCL 530 

cells, along with strong correlations with pS396-tau-loaded RGCs, suggests that pS396-tau may 531 

trigger apoptotic cell death in RGCs.  532 

RGCs are highly diverse, consisting of multiple subtypes that exhibit a range of morphological 533 

and physiological characteristics, including variations in soma and cell body size [55]. In this 534 

study, we observed that RGCs in aged CN individuals predominantly appear to have small-sized 535 

somas, with a minority of cells exhibiting large and round somas. In contrast, a substantial number 536 

of RGCs in MCI and AD patients appeared swollen, with enlarged somas, granulovacuolar-like 537 

bodies, and displaced nuclei, particularly in those containing pS396-tau inclusions. To the best of 538 

our knowledge, this is the first demonstration of hypertrophic RGCs in MCI and AD patients. This 539 

abnormal RGC morphology is characteristic of neurons exhibiting granulovacuolar degeneration 540 

due to necroptosis, a process observed in the brains of individuals with preclinical AD and AD 541 

dementia [59]. The morphology and process of necroptotic cells are characterized by compromised 542 

plasma membrane integrity, organelle and cell enlargement, chromatin fragmentation, and 543 

eventual cell lysis [89, 125]. Moreover, studies have indicated that necroptosis is involved in AD 544 
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brain pathology and is closely linked to tau pathology and Braak stage progression [11, 21, 59], 545 

with recent research showing that p-tau contributes to neuronal death by inducing necroptosis and 546 

inflammation [28]. In this study, the abnormal morphology of RGCs, particularly in those with a 547 

pS396-tau burden, may indicate necroptotic cell death in the RGCs of AD retinas. Future studies 548 

are needed to determine the potential role of p-tau in retinal ganglion cell death in AD. 549 

Looking into the potential connections between pS396-tau-containing RGCs and disease status, 550 

our analysis indicates strong associations between pS396-tau+ RGCs and the following brain 551 

pathologies: Aβ plaques, NFTs, Braak stage, and ABC neuropathic changes. However, RGC 552 

counts alone did not correlate with these AD brain parameters. These data suggest that tauopathy-553 

laden RGCs (measured here by RBPMS+ RGCs with a pS396-tau burden) may represent the link 554 

between retinal neuronal injury and brain AD pathology and disease progression. The strong 555 

correlation between pS396-tau-positive RGCs and CAA severity may simply reflect brain Aβ 556 

burden, as CAA involves cerebrovascular deposition of Aβ and is influenced by Aβ plaque levels 557 

[39]. In our cohort, pS396-tau-containing RGCs had comparable correlations with brain Aβ 558 

plaques and CAA severity. Importantly, our data indicate that pS396-tau-containing RGC numbers 559 

strongly correlate with cognitive status, as measured by the CDR, and even more so with MMSE 560 

scores. While the CDR is a test that allows assessment of cognitive, behavioral, and functional 561 

performance associated with AD, the MMSE test evaluates cerebral competency, comprehension, 562 

and communication. Our findings suggest that a future retinal imaging approach that reliably 563 

measures the number of RGCs containing pS396-tau in the ST central region holds potential as a 564 

marker to evaluate brain NFT severity, Braak staging, ABC scores, and cognitive deficits in AD 565 

patients. In the clinical setting, GCL layer is assessed by OCT [37, 73, 75, 109], apoptotic RGCs 566 

can be images by detection of apoptosing retinal cells (DARK) method [10, 26], and more specific 567 
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RGC changes could be detectable in the inner retina using high resolution imaging systems, such 568 

as AO-OCT. Imaging RGCs, combined with future p-tau tracers, could serve as a non-invasive 569 

biomarker for early AD diagnosis and monitoring of disease progression. This would be 570 

immensely valuable in future trials evaluating new treatments for AD.  571 

We acknowledge several limitations of this study. As a cross-sectional, case-control study, our 572 

focus was primarily on group stratification and correlations, so caution must be exercised before 573 

implicating cause-and-effect conclusions. Moreover, the lack of clinical information on visual 574 

system-related symptoms hinders our ability to assess potential connections between pS396-tau+ 575 

RBPMS+ RGCs and various manifestations of visual dysfunction. This highlights the need for 576 

future studies to explore the relationships between pS396-tau+ RGCs, RGC loss, and ocular 577 

outcomes in patients. Future studies in larger and more diverse populations are warranted to 578 

validate these findings and to compare RGC susceptibility with that of other retinal cell types in 579 

relation to AD processes.  580 

 581 

Conclusion 582 

In summary, this study provides the first evidence of RGCs laden with abnormal tau inclusions, 583 

pS396-tau and oligomeric tau, in early (MCI) and advanced-stage AD patients, with clear 584 

indications of increased RGC vulnerability. RBPMS-positive RGCs containing pS396-tau 585 

correlated with increased apoptotic markers, necroptotic-like morphological changes, and reduced 586 

RGC counts, suggesting that these tau pathologies may contribute to ganglion cell degeneration in 587 

AD. Notably, strong correlations were found between pS396-tau laden RGCs and brain AD 588 

pathology, cognitive status, and disease stage. This study highlights the potential of imaging tau-589 
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laden RGCs as a non-invasive biomarker for early AD diagnosis and monitoring disease 590 

progression. However, further research is needed to more definitively establish these connections.  591 

 592 

Abbreviations: 593 

A – Amyloid; Ab – Antibody; ABC – Amyloid/Braak/CERAD score; AD – Alzheimer’s disease; 594 

ADRC –Alzheimer’s disease research center; Aβ – Amyloid β-protein; ANOVA – Analysis of 595 

variance; B – Brain; C – Central retina; CCasp3 – Cleaved caspase 3; CDR – Clinical Dementia 596 

Rating; CN – Cognitively normal; F – Far-peripheral retina; GCL – Ganglion cell layer; IHC – 597 

Immunohistochemistry; INL – Inner nuclear layer; IPL – Inner plexiform layer; IR area – 598 

Immunoreactive area; mAb – Monoclonal antibody; M – Middle-peripheral retina; MCI – Mild 599 

Cognitive Impairment; MMSE – Mini-mental state examination; mRGC – Melanopsin Retinal 600 

Ganglion Cell; NDRI – National disease research interchange; NFL – Nerve fiber layer; NFT – 601 

Neurofibrillary tangle; NT – Neuropil thread; OD – Optic disc; ONL – Outer nuclear layer; OPL 602 

– Outer plexiform layer; pAb – Polyclonal antibody; PMI – Postmortem interval; p-tau – 603 

Hyperphosphorylated tau; RBPMS – Ribonucleic acid binding protein with multiple splicing; 604 

RGC – Retinal Ganglion Cell(s); Serine 396 – S396; SD – Standard deviation; ST – Superior 605 

temporal. 606 

 607 

 608 

 609 

 610 

 611 
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Table 1. Demographic and neuropathological data on human brain and retinal donors in this study. 612 

  CN MCI AD F P 

Retinal samples 
(N = 41) 

 16 

10F (63%) 6M 

10  

7F (70%) 3M 

15  

8F (53%) 7M 
- - 

Age at death 
(years) 

 80.5 ± 11.1 88.4 ± 6.6 87.5 ± 8.0 2.93 0.07 

Race  14W, 1H, 1B 8W, 1B, 1H 12W, 2H, 1A - - 

PMI (h)  7.8 ± 4.5 10.1 ± 5.4 8.8 ± 4.5 0.5 0.73 

MMSE score 
(N=30) 

 28.7 ± 2.1 20.1 ± 7.0 13.8 ± 7.3 17.01 <0.0001 

CDR score 
(N=31) 

 0.57 ± 0.8 2.1 ± 1.1 2.5 ± 0.9 10.53 0.0004 

Brain 
neuropathology Braak stage (%) 

0-II (57%) 

III-IV (43%) 

0-II (30%) 

III-IV (30%) 

0-II (0%) 

III-IV (13%) 
15.2 <0.0001 

(N=32)  V-VI (0%) V-VI (40%) V-VI (87%)   

 ABC average 1.37 ± 0.91 2.20 ± 0.59 2.82 ± 0.21 17.13 <0.0001 
 Aβ plaque 

(severity score) 1.12 ± 1.31 1.88 ± 0.79 2.65 ± 0.77 6.98 0.0034 

 NFTs (severity 
score) 0.43 ± 0.53 1.71 ± 0.91 2.36 ± 0.70 16.06 <0.0001 

 NTs (severity 
score) 0.49 ± 0.99 1.24 ± 0.82 1.69 ± 0.90 4.27 0.024 

List of human donors included in this study (N = 41 subjects). Paired brains with neuropathological 613 
assessments were available for 32 human donors. ABC scores comprise of mean grades for: (A) 614 
Aβ plaque score modified from Thal, (B) NFT stage modified from Braak, and (C) neuritic plaque 615 
score modified from CERAD. Group values are presented as mean ± standard deviation. F and P-616 
values were determined using one-way analysis of variance (ANOVA) with Tukey's multiple 617 
comparisons test. P-values presented in bold type demonstrate statistical significance. 618 
Abbreviations: Aβ, amyloid beta-protein; AD, Alzheimer's disease; A, Asian; B, Black; CDR, 619 
Clinical Dementia Rating; CN, cognitively normal controls; F, female; H, Hispanic; M, male; 620 
MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; NFTs, neurofibrillary 621 
tangles; NTs, neuropil threads; PMI, postmortem interval; W, White. 622 
  623 
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Table 2. Correlations between RGC parameters and brain pathology.  624 

  

Aβ (severity 
score) CAA (grade) NFT (severity 

score) BRAAK (stage) ABC (score) 

N = 17-23 N = 17-23 N = 17-23 N = 17-23 N = 17-23 

r P r P r P r P r P 

RBPMS+ 
RGCs (count) 

 

Total -0.22 0.32 -0.26 0.23 -0.29 0.18 -0.15 0.50 -0.19 0.38 

Central -0.18 0.47 -0.35 0.16 -0.27 0.28 -0.14 0.57 -0.23 0.35 

Mid-periphery -0.29 0.20 -0.54 0.011* -0.38 0.091 -0.27 0.24 -0.32 0.16 

Far-periphery -0.18 0.41 -0.30 0.17 -0.29 0.17 -0.20 0.35 -0.17 0.43 

Nissl+ in GCL 
(% area)  

Total -0.11 0.64 -0.42 0.060* -0.094 0.69 -0.088 0.70 -0.07 0.76 

Central -0.16 0.55 -0.49 0.045* -0.22 0.40 -0.28 0.28 -0.24 0.35 

Mid-periphery 0.022 0.93 -0.48 0.028* -0.10 0.66 -0.12 0.60 -0.024 0.92 

Far-periphery -0.31 0.19 -0.42 0.065 -0.030 0.90 0.043 0.86 -0.17 0.46 

pS396-tau+ in 
RGCs (count)    

Total 0.62 0.0017** 0.63 0.0014** 0.71 0.00010*** 0.65 0.0009*** 0.65 0.0007*** 

Central 0.65 0.0038** 0.59 0.010* 0.70 0.0014** 0.68 0.0019** 0.67 0.0023** 

Mid-periphery 0.51 0.017* 0.56 0.009** 0.72 0.00020*** 0.62 0.0029** 0.57 0.0073** 

Far-periphery 0.59 0.0029** 0.53 0.009** 0.71 0.00020*** 0.63 0.0012** 0.66 0.00070*** 

Pearson’s correlation analyses: P and r-values determine the statistical significance and strength 625 
of each pairwise association between retinal RGC marker and brain pathology. P and r-values 626 
presented in bold type with asterisk(s) are statistically significant (<0.05). Aβ, amyloid beta-627 
protein; CAA, cerebral amyloid angiopathy; NFTs, neurofibrillary tangles. ABC scores comprise 628 
of mean grades for: (A) Aβ plaque score modified from Thal, (B) NFT stage modified from Braak, 629 
and (C) neuritic plaque score modified from CERAD. 630 
  631 
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Table 3. Correlations between RGC parameters and the cognitive status. 632 

 633 

 
CDR (score) MMSE (score) 

N = 16-22 N = 15-18 

r P r P 

RBPMS+ RGCs (count)   

Total -0.39 0.070 0.42 0.097 

Central -0.11 0.67 0.36 0.19 

Mid-periphery -0.45 0.047* 0.48 0.050 

Far- periphery -0.49 0.022* 0.42 0.094 

Nissl+ in GCL (% area)  

Total -0.40 0.080 0.33 0.24 

Central -0.56 0.023* 0.31 0.31 

Mid-periphery -0.35 0.13 0.38 0.16 

Far-periphery -0.26 0.29 0.43 0.11 

pS396-tau+ in RGCs (count)   

Total 0.60 0.0031** -0.76 0.00040*** 

Central 0.65 0.0049** -0.74 0.0018** 

Mid-periphery 0.62 0.0037** -0.71 0.0016** 

Far-periphery 0.61 0.0023** -0.59 0.0013** 

Pearson’s correlation analyses: P and r-values determine the statistical significance and strength 634 
of each pairwise association between retinal RGC marker and the cognitive function score. P and 635 
r-values presented in bold type with asterisk(s) are statistically significant (<0.05). CDR, Clinical 636 
Dementia Rating; MMSE, Mini-Mental State Examination. 637 

 638 

 639 

 640 

 641 

 642 

 643 
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Figure Legends: 1067 

Figure 1. Ganglion cell integrity in retinal tissues of MCI and AD patients. 1068 

a Illustration of the histological process, including retinal isolation, cross-section preparation, and 1069 

analysis of the superior temporal (ST) strip, extending from the optic disc to the ora serrata and 1070 

anatomically predefined into central (Cen), middle (Mid) and far-peripheral (Far) subregions. The 1071 

retinal ganglion cell layer (GCL) was analyzed in this study. b Microscopic image of a retinal 1072 

cross-section from an AD patient, immunolabeled with retinal ganglion cell (RGC)-specific 1073 

marker, ribonucleic acid binding protein with multiple splicing (RBPMS; green), and paired-1074 

helical filament of tau (PHF1-tau; red), along with nuclei labelling with DAPI (blue). Scale bar: 1075 

25 µm. c Representative microscopic images of RBPMS+ RGCs within the GCL, labeled with 1076 

RBPMS (green) and DAPI (blue), in retinal cross-sections from patients with mild cognitive 1077 

impairment (MCI due to AD, n=4) and Alzheimer’s disease (AD) dementia (n=4), and cognitively 1078 

normal individuals (CN, n=4). Scale bar: 50 µm. d, e Violin graphs display the quantitative 1079 

immunohistochemistry analyses of RBPMS+DAPI+ RGCs by d cell count in Cen, Mid- and Far-1080 

peripheral subregions, and e cell count (left) and percent area (right) in the total ST region (n=25 1081 

subjects; n=9 CN, n=6 MCI, n=10 AD). f, g Representative microscopic images of retinal cross-1082 

sections from CN, MCI, and AD donors labeled with Nissl stain (purple) in f all analyzed retinal 1083 

layers (ONL to NFL) and g GCL separately. Scale bars: 20 µm. g, h Quantitative analyses of Nissl+ 1084 

percent area in GCL in g the Cen, Mid, and Far-peripheral subregions (n=33-37) and h the total 1085 

ST region (n=38 subjects; n=14 CN, n=10 MCI, n=14 AD). i Pearson’s correlation coefficient (r) 1086 

analysis between RBPMS+ RGCs percent area and Nissl+ cells (in GCL) percent area. j 1087 

Quantitative analysis of the percent area of early apoptotic cell marker, cleaved caspase-3 1088 

(CCasp3)+ in GCL, normalized to nuclei count (n=23 subjects; n=6 CN, n=6 MCI, n=11 AD). 1089 

Individual data points and median, lower and upper quartiles are shown in violin plots. *P < 0.05, 1090 

**P < 0.01, ***P < 0.001, ****P < 0.0001, by one-way or two-way ANOVA followed by Tukey’s 1091 

post-hoc multiple comparison test. Percent decreases and fold changes are shown in red. F, female; 1092 

M, male; Age (in years); Ethnicity: W, White and H, Hispanic; NFL, Nerve fiber layer; IPL, Inner 1093 

Plexiform Layer; INL, Inner Nuclear Layer; OPL, Outer Plexiform Layer; ONL, Outer Nuclear 1094 

Layer; IS/OS, inner segment and outer segment. Illustrations created with Biorender.com.  1095 
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Figure 2. Pretangle tau pathology in RGCs of MCI and AD patients. 1096 

a Representative microscopic images of retinal cross-sections immunofluorescently stained for 1097 

hyperphosphorylated (p)tau at S396 epitope (pS396-tau, red), RGC-specific marker, RBPMS 1098 

(green) and nuclei (DAPI, blue) in retinal cross-sections from patients with mild cognitive 1099 

impairment (MCI due to AD) and Alzheimer’s disease (AD) dementia, and cognitively normal 1100 

individuals (CN). a, b Retinas from MCI and AD patients exhibit increases in pS396-tau isoforms 1101 

and the RGCs exhibit reduced numbers, a hypertrophic cytoplasm (cell soma swelling), and 1102 

abnormal morphology, including granulovacuolar vesicles degeneration (GVD)-like bodies and 1103 

nucleus displacement (white arrows indicate enlarged and granulomatous soma area and red 1104 

arrows point to nuclear displacement). Scale bars: 20µm. b’ Quantitative analysis of RBPMS+ 1105 

RGC soma cell size in patients with MCI (n=6) and AD (n=8), and in CN controls (n=9). c 1106 

Representative immunofluorescent images of retinal cross- section labelled for RBPMS RGCs 1107 

(white), pS396-tau (red), amacrine and RGCs marker - parvalbumin (green), and nuclei (DAPI, 1108 

blue) in CN, MCI and AD subjects. Colocalization of pS396-tau in parvalbumin+ amacrine cells 1109 

(yellow arrows) and RBPMS+ RGCs (white arrows) are shown. Scale bars: 20µm. d High-1110 

magnification microscopic images depicting pS396-tau accumulation (red) in swollen RBPMS+ 1111 

RGCs (green) with hypertrophic soma (white arrows). Scale bar sizes are indicated on images. e 1112 

Representative microscopic image of peroxidase-based staining for pS396-tau isoforms (brown) 1113 

within retinal layers, and specifically, in RGCs of a MCI patient. Scale bar: 50 µm. f, g Cell count 1114 

of pS396-tau+ RGCs in retinal f Cen, Mid- and Far-peripheral subregions (n=19-25) and g total ST 1115 

region (n=9 CN, n=6 MCI, n=10 AD). h Representative images of T22+ oligo-tau in the GCL of 1116 

an AD patient. Scale bars: 10 µm. i-m Pearson’s correlation coefficient (r) analyses between: i % 1117 

area of Nissl+ in GCL or j RBPMS+ RGCs % area and pS396-tau+ RGC count, k RBPMS+ RGC 1118 

% area and retinal pS396-tau+ % area, l % area of Nissl+ in GCL and retinal scFvA13+Aβ (oligo- 1119 

Aβ) in RGCs, and m RBPMS+ RGC % area and retinal T22+ tau oligomers (oligo-tau). Individual 1120 

data points and median, lower and upper quartiles are shown in violin plots. *P < 0.05, **P < 0.01, 1121 

****P < 0.0001, by one-way or two-way ANOVA followed by Tukey’s post-hoc multiple 1122 

comparison test. Fold changes are shown in red. F, female; M, male; Age (in years); Ethnicity: W, 1123 

White; NFL, Nerve fiber layer, GCL, ganglion cell layer; IPL, Inner Plexiform Layer; INL, Inner 1124 

Nuclear Layer, OPL, Outer Plexiform Layer; ONL, Outer Nuclear Layer; RGC, Retinal ganglion 1125 

cells.  1126 
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Figure 3. Interactions between retinal pS396-tau in RGCs, brain pathology, and cognitive status. 1127 

a, b Pearson’s correlation coefficient (r) analyses between pS396-tau+ RGC count and a brain 1128 

amyloid β -protein (Aβ) plaque severity scores, or b brain neurofibrillary tangles (NFTs) severity 1129 

scores. c Quantitative analysis of pS396-tau+ RGC count stratified by Braak stage classification 1130 

(n=23) and d Pearson’s r correlations of pS396-tau+ RGC count with the Braak stage. e, f Pearson’s 1131 

correlations between pS396-tau+ RGC count and e average ABC scores and f cerebral amyloid 1132 

angiopathy (CAA) grade. g Quantitative analysis of pS396-tau+ RGC count stratified by clinical 1133 

dementia rating (CDR) scores (n=22) and h Pearson’s r correlations of pS396-tau+ RGC count 1134 

with the CDR scores. i Quantitative analysis of pS396-tau+ RGC count stratified by mini-mental 1135 

state examination score (MMSE) scores (n=17) and k Pearson’s r correlations of pS396-tau+ RGC 1136 

count with the MMSE scores. Bar graphs are showing individual data points and mean ± SEM. *P 1137 

< 0.05, **P < 0.01, by one-way ANOVA followed by Tukey’s post-hoc multiple comparison test. 1138 

Two group comparison is determined by two-tail Student t-test. ABC scores comprise of mean 1139 

grades for: (A) Aβ plaque score modified from Thal, (B) NFT stage modified from Braak, and (C) 1140 

neuritic plaque score modified from CERAD. 1141 
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