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Inhibition of heat shock protein family 
A member 8 attenuates spinal cord ischemia–
reperfusion injury via astrocyte NF‑κB/NLRP3 
inflammasome pathway
HSPA8 inhibition protects spinal ischemia-reperfusion injury

Jingyi Mi1†, Yang Yang2†, Hao Yao3, Zhirong Huan3, Ce Xu3, Zhiheng Ren4, Wenfu Li4  , Ying Tang5,6  , 
Rao Fu4*   and Xin Ge3,7* 

Abstract 

Background:  Astrocyte over-activation and extensive neuron loss are the main characteristic pathological features of 
spinal cord ischemia–reperfusion injury (SCII). Prior studies have placed substantial emphasis on the role of heat shock 
protein family A member 8 (HSPA8) on postischemic myocardial inflammation and cardiac dysfunction. However, it 
has never been determined whether HSPA8 participates in astrocyte activation and thus mediated neuroinflamma-
tion associated with SCII.

Methods:  The left renal artery ligation-induced SCII rat models and oxygen–glucose deprivation and reoxygena-
tion (OGD/R)-induced rat primary cultured astrocytes were established. The lentiviral vector encoding short hairpin 
RNA targeting HSPA8 was delivered to the spinal cord by intrathecal administration or to culture astrocytes. Then, the 
spinal neuron survival, gliosis, and nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome and its related 
pro-inflammatory cytokines were analyzed.

Results:  SCII significantly enhanced the GFAP and HSPA8 expression in the spinal cord, resulting in blood–brain bar-
rier breakdown and the dramatical loss of spinal neuron and motor function. Moreover, injury also increased spinal 
nuclear factor-kappa B (NF-κB) p65 phosphorylation, NLRP3 inflammasome-mediated caspase-1 activation, and sub-
sequent interleukin (IL)-1β as well as IL-18 secretion. Silencing the HSPA8 expression efficiently ameliorated the spinal 
cord tissue damage and promoted motor function recovery after SCII, through blockade of the astrocyte activation 
and levels of phosphorylated NF-κB, NLRP3, caspase-1, IL-1β, and IL-18. Further in vitro studies confirmed that HSPA8 
knockdown protected astrocytes from OGD/R-induced injury via the blockade of NF-κB and NLRP3 inflammasome 
activation.
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Introduction
Spinal cord ischemia–reperfusion injury (SCII) is the 
main complication after surgery of the spine, spinal cord, 
and thoracoabdominal aorta [1]. SCII pathology is sub-
categorized into primary and secondary injuries, which 
cause neurologic dysfunction and may eventually lead to 
paralysis or paraplegia [2]. The global incidence of SCII 
was 8.0 to 246.0 cases per million people per year [3]. 
The high incidence and disability rates of SCII exceed-
ingly reduce patients’ quality of life as well as put a huge 
burden on society [4]. Despite plenty of basic studies and 
clinical therapeutic interventions about SCII have been 
implemented, no ideal curative effect has been achieved 
[5]. Therefore, it is imperative to investigate the patholog-
ical process of SCII and develop a new effective therapy.

Neuroinflammatory response exerts a pivotal role in 
the secondary injury after SCII [6]. It is well known that 
traumatic injury to the spinal cord results in blood-spinal 
cord barrier (BSCB) disruption, axonal damage, neuronal 
loss, and demyelination, followed by a series of secondary 
injuries that trigger an enormous inflammatory response 
in the damaged area [7]. Dysregulated inflammation 
can spread damage to adjacent tissues, induce neuronal 
apoptosis and even death, and inhibit axonal regenera-
tion and functional recovery after SCII [8]. Targeting the 
nod-like receptor pyrin domain-containing 3 (NLRP3) 
inflammasome exacerbates inflammatory response in 
SCII [9]. Upon the stimuli, the NLRP3 inflammasome 
activates and subsequently recruits apoptosis-associated 
speck-like protein (ASC) and caspase-1, which causes 
the release of pro-inflammatory cytokines IL-1β and 
IL-18 [10]. Besides, nuclear factor-kappa B (NF-κB) is 
a key transcription factor in the inducible expression of 
inflammatory genes during immunological stress [11]. 
Suppression of NF-κB-mediated inflammatory response 
ameliorated the hind limb dysfunction of SCII rats [12]. 
A study shows that NF-κB-induced oligomerization of 
NLRP3 with ASC and pro-caspase 1 forms the NLPR3 
inflammasome [13]. Upon stimuli to stress, the acti-
vated NLRP3 inflammasome cleaves pro-caspase 1 to 
the mature caspase-1 p20 and subsequently releases pro-
inflammatory factors IL-1β as well as IL-18 [13].

Although the molecular mechanisms of SCII have not 
been fully clarified, it is widely considered that ischemia/
hypoxia-induced astrocyte injury plays a crucial role in 
SCII [14]. Astrocytes are the first responders to the SCII. 
Reactive astrocytes contribute to glial scar formation 

after SCII and subsequently inhibit axon regeneration, 
ultimately blocking neurologic functional recovery [15, 
16]. A previous study suggested that the reduction of 
reactive astrocytes contributed to functional recovery 
after SCII [15]. Furthermore, inactivation of the NLRP3 
inflammasome by BAY 11–7082 or A438079 remarkably 
attenuated glial fibrillary acidic protein (GFAP) immu-
noreactivity and finally alleviated the spinal cord damage 
[9].

Heat shock protein family A [HSP70] member 8 
(HSPA8), also called HSC70, is a class of molecular 
chaperones that plays a key role in the axonal trans-
port of synapsin [17]. A previous study suggested that 
HSPA8 activated NF-κB signaling through destabilizing 
the inhibitor of kappaB beta (IκBβ) protein and thereby 
aggravated the inflammation of synovial fibroblasts in 
rheumatoid arthritis [18]. Besides, HSPA8 exacerbated 
the postischemic myocardial inflammation and cardiac 
dysfunction by NF-κB activation [19]. Blockage of NF-κB 
pathway efficiently ameliorated myocardial function [19]. 
Zhu et  al. found that HSPA8 was abnormally expressed 
in rats after SCII, which upregulated after 12  h of rep-
erfusion and downregulated after 24  h [20]. However, 
the effect of HSPA8 on SCII remains unknown. There-
fore, the current study aimed to investigate the effect of 
HSPA8 on spinal astrocytes following SCII, as well as 
explore whether HSPA8 was involved in the NF-κB sign-
aling and NLRP3 inflammasome in response to SCII.

Methods
Experimental groupings and in vivo gene delivery
Eight-week-old male Sprague–Dawley (SD) rats were 
purchased from Liaoning Changsheng Biotechnology 
Co., Ltd. All rats were housed in an environment with 
a temperature of 22 ± 1  °C, light/dark cycle of 12/12  h, 
the humidity of 45–55%, and ad  libitum access to water 
and food. All the procedures in animal experiments were 
performed with the approval of the Animal Care and 
Utilization Committee of Sun-Yat-sen University, and 
the number of animal use permits is SYXK 2017–0081. 
After 1 week for adaption, all rats were randomly divided 
into four groups: (i) sham operation group (sham group), 
which received abdominal aorta separation with no clip 
closed; (ii) SCII-0  h group, which received spinal cord 
ischemia for 1 h and reperfusion for 0 h; (iii) SCII-12 h 
group, which received spinal cord ischemia for 1  h and 
reperfusion for 12  h; and (iv) SCII-24  h group, which 

Conclusion:  Our findings indicate that knockdown of HSPA8 inhibits spinal astrocytic damage after SCII, which may 
provide a promising therapeutic strategy for SCII treatment.
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received spinal cord ischemia for 1 h and reperfusion for 
24 h.

To further explore the effects of HSPA8 on SCII, the 
experimental grouping was as follows: (1) sham group; 
(2) SCII group, which received spinal cord ischemia 
for 1  h and reperfusion for 24  h; (3) SCII + LV-sh-NC 
group, which intrathecally injected with negative con-
trol lentiviral vector (LV-sh-NC) (JTS scientific, Wuhan, 
China) 3  days before surgery, followed by SCII; and (4) 
SCII + LV-sh-HSPA8 group, which intrathecally injected 
with a lentiviral vector encoding short hairpin RNA tar-
geting HSPA8 (LV-sh-HSPA8) (JTS scientific) 3  days 
before surgery, followed by SCII.

Establishment of SCII rat models
SCII rat models were established as previously reported 
[21] with some modifications. Rats were anesthetized 
with 100 mg/kg pentobarbital sodium and the abdominal 
cavity was exposed to the abdominal aorta, which ranged 
from left renal artery to bifurcation of the aorta. The rats 
were administrated intravenously with heparin (130 U/
kg) for anticoagulation 5 min prior to clamping the aorta. 
Next, the abdominal aorta from the left renal artery to 
aortic bifurcation was clamped using two bulldog clips, 
and it was confirmed that distal femoral artery pulsation 
disappeared after clamping of the arterial clip. Follow-
ing clamping for 1 h, the arterial clamp was removed to 
allow reperfusion. The wound was sutured after ensuring 
that no bleeding or injury to the arteries had occurred. 
The body temperature of rats remained at 36.5 ± 0.5  °C 
throughout the procedure. Neurological behavioral 
scores were evaluated 24 h after reperfusion in rats. All 
rats were sacrificed under deep anesthesia (200  mg/kg 
pentobarbital sodium) to harvest lumbar spinal cord tis-
sues of L2–L5 segments.

Neurological behavioral scores
Postoperative neurological behavior was assessed follow-
ing the Basso, Beattie, and Bresnahan (BBB) scoring cri-
teria [22] that scores range from 0 to 21 points: 0 points, 
the hindlimbs were completely paralyzed; 1 ~ 7 points, 
the hindlimb joints could only move within certain 
degrees; 8 ~ 13 points, the rat could walk within certain 
degrees except the hindlimb joints could move; 14 ~ 20 
points, rats could use their claws for fine movements; and 
21 points, motor function of rats was completely normal. 
BBB score was calculated in a blinded manner.

Histopathological assessment
Spinal cord tissues fixed with 4% (w/v) paraformaldehyde 
were embedded with paraffin, sliced into 5-μm slices, 
deparaffinized, and rehydrated. Next, slices were stained 
with hematoxylin–eosin (HE) or Nissl’s staining, as well 

as dehydrated with ethanol and xylene. After mounting 
with neutral balsam, slices were taken using light micros-
copy (BX53, Olympus Corporation) at original magni-
fication × 200 (one optical plane per section). Neurons 
containing a round or ovoid clear nucleus were custom-
arily taken as normal cells [23]. The number of normal 
neurons in HE-stained sections was calculated by an 
experimenter who was blind to the grouping.

Blood‑spinal cord barrier (BSCB) examination
BSCB permeability was evaluated by quantification of 
extravascular Evans blue after SCII [24]. Briefly, 1.5  mg 
spinal cord tissue sample was incubated in 1 mL forma-
mide for 24  h at 50  °C. Each sample was centrifuged at 
14,000  g for 30  min at 4  °C to collect the supernatant. 
Evans blue extravasation was quantified by measuring the 
optical density of the supernatant at 620 nm.

Immunofluorescence
Spinal cord tissue slices were deparaffinized and rehy-
drated. After immersing heated sodium citrate for anti-
gen retrieval, the slices were blocked with goat serum 
for 15  min at room temperature and then incubated 
with primary antibodies in PBS at a dilution of 1:50 at 
4  °C overnight. These primary antibodies included anti-
HSPA8 (A14001; Abclonal, Wuhan, China), anti-GFAP 
(sc-33673; Santa Cruz, Shanghai, China), and anti-NF-κB 
P65. After washing with PBS three times, the slices were 
incubated with Cy3-conjugated goat anti-rabbit (1: 200 
dilution in PBS; Beyotime, Shanghai, China; red fluo-
rescence) or FITC-conjugated goat anti-mouse (1: 200 
dilution in PBS; Beyotime; green fluorescence) IgG sec-
ondary antibody for 60 min in dark at room temperature. 
4′,6-Diamidino-2-phenylindole (DAPI) (SL038; Solarbio, 
Beijing, China; blue fluorescence) was used for nuclear 
staining. Following mounting with antifade mounting 
medium, the colocalization of HSPA8 and GFAP and the 
localization of GFAP or NF-κB P65 were observed using 
fluorescence microscopy (BX53; Olympus Corporation) 
at original magnification × 400 (1 optical plane/section). 
The immunofluorescence intensity was analyzed using 
Image‑pro plus 6.0 software (Media Cybernetics Inc.). 
GFAP immunoreactive cells were counted by an experi-
menter who was blind to the grouping.

Cell isolation and culture
Primary rat spinal cord astrocytes were isolated from 
SD rats and cultured according to the Xia et al. method 
[25]. Briefly, the spinal cord tissues were digested with 
0.25% trypsin for 6 min, and the supernatant was further 
digested in DMEM/F12 (PM150310; Procell, Wuhan, 
China) medium containing 10% fetal bovine serum 
(FBS) at 37  °C with 5% CO2. The cell suspension was 
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centrifuged at 1500 rpm for 5 min. Finally, the cell pellet 
was resuspended in a complete medium and then seeded 
on polylysine-coated cultured plates. Primary astrocytes 
were identified by their typical morphology and positive 
immunofluorescence-staining for the specific marker 
GFAP (original magnification × 200).

In vitro lentivirus infection and Oxygen‑glucose‑serum 
deprivation/restoration (OGD/R) procedure
To archive the adequate HSPA8-overexpression spinal 
astrocytes, the cells were infected with LV-sh-HSPA8 
or its negative control (LV-sh-NC) for 72 h in the 6-well 
plate (4 × 105 cells per well) in a humidified incuba-
tor (HF-100, Healforce, Shanghai, China) with 5% CO2 
at 37  °C. Subsequently, these cells were subjected to an 
OGD/R procedure that was performed based on a previ-
ous study [25, 26]. Briefly, in the oxygen and glucose dep-
rivation phase, the medium was washed with glucose-free 
Hanks balanced salt solution and changed to glucose-free 
DMEM/F12. The cultures were subsequently placed in an 
anaerobic experimental hypoxia chamber (Stemcell, Bei-
jing, China) containing a gas mixture of 94% N2, 5% CO2, 
and 1% O2 for 6  h. Thereafter, the cultured cells were 
transferred to a normal DMEM/F12 medium and incu-
bated in a humidified incubator (HF-100, Healforce) with 
5% CO2 at 37 °C for 24 h to reach reoxygenation.

ELISA assay
The levels of interleukin (IL)-1β and IL-18 in the tissue 
homogenates and astrocyte supernatants were deter-
mined using corresponding ELISA kits following the 
manufacturers’ instructions (USCN Life Science, Wuhan, 
China).

Western blot assay
Lysis and protein extraction of spinal cord tissues or 
astrocytes was performed using the RIPA lysate buffer 
(P0013; Beyotime). The concentration of the extracted 
protein was determined by the BCA Protein Assay Kit 
(P0011; Beyotime). The protein (20–40 µg per lane) was 
separated on 8–15% SDS-PAGE gel and transferred to 
polyvinylidene fluoride membrane (IPVH00010; Milli-
pore, Billerica, MA, USA). After blocking with 5% (m/v) 
skim milk for 1  h at room temperature, the membrane 
was incubated at 4 °C overnight with primary antibodies 
in skim milk at a dilution of 1:1000. These primary anti-
bodies were as follows: anti-HSPA8 (A14001; Abclonal), 
anti-NLRP3 (A5652; Abclonal), anti-ASC (A1170; 
Abclonal), anti-caspase-1 (A0964; Abclonal), anti-NF-κB 
P65 (AF5006; Affinity, Cincinnati, OH, USA), anti-phos-
phorylated NF-κB P65 (p-NF-κB P65) (AF2006; Affin-
ity), anti-IL-1β (A16288; Abclonal), anti-IL-18 (A16737; 
Abclonal), and anti-β-actin (sc-47778; Santa Cruz). After 

washing with Tris-buffered saline-Tween 20 (TBST) 
buffer, the membranes were incubated with horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit (1:3000 
dilution; A0208; Beyotime) or mouse (1:3000 dilu-
tion; A0216; Beyotime) secondary antibody at 37  °C for 
40 min. The membranes were visualized using a chemi-
luminescence kit (Shanghai 7sea biotech Co. Ltd.) and 
analyzed using Gel-Pro-Analyzer 4.0 (Media Cybernet-
ics, Inc.).

Electrophoretic mobility shift assay (EMSA)
EMSA was used to assess the effect of LV-sh-HSPA8 on 
NF‐κB activation. Firstly, the nuclear extracts of spinal 
cord tissues and primary astrocytes were harvested based 
on the instruction of the Nuclear Protein Extraction 
Kit (P0027; Beyotime). The protein concentration from 
nuclear extracts was detected using the BCA Protein 
Assay Kit (P0011, Beyotime). Finally, the DNA-binding 
activity of NF-κB P65 was determined using the Chemi-
luminescent EMSA Kit (BITF282; Viagene Biotech Inc.) 
as instructed in the manufacturer’s protocol.

Statistical analysis
All data were shown as mean ± standard deviation and 
analyzed by GraphPad Prism 8.0 software. The two-
tailed unpaired Student’s t test was used for comparisons 
between two groups, and one-way ANOVA was followed 
by Turkey’s for multiple comparisons. A value of p less 
than 0.05 was considered statistically significant.

Results
HSPA8 is highly expressed in rats after SCII
The relative protein level of HSPA8 was upregulated in 
the spinal cord tissues after reperfusion. However, the 
increase in HSPA8 was compromised within the follow-
ing 24 h after SCII (Fig. 1A, p < 0.05). To investigate the 
effect of HSPA8 on spinal cord astrocytes after SCII, 
double-labeled immunofluorescence was performed and 
results showed that HSPA8 and astrocyte-specific marker 
GFAP were expressed in the spinal cord tissues after 
reperfusion (Fig. 1B, C, p < 0.05). As depicted in Fig. 1B, 
the structure merge of HSPA8 and GFAP revealed that 
HSPA8 expression was closely associated with GFAP 
after 12 h of reperfusion.

Knockdown of HSPA8 ameliorates neurological 
dysfunction and histopathological damage of SCII rats
To determine the neuroprotective effect of HSPA8 inhi-
bition on SCII, rats were intrathecally injected with 
LV-sh-HSPA8 3  days before SCII surgery, followed by 
ischemia for 1  h and reperfusion for 24  h. As revealed 
in Fig.  2A, SCII surgery induced an obvious reduction 
of BBB score. However, injection with LV-sh-HSPA8 



Page 5 of 12Mi et al. J Neuroinflammation          (2021) 18:170 	

increased the BBB score in rats that underwent SCII 
surgery (p < 0.05). Results of western blot revealed that 
HSPA8 expression was significantly downregulated in 
spinal cord tissues of SCII rats after injection with LV-sh-
HSPA8, relative to the SCII + LV-sh-NC group (Fig.  2B, 

p < 0.05). Reduction in normal neuronal number was 
observed in the gray matter of HE-stained spinal cord 
tissues after SCII, whereas HSPA8 knockdown had the 
opposite effect (Fig. 2C–E, p < 0.05). Besides, knockdown 
of HSPA8 inhibited the reduced number of nissl bodies 

Fig. 1  HSPA8 is highly expressed in rats after SCII. A The relative protein level of HSPA8 in spinal cord tissues was detected after 0 h, 12 h, and 
24 h of reperfusion via western blot assay. B Double immunofluorescence of HSPA8 and GFAP in spinal cord tissues was performed. Scale 
bar = 50 μm. C The immunofluorescence intensity of HSPA8 was quantified. These data are representative of three experiments and are shown as 
the means ± SEM. Data were shown as means ± SD of three independent experiments. N = 6 rats per group. Statistical analysis was performed by 
one-way ANOVA followed by Turkey’s for multiple comparisons. *p < 0.05 vs. sham. SCII, spinal cord ischemia–reperfusion injury; GFAP, glial fibrillary 
acidic protein
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Fig. 2  Knockdown of HSPA8 ameliorates neurological dysfunction and histopathological damage of SCII rats. A BBB scoring method was used 
to assess the SCII rats’ neurological function after 24 h of reperfusion. B The relative protein level of HSPA8 in spinal cord tissues of SCII rats was 
detected after injection with LV-sh-HSPA8 via western blot assay. C Representative section for HE-stained spinal cord tissues after SCII was assessed. 
Scale bar = 100 μm. D Representative section for nissl-stained spinal cord tissues after SCII was assessed. Scale bar = 100 μm. E Quantification 
of HE-staining normal neuronal number after SCII was analyzed. F Quantification of extravascular Evans blue after SCII was analyzed. Data were 
shown as means ± SD of three independent experiments. N = 6 rats per group. Statistical analysis was performed by one-way ANOVA followed 
by Turkey’s for multiple comparisons (A, E, and F) or two-tailed unpaired Student’s t-test between two groups (B). *p < 0.05 vs. sham. #p < 0.05 vs. 
SCII + LV-sh-NC. BBB, Basso, Beattie, and Bresnahan; HE, hematoxylin–eosin; SCII, spinal cord ischemia–reperfusion injury
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in spinal cord tissues of SCII rats (Fig. 2D). Quantitative 
results of extravascular Evans blue revealed that the con-
tent of Evans blue was remarkably increased after SCII 
compared to the sham group, but knockdown of HSPA8 
reduced the Evans blue extravasation and thereby pro-
tected BSCB integrity (Fig. 2F, p < 0.05).

Knockdown of HSPA8 inhibits NLRP3 inflammasome 
activation and phosphorylation of NF‑κB in SCII rats
Subsequently, we performed immunofluorescence anal-
ysis to examine the protective effect of HSPA8 inhibi-
tion on spinal cord astrocytes. As shown in Fig.  3A, B, 
knockdown of HSPA8 inhibited SCII-induced reac-
tive astrocytes, which was exhibited by the reduction of 
GFAP-labeled green fluorescence and GFAP-immuno-
reactive cells (p < 0.05). Besides, relative protein levels of 
NLRP3, ASC, and p20/pro-caspase-1 were significantly 
decreased in the spinal cord tissues of SCII rats follow-
ing knockdown of HSPA8 (Fig.  3C, p < 0.05). Decreased 
levels of IL-1β and IL-18 were also detected in the tissue 
homogenate of SCII rats after HSPA8 inhibition (Fig. 3D, 
p < 0.05). Also, we found that the expression of p-NF-κB 
P65 (ser536) was greatly upregulated in spinal cord tis-
sues after SCII surgery. Knockdown of HSPA8 effi-
ciently decreased the p-NF-κB P65 protein level (Fig. 3E, 
p < 0.05). Moreover, results of immunofluorescence and 
EMSA assays demonstrated that knockdown of HSPA8 
inhibited the nuclear translocation and DNA-binding 
activity of NF-κB (Fig. 3F, G, p < 0.05).

Knockdown of HSPA8 suppresses NF‑κB and NLRP3 
inflammasome activation in OGD/R‑induced primary 
astrocytes
Next, to confirm the underlying mechanisms of HSPA8 
in SCII, we further examined the effect of HSPA8 in 
OGD/R-induced primary astrocytes. Results from 
GFAP-labeled green fluorescence revealed that pri-
mary rat spinal cord astrocytes were successfully 
obtained from SD rats (Fig.  4A). As shown in Fig.  4B, 
the HSPA8 protein level was substantially decreased in 
OGD/R-induced primary astrocytes after infection with 
LV-sh-HSPA8 (p < 0.05). Results of western blot and 

immunofluorescence revealed the phosphorylation and 
the nuclear translocation process of NF-κB after OGD/R 
stimulation (Fig.  4C, F, and G, p < 0.05), demonstrating 
the activation of NF-κB signaling. Levels of NLRP3, ASC, 
and p20/pro-caspase-1 were also increased in OGD/R-
induced primary astrocytes (Fig.  4C, p < 0.05). How-
ever, infection with LV-sh-HSPA8 efficiently suppressed 
NF-κB and NLRP3 inflammasome activation (p < 0.05). 
Next, we detected levels of inflammatory factors (IL-18 
and IL-1β) using western blot and ELISA assays. Com-
pared to OGD/R-stimulated astrocytes, astrocytes 
infected with LV-sh-HSPA8 had lower protein levels of 
IL-18 and IL-1β (Fig. 4D, E, p < 0.05). Subsequent EMSA 
analysis suggested that knockdown of HSPA8 efficiently 
inhibited the DNA-binding activity of NF-κB (Fig.  4H, 
p < 0.05).

Discussion
SCII would result in severe motor and functional disor-
ders, as well as even lead to irreversible paralysis. Limit-
ing the development of secondary injury is essential for 
the recovery of function after SCII, and reactive astro-
cytes aggravate the secondary injury and inhibit neuro-
logic functional recovery following SCII [27]. The current 
study found that HSPA8 was highly expressed in the spi-
nal cord tissues of rats after SCII. HSPA8 and astrocyte-
specific marker GFAP were closely associated in spinal 
cord tissues of SCII rats. Genetic knockdown of HSPA8 
ameliorated neurological dysfunction, neuron loss, and 
BSCB permeability in SCII rats. Further in  vivo and 
in vitro evidence determined that the inhibition of spinal 
reactive astrocytes by HSPA8 knockdown was associ-
ated with the inactivation of NF-κB signaling and NLRP3 
inflammasome.

HSPA8 is one member of the HSP70 family, which is 
constitutively expressed in cells [28]. Although HSPA8 
shares some of the structural and functional similarities 
with HSP70, there are some different properties between 
HSPA8 and the HSP70 family members [28]. Previous 
studies have shown that overexpression of members of 
the HSP70 family, such as HSP70 and HSPA12B, exerts 
a neuroprotective effect under ischemia/hypoxia [25, 29]. 

(See figure on next page.)
Fig. 3  Knockdown of HSPA8 inhibits NLRP3 inflammasome activation and phosphorylation of NF-κB in SCII rats. A Immunofluorescence of GFAP 
in spinal cord tissues after SCII was performed. Scale bar = 50 μm. B Quantification of GFAP-positive cells after SCII was analyzed. C Relative protein 
levels of NLRP3, ASC, and p20/pro-caspase-1 in spinal cord tissues of SCII rats were detected after injection of LV-sh-HSPA8 via western blot assay. D 
The contents of IL-1β and IL-18 in the spinal cord tissue homogenate were detected by ELISA assay. E Relative protein levels of total NF-κB P65 and 
p-NF-κB P65 in spinal cord tissues of SCII rats were detected after injection LV-sh-HSPA8 via western blot assay. F The intracellular location of the 
NF-κB P65 in spinal cord tissues of SCII rats was observed by immunofluorescence staining. Scale bar = 50 μm. G The DNA-binding activity of NF-κB 
in spinal cord tissues of SCII rats was revealed by EMSA. Data were shown as means ± SD of three independent experiments. N = 6 rats per group. 
Statistical analysis was performed by one-way ANOVA followed by Turkey’s for multiple comparisons. *p < 0.05 vs. sham. #p < 0.05 vs. SCII + LV-sh-NC. 
NLRP3, nod-like receptor pyrin domain-containing 3; ASC, the apoptosis-associated speck-like protein containing CARD; SCII, spinal cord ischemia–
reperfusion injury; IL-1β/18, interleukin-1β/18; NF-κB, nuclear factor-kappa B
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Fig. 3  (See legend on previous page.)
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HSP70 overexpression inhibits OGD/R-induced apopto-
sis of bEnd.3 cells [29], and overexpression of HSPA12B 
protects spinal astrocytes from ischemic injury [25]. In 
contrast, some research observed that HSPA8 expression 
was upregulated after cerebral ischemia, and the reduc-
tion of HSPA8 contributed to the neurological recovery 
of the animals [30–32]. Widespread accumulation of 
HSC70 was found in the brain of patients with multiple 
system atrophy, which is a progressive neurodegenerative 
disorder [33]. Consistent with these results, the present 
study found that HSPA8 was overexpressed in spinal cord 
tissues of rats following SCII, and the genetic knockdown 
of HSPA8 exerted a neuroprotective effect on SCII rats. 
The significant differences between HSPA8 and other 
HSP70 family members may be associated with their dif-
ferent carboxyl-terminal domains, which participated in 
mediating substrate specificity and particular biological 
functions [34].

In neuronal cells, HSPA8 localized predominantly 
within synapses was associated with synaptic transmis-
sion [35]. A previous study has suggested that HSPA8 
directly interacts with NF-κB in living hippocampal 
neurons and inhibition of HSPA8 blockades nuclear 
translocation of NF-κB [36], which indicated that such 
direct interactions have an obvious regulatory effect 
on the resulting signaling and transcriptional regula-
tion. NF-κB P65 is transported from the synapse back 
to the nucleus by the minus-end motor protein dynein 
along the microtubule [37]. In this study, knockdown of 
HSPA8 led to decreased levels of p-NF-κB P65 in spi-
nal cord tissues of SCII rats and primary astrocytes, 
whereas the level of total NF-κB P65 was no obviously 
changed after HSPA8 knockdown. Subsequent immu-
nofluorescence and EMSA analyses indicated that 
knockdown of HSPA8 inhibited spinal astrocyte reac-
tivity after SCII by reducing the transcriptional activity 
of NF-κB and blocking nuclear translocation. There-
fore, we speculate that the nuclear translocation signal 
might occur as a protein/protein (HSPA8 and NF-κB 
P65) complex [38]. It has been known that the acti-
vated NF-κB translocates to the nucleus and involves 

the regulation of gene transcription and downstream 
cellular processes, including cell growth, apoptosis, and 
inflammation. A previous study suggested that phthal-
ide derivative CD21 alleviated the overactivation of 
astrocytes by inactivation of NF-κB signaling pathway 
and NLRP3 inflammasome after cerebral ischemia. Zhu 
et  al. found that wogonoside mitigated SCII-induced 
neuroinflammation via inhibiting NF-κB and NLRP3 
inflammasome activation. In the present study, it was 
demonstrated that knockdown of HSPA8 amelio-
rated the inflammation in spinal cord tissues of SCII 
rats and OGD/R-induced primary astrocytes through 
the suppression of NF-κB and NLRP3 inflammasome 
activation.

Considering the HSPA8 expression colocalizes with 
Iba-1 immunoreactive cells following ischemia (Sup-
plementary Figure), suggesting that the spinal micro-
glial HSPA8 might involve the ischemia–reperfusion 
injury, which is consistent with the view that spinal 
microglial cells attribute to the neuron loss associated 
with ischemia–reperfusion injury. Given that the asso-
ciation between HSPA8 and Iba-1 was weaker than that 
of HSPA8 and GFAP immunoreactivity cells, especially 
after 12 h of reperfusion, we emphasize that HSPA8 of 
the spinal astrocyte might play an essential role in the 
pathogenesis of ischemia and reperfusion injury. Future 
study is highly required to further dissect the function 
of spinal microglial HSPA8 in ischemia and reperfusion 
injury.

Conclusion
Collectively, our study shows the neuroprotective 
effect of HSPA8 knockdown in SCII. HSPA8 inhi-
bition significantly attenuates neuroinflammation 
and astrocyte overactivation by blocking NF-κB and 
NLRP3 inflammasome activation. Although addi-
tional exploration is still needed, our study demon-
strates that HSPA8 is a potential target to prevent 
SCII-induced astrocytic injury and the HSPA8 deple-
tion might be a promising approach for the treatment 
of SCII.

Fig. 4  Knockdown of HSPA8 suppresses NF-κB and NLRP3 inflammasome activation in OGD/R-induced primary astrocytes. A Immunofluorescence 
of GFAP in primary rat spinal cord astrocytes was performed. Scale bar = 100 μm. B The relative protein level of HSPA8 in primary astrocytes was 
detected after injection of LV-sh-HSPA8 via western blot assay. C The relative protein level of total NF-κB P65, p-NF-κB P65, NLRP3, ASC, and p20/
pro-caspase-1 in primary astrocytes was detected after injection of LV-sh-HSPA8 via western blot assay. D The contents of IL-1β and IL-18 in 
primary astrocytes were detected by ELISA assay. E Relative protein levels of IL-1β and IL-18 in primary astrocytes were detected via western blot 
assay. F The intracellular location of the NF-κB P65 was observed by immunofluorescence staining. Scale bar = 50 μm. G Quantification of NF-ĸB 
P65-immunofluorescence intensity in the nuclear was analyzed. H The DNA-binding activity of NF-κB in primary astrocytes was revealed by EMSA. 
Data were shown as means ± SD of three independent experiments. N = 3 cells per group. Statistical analysis was performed by one-way ANOVA 
followed by Turkey’s for multiple comparisons. *p < 0.05 vs. sham. #p < 0.05 vs. SCII + LV-sh-NC. NLRP3, nod-like receptor pyrin domain-containing 3; 
ASC, the apoptosis-associated speck-like protein containing CARD; SCII, spinal cord ischemia–reperfusion injury; IL-1β/18, interleukin-1β/18; NF-κB, 
nuclear factor-kappa B

(See figure on next page.)
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