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Atherosclerosis, the underlying cause of coronary artery (CAD) and other cardiovascular 
diseases, is initiated by macrophage-mediated immune responses to lipoprotein and 
cholesterol accumulation in artery walls, which result in the formation of plaques. Unlike at 
other sites of inflammation, the immune response becomes maladaptive and inflammation 
fails to resolve. The most common treatment for reducing the risk from atherosclerosis is 
low density lipoprotein cholesterol (LDL-C) lowering. Studies have shown, however, that 
while significant lowering of LDL-C reduces the risk of heart attacks to some degree, 
there is still residual risk for the majority of the population. We and others have observed 
“residual inflammatory risk” of atherosclerosis after plasma cholesterol lowering in pre-
clinical studies, and that this phenomenon is clinically relevant has been dramatically 
reinforced by the recent Canakinumab Anti-inflammatory Thrombosis Outcomes Study 
(CANTOS) trial. This review will summarize the role of the innate immune system, specifically 
macrophages, in atherosclerosis progression and regression, as well as the pre-clinical 
and clinical models that have provided significant insights into molecular pathways 
involved in the resolution of plaque inflammation and plaque regression. Partnered with 
clinical studies that can be envisioned in the post-CANTOS period, including progress 
in developing targeted plaque therapies, we expect that pre-clinical studies advancing 
on the path summarized in this review, already revealing key mechanisms, will continue 
to be essential contributors to achieve the goals of dampening plaque inflammation and 
inducing its resolution in order to maximize the therapeutic benefits of conventional risk 
factor modifications, such as LDL-C lowering.

Keywords: innate immunity, macrophages, atherosclerosis progression, atherosclerosis regression, pre-clinical 
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intRoduCtion

Atherosclerosis, which underlies coronary artery disease (CAD), is characterized by a maladaptive 
immune response to lipoprotein and cholesterol accumulation in artery walls that results in the 
formation of plaques (also called lesions). The Pathobiological Determinants of Atherosclerosis 
in Youth study demonstrated that established coronary artery plaques begin their progression in 
childhood (1). Furthermore, a majority of patients likely have formation of advanced plaques even 
before physical symptoms of CAD, such as angina, manifest (2). Since plaques are established so 
early, efforts to reduce the morbidity and mortality of CAD requires inducing favorable changes to 
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pre-existing clinical disease (3–6). Unfortunately, there is ample 
evidence that the conventional risk reduction therapies, heavily 
weighted towards reducing low density lipoprotein  cholesterol 
(LDL-C) levels, leave a large amount of residual risk (7). This 
motivated our group and others to develop pre-clinical models 
of atherosclerosis regression and study them in molecular detail 
in order to identify potential clinical approaches and therapeutic 
targets to reduce the residual risk. In this review, we will summarize 
the evidence for the role of the innate immune system, focusing 
on plaque macrophages, in both atherosclerosis progression and 
regression, as the large body of work in the former has informed 
the design and interpretations of the latter. We should first note that 
we are aware of the participation of the adaptive immune system 
in atherosclerosis. As plaques advance, T and B-cells, in particular, 
make increasingly important contributions to the inflammatory 
state of plaques and to the local and systemic responses to antigenic 
material generated from modification of apolipoprotein B (APOB)-
containing lipoproteins (LPs) and from tissue damage and cell 
necrosis. For this topic, we refer the reader to other expert reviews, 
such as (8–17).

MACRoPhAgeS in AtheRoSCleRoSiS 
PRogReSSion

Atherosclerotic lesion development begins with the accumulation 
of cholesterol-rich APOB-LPs, which include very low density 
lipoprotein (VLDL) and LDL particles, in the subendothelial 
space (18, 19). Circulating monocytes derived from the bone 
marrow and spleen enter the subendothelial space of the arteries, 
with some of them differentiating to macrophages, which in 
turn, ingest retained lipoproteins in probably both their native 
and modified forms [e.g., oxidized LDL (OxLDL)], and become 
activated. Activation of macrophages (and endothelial cells) also 
leads to the secretion of chemoattractant molecules such as CCL2 
(MCP-1) and CCL5 (RANTES) that lead to further recruitment 
of circulating monocytes.

Humans have two main subsets of circulating monocytes, 
Cluster of Differentiation 14+ (CD14+) CD16− and CD14lowCD16+, 
which correspond, respectively, to the lymphocyte antigen 
6C (Ly6C)high and Ly6Clow monocyte subsets in mice. These 
circulating monocytes, via CC-chemokine ligand 5 (CCL5) 
and CXC-chemokine ligand 1 (CXCL1), bind to endothelial 
cell glycosaminoglycans and P-selectin, as well as to vascular 
adhesion molecule 1 (VCAM1) and intracellular adhesion 
molecule 1 (ICAM1) binding via integrins very late antigen 4 
(VLA4) and lymphocyte function-associated antigen 1 (LFA1), 
respectively. Together, these factors allow for monocyte adhesion 
to the activated endothelial cell layer (3, 20, 21).

The monocytes then transmigrate into the subendothelial 
space using surface receptors CC-chemokine receptor 2 (CCR2), 
CX3- chemokine receptor 1(CX3CR1), and CCR5, which bind to 
chemoattractant proteins released from the endothelial cells, as 
well as from existing macrophages in the plaque, such as CCL2, 
CX3CRL1, and CCL5, respectively (3, 20, 21). Importantly, it has 
been found that Ly6Chigh and Ly6Clow monocytes differentially 

use these chemokine receptors for migration into plaques. 
Ly6Chigh monocytes preferentially use CCR2 and CX3CR1, while 
Ly6Clow monocytes preferentially use CCR5 to enter plaques 
during plaque progression  (22). Furthermore, the combined 
deficiency of these 3 receptor-ligand interactions led to a ~ 90% 
decrease in atherosclerosis burden (23), with the major fraction 
due to the loss of CCR2-CCL2 mediated monocyte migration 
into plaques (24, 25). Additionally, hypercholesteremia induces 
increased CCR2 expression in monocytes, leading to increased 
migration to CCL2, as well as Ly6Chigh monocytosis  (26–28). 
This suggests that Ly6Chigh monocyte recruitment, mediated by 
CCR2 and CCL2, to the plaque is essential for atherosclerosis 
progression. Furthermore, loss of macrophage colony stimulating 
factor (M-CSF), which stimulates differentiation of monocytes to 
macrophages, led to almost complete loss of plaque development 
(29, 30).

Monocyte-derived macrophages ingest APOB-LPs, 
particularly LDL, through the LDL receptor (LDLR), beginning 
the formation of foam cells, a key step in the initiation and 
progression of atherosclerotic lesions (3, 20, 21). However, 
LDLR expression quickly decreases due to increased intracellular 
cholesterol levels (3, 21). Some of the remaining LDL becomes 
modified in a number of ways, including by oxidation 
(OxLDL) in the artery wall (31). After LDLR downregulation, 
macrophages then take up normal and modified LDL particles 
via pinocytosis and binding to  scavenger receptors, most 
notably scavenger receptor A1 (SR-A1) and CD36, eventually 
becoming overwhelmed by the ingested lipids (3, 21, 32–34). 
As macrophages accumulate intracellular cholesterol, they 
upregulate molecules involved in cholesterol efflux pathways, 
such as ATP-binding cassette subfamily A member 1 (ABCA1) 
and ABCG1, via cholesterol precursors or derivatives that induce 
Liver X Receptor (LXR) activation, to induce the removal of 
intracellular cholesterol (3, 21). ABCA1 promotes efflux to 
lipid-poor apolipoprotein A1 (APOA1), which is a major 
component of high density lipoprotein (HDL) particles, while 
ABCG1 promotes efflux to mature lipid-rich HDL particles (35, 
36). Despite this attempt at restoring homeostasis in cellular 
lipid content,  plaques  macrophages continue to accumulate 
cholesterol, which has many adverse effects, as will be described 
in a number of places in this review.

Macrophages have multiple roles in inflammation, for 
example, by promoting it during infection or by resolving 
it during wound and tissue repair  (37–39). One influential 
classification of macrophages that recognizes the wide range 
of macrophage inflammatory phenotypes- from causative to 
protective- is based on the work of Siamon Gordon and Alberto 
Mantovani and their colleagues, who broadly described M1 
(classically activated) and M2 (alternatively activated) states (40, 
41). Since the initial descriptions of the M1 and M2 states, there 
has been much research- and controversy- about the numbers 
of sub-types of macrophages not only within each category, 
but also along the spectrum between the categories [e.g., 
(39)]. Indeed, we have participated in a recent perspective on 
macrophage activation and polarization (42). For the purposes 
of this review, as summarized in Figure 1 of that perspective, 
our referring to M1 or M2 macrophages in mice corresponds 
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to M[lipopolysaccharide (LPS)] or M[ Interleukin-4 (IL-4)], 
respectively, based on the markers we have documented in 
macrophages in progressing and regressing plaques (43, 44). 
Looking ahead, as advanced sequencing techniques, including 
but not limited to single cell RNA sequencing and CEL-Seq2 (45–
47), become incorporated into atherosclerosis studies, the 
phenotyping of plaque macrophages will undoubtedly continue 
to be refined.

In vitro, macrophages are typically polarized towards M1 by 
incubation with LPS alone or LPS combined with interferon 
γ (IFNγ), which activates Toll-like receptor-4 (TLR-4) and its 
downstream effector, nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB). M2 polarization can be induced by 
interleukin-13 (IL-13) or, more commonly, IL-4, via activation of 
IL-4/IL-13 receptor and its downstream effector, signal transducer 
and activator of transcription 6 (STAT6) (40, 41, 48). M1 
macrophages promote inflammation by highly expressing pro-

inflammatory mediators, such as inducible nitric oxide synthase 
(iNOS), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-
1β), IL-6, and IL-12. M2 macrophages resolve inflammation by 
expressing anti-inflammatory mediators, such as transforming 
growth factor β (TGF-β), IL-1 receptor antagonist, and IL-10, 
which also induces M2 macrophage polarization and collagen 
production  (49). In reality, macrophages span a range of 
phenotypes, but the M1/M2 scheme has nevertheless served 
as a convenient classification system. As advanced sequencing 
techniques  (45–47) become incorporated into atherosclerosis 
studies, we will better be able to identify and understand the 
roles of the macrophage subsets during plaque progression and 
regression. For this review, we will focus on the M1/M2 paradigm 
as many of the studies we cite assess macrophage polarization 
within the simplified model.

There are multiple inflammatory stimuli that influence the 
macrophage polarization state in progressing plaques. One comes 
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FiguRe 1 |  Representative Murine Plaque Regression Models. Selected models taken from those described in the text: (A) Transplant Model, (B) Reversa 
Model,and (C) PCSK9 model. For each model: (i) Schematic of experiment, (ii) Quantification of CD68+ (macrophage) area, *<0.05, (iii) representative CD68+ stained 
immunohistochemical sections, and (iv) original reference from which the images are modified from. Despite different methods to drastically lower circulating lipids,all 
of these models show a significant (*<0.05) reduction in CD68+ macrophage content in regression groups compared to respective baseline and/or progression 
groups.
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from the formation of cholesterol crystals (50, 51), which induces 
inflammasome activation and consequently IL-1β secretion. IL-1β 
is a potent inflammatory cytokine that promotes atherosclerosis 
progression as well as M1 polarization (15, 51–53). Cholesterol 
accumulation also increases plasma membrane cholesterol 
content, which sensitizes TLRs to their ligands, amplifying the 
inflammatory response (54, 55). As noted above, intracellular 
cholesterol accumulation activates LXR, which in addition to 
promoting cholesterol efflux, is also a repressor of NF-κB, leading 
to dampening of inflammation (3, 21, 49, 56, 57). However, the 
pro-inflammatory response and the associated M1 macrophage 
polarization predominates during plaque progression due to 
reinforcement by additional signals, such as TLR activation 
by pathogen-associated molecular patterns (PAMPS) and 
damage-associated molecular patterns (DAMPS; see below) 
(3, 21, 49). One PAMP is thought to be a lipid component of 
OxLDL that is recognized by TLR4 and leads to the production 
of TNF-α and IL-6 (58). OxLDL can also activate the TLR4-
TLR6 heterodimer via CD36, leading to NF-κB activation and 
chemokine secretion that induces monocyte recruitment into 
plaques (3, 21, 59–61). Another inflammation-related mechanism 
involves T-cell infiltration into the plaque during progression. The 
infiltrating T-cells secrete inflammatory type 1 helper T cell (Th1) 
cytokines (IL-1, IL-6, TNF-α) that promote inflammation and 
M1 macrophage polarization (62–64), and in advanced plaques, 
inhibit smooth muscle cell collagen synthesis (65). Coupled with 
robust secretion by M1 macrophages of matrix metalloproteinases 
(MMPs) that degrade collagen, this results in thinning of the sub-
endothelial fibrous cap, a protective and desirable component in 
human plaques, thought to prevent their rupture.

Furthermore, advanced atherosclerosis lesions are 
characterized by increased accumulation of dying/dead cells. 
There are a number of likely stimuli in progressing plaques 
that promote cell death by apoptosis, and by a related process, 
pyroptosis. These include the activation of ER stress by cholesterol, 
accumulation of reactive oxygen species, oxysterols and other 
modified lipids, and the activation of the inflammasome by 
multiple TLR ligands, TNF-α, and cholesterol crystals (3, 21, 
50, 66–76). These deteriorating cells are normally cleared via 
efferocytosis, but as plaques advance, macrophages lose their 
efferocytosis capability. M2 macrophages are thought to have 
more efferocytosis capability than M1 macrophages, thus the 
predominance of M1 macrophages during plaque progression 
may also contribute to efferocytosis not being able to keep pace 
(49). This combination of increased accumulation of apoptotic 
cells and defective efferocytosis leads to secondary necrosis, 
which contributes to large lipid-filled necrotic cores and the 
release of more DAMPS (15, 77), which as noted above, are TLR 
ligands and stimulate inflammatory pathways. While secondary 
necrosis after inefficient efferocytosis of apoptotic or pyroptotic 
cells contributes to further inflammation and the formation of 
the necrotic core of plaques, recent studies have also highlighted 
the contributions to cell death of primary macrophage necrosis 
as a result of activation of the necroptosis pathway by TNF and 
OxLDL (78–81).

The combination of large necrotic cores and thinning of the 
fibrous cap destabilizes the plaque and increases risk of rupture 

and thrombus formation that precede heart attacks and strokes 
(2, 3, 15, 20, 21, 49, 82). In human plaques, M1 macrophages 
are localized to rupture prone regions, such as the necrotic core 
and plaque shoulder, while M2 macrophages are localized in 
the adventitia and farther away from the necrotic core (83, 84). 
This further solidifies the role of M1 macrophages in not only 
plaque progression, but also in the events that directly precede 
plaque rupture. This progression from the response to retained 
APOB-LPs to plaque rupture represents a maladaptive innate 
immune response. Normally, after the recruitment of monocytes 
to damaged tissues and the enrichment in M1 macrophages, 
there is eventual resolution of the inflammation and beneficial 
tissue remodeling by M2 macrophages (3, 15, 21, 28, 85). As 
will be presented below, the value of atherosclerosis regression 
models is to first illustrate that the failure to resolve inflammation 
during plaque progression can be overcome, and then to provide 
discovery platforms with which to accomplish this.

AtheRoSCleRoSiS RegReSSion in 
PRe-CliniCAl ModelS

Rabbits, non-human Primates, and Pigs
The history of plaque regression in rabbit, non-human primates, 
and pigs has been detailed extensively in our previous review 
(4). More briefly, evidence of plaque regression was observed 
as early as the 1920s, when it was observed that arterial lesions 
from cholesterol-fed rabbits that were switched to low-fat 
chow had increased fibrous content and reduced lipid content 
(86). In 1957, Friedman and colleagues performed one of the 
first prospective, interventional studies that showed plaque 
regression in cholesterol-fed rabbits that were injected with 
phosphatidylcholine (PC). Over the next two decades, similar 
plaque regression was observed in response to injections of 
dispersed phospholipids by multiple groups in experimental 
atherosclerosis models in rabbits (87–90) and baboons (91).

These findings were attributed to the ability of dispersed 
phospholipids to spontaneously form liposomes in aqueous 
solutions that can extract un-esterified cholesterol from 
membranes and cells, including plaque macrophages (90). 
These findings were further bolstered when Badimon and 
colleagues found that infusions of HDL, a known acceptor of 
cholesterol from macrophages, led to atherosclerosis regression 
in cholesterol fed-rabbits (92). Aikawa and Libby found that 
dietary lipid lowering led to plaque composition changes in rabbit 
atherosclerotic lesions that signaled increased plaque stability 
and reduced thrombotic potential. This included reduced tissue 
factor (TF) expression and activity (93, 94) along with decreased 
macrophage content, reduced expression and activity of MMPs, 
increased collagen accumulation, and increased smooth muscle 
cell area in the fibrous cap (94). Taken together, these studies 
provided strong evidence that dietary lipid lowering along with 
treatments to remove cholesterol from membranes and cells led 
to plaque regression in rabbit models of atherosclerosis (4, 90).

Further evidence of plaque regression was found in squirrel 
monkeys in 1968. A switch from an atherogenic to chow diet led to 
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significant loss of lipid content compared to baseline lesions (95). 
This was further confirmed in rhesus monkeys (4, 96–100). A 
common theme in these studies was that lesions at varying stages 
of plaque progression (fatty streaks to more advanced lesions) 
all regressed due to dietary lipid depletion (96), consistent with 
findings in rabbit models of plaque regression.

Pigs have also been used for atherosclerosis regression 
research. It was found that after atherosclerosis was induced 
by a combination of arterial injury and a high cholesterol diet, 
there were favorable plaque composition changes including 
decreases in lipid content and necrotic core area after the animals 
were switched to a regular chow diet (101). In 1981, the same 
group published extensive histological analysis of plaques at 
different stages of regression. Interestingly, they reported that 
the advanced lesions showed changes compatible with a “healing 
process” characterized by the disappearance of foam cells, a 
significant decrease in necrotic areas, and increased replacement 
of necrotic debris by fibrous tissue and calcified areas (102). 
Furthermore, they reported that early in the regression process, 
the decrease in foam cells and necrotic areas was accompanied by 
an increase in non-foam cell macrophages (102). This led them 
to hypothesize that the disappearance of the necrotic core areas 
occurred because the necrotic debris was removed by newly 
recruited, functioning, healthy macrophages (102).

Mice
Mice have naturally low LDL-C levels, with most of their 
plasma cholesterol carried by HDL, and it is thought that this 
plasma lipoprotein profile underlies their natural resistance to 
atherosclerosis (4). The use of murine models in atherosclerosis 
was catalyzed by the development of the apolipoprotein E 
(APOE) knockout mouse by the Breslow (103) and the Maeda 
(104) laboratories, and the LDL receptor (LDLR) knockout 
mouse by the Brown and Goldstein laboratory (105) in the 
early 1990s. In mice, APOE is the major ligand for the LDL 
receptor, even for APOB-containing lipoproteins. Thus, both 
models eliminate pathways for efficient lipoprotein cholesterol 
clearance by removing either a ligand (Apoe−/−) or a receptor 
(Ldlr−/−), and result in above normal plasma levels of cholesterol 
carried by APOB-lipoproteins. The circulating plasma levels of 
cholesterol can be further increased by feeding the mice a high fat 
and high cholesterol diet (“western diet”, WD), which accelerates 
the development of atherosclerotic plaques (4).

With mouse atherosclerosis progression models in place, we 
and others focused on adapting them for studies of regression. 
Similar to the rabbit, non-human primate, and pig studies, 
plaque regression was induced by significant lowering of 
circulating lipid levels, especially LDL-C, or by elevating HDL 
particles either genetically or by infusion (4, 49, 106). Significant 
LDL-C lowering could not be accomplished, however, by statin 
treatment, given the absence of either the ligand for the LDL 
receptor or the receptor itself. One approach to lipid lowering 
involved the hepatic overexpression of Apoe in Apoe−/− mice 
(107–111) and Ldlr in Ldlr−/− mice (105, 112–115) using 
adenoviral-mediated gene transfer. Both approaches led to the 
normalization of atherogenic lipid profiles, and favorable changes 

in plaque size, composition, or macrophage content (4, 105, 
107–115). However, in many of these models, the regression of 
early fatty streaks was much more pronounced than in advanced 
lesions. While fatty streaks reduced in lesion size by a factor of 
10 compared to baseline, advanced lesions usually had smaller 
reductions in size by  <20% (110, 116). This difference in plaque 
regression may have been due to the transient nature of the 
adenoviral-mediated lipid lowering with the early vectors, in 
part because of an immune response against virally transduced 
cells. Thus, models were needed in which lower lipid levels could 
be sustained indefinitely so that the regression of lesions of any 
complexity could be studied (116).

Towards this goal, the Fisher lab developed a plaque regression 
model that involved transplanting an atherosclerotic thoracic 
arch (116) or aortic arch segment (117) from a hyperlipidemic 
donor (Apoe −/− fed a WD) into a normolipidemic recipient (wild 
type (WT) fed a chow diet). This rapid environmental change 
in circulating lipoprotein/lipid levels induced plaque regression 
over a surprisingly short time (starting at 3 days) (43, 116–120). 
The regression group plaques showed significantly decreased 
lesion, macrophage, and lipid areas compared to their baseline 
counterparts.

Another regression model developed by our lab (in 
collaboration with Dr. Stephen Young, UCLA) is the Reversa 
mouse (Ldlr−/− Apob 100/100 Mttp fl/flMx1Cre+/+)  (121, 122), 
where after plaque progression occurs while the mice are on 
WD, polyinosinic-polycytidylic (pIpC) injection induces the 
Mx1-Cre gene leading to the inactivation of the microsomal 
triglyceride transfer protein (MTTP) gene. MTTP inactivation 
inhibits APOB-lipoprotein particle secretion from the liver. 
The resulting decrease of circulating cholesterol-rich VLDL 
and LDL induced plaque regression characterized by reduced 
macrophage content, reduced lipid area, and increased collagen 
content (122–124). Similar plaque regression was seen with 
treatment with a MTTP inhibitor in WD fed Ldlr−/− mice 
(125).

A common denominator in the above models of plaque 
regression was the requirement of an intervention to reduce lipid 
levels considerably below what could be achieved by switching 
from WD to chow alone. However, Nagareddy and colleagues 
have shown that with longer periods of moderate lipid lowering 
induced by switching the WD to chow after plaques have been 
established in Ldlr−/− mice, regression can occur  (126).

Space does not permit their full descriptions, but a rapid 
expansion of the number of non-surgical models to study 
atherosclerosis regression is expected based on the combined use 
of PCSK9-adenovectors to make mice LDLR-deficient, followed 
by antisense oligonucleotides (ASOs) against APOB or MTTP to 
lower APOB-lipoproteins (127, 128). In addition, there are still 
other regression models that are based on non-LDL lowering 
strategies, such as raising HDL particles either transgenetically, 
by infusion of HDL, and treatment with anti-miR-33 (43, 106, 123, 
129, 130). As will be presented later, there has been remarkable 
consistency in the changes in the macrophage properties in the 
plaques, independent of the mode of  regression.

In summary, plaque regression has been observed in multiple 
pre-clinical models (see Figure 1 for representative results from 
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key models described above). We will next review the evidence 
of plaque regression in humans.

AtheRoSCleRoSiS RegReSSion in 
huMAnS

One of the first reports of possible regression of established human 
atherosclerotic lesions was seen in autopsy studies by Aschoff in 
1924 when he observed that there was reduced atherosclerosis 
severity during the famine Germany suffered after World War I 
(131). These findings were confirmed in 1946 by Vartianen and 
Kanerva (132), in 1947 by Wilens (133), and in 1951 by Wanscher 
and colleagues (134) in diverse populations that had suffered 
from severe food restrictions, chronic wasting diseases, and 
cancer-induced cachexia (135), suggesting that atherosclerosis 
severity could decrease after lesions were established.

In 1966, Ost and Stenson performed one of the first prospective, 
interventional studies that demonstrated plaque regression in 
humans. They found that 10% of patients treated with niacin, 
which lowers triglycerides, raises HDL-C, and lowers LDL-C, 
showed improved femoral angiograms as measured by reduction 
in flow-limiting stenosis (4, 136). Brown and colleagues 
summarized larger trials from 1984 to 1993 that examined the 
relationship between lipid therapies and plaque regression, as 
measured by angiographic evidence of improved arterial flow or 
changes in plaque size compared to their baseline angiograms 
(137). They found that while the absolute decreases in arterial 
narrowing after lipid therapies were statistically significant, they 
were remarkably small, especially compared to the reduction in 
adverse clinical events (137). This discrepancy between absolute 
changes in angiographic arterial narrowing and reduction in 
coronary events was termed the “angiographic paradox” (4). The 
paradox was at least in part clarified when it was found that 
vulnerable plaques prone to the thrombotic events preceding 
heart attack and stroke cause less than 50% stenosis compared to 
stable, but more occlusive, lesions (4, 137, 138). An interpretation 
we favor, based on the pre-clinical models, for example a few 
reviewed in (122, 124, 125), is that lipid lowering most likely 
led to remodeling and stabilization of the smaller, vulnerable 
plaques, some perhaps not even readily visible on the angiograms 
(137). This suggests that lipid lowering interventions can induce 
beneficial changes in plaques (via compositional changes that lead 
to stabilization of vulnerable plaques and significant reduction 
in coronary events), that imaging methods then (and, for that 
matter, now) are inadequate to easily detect.

Later trials switched from angiographic analysis to 
intravascular ultrasonography (IVUS) because of being able 
to measure arterial wall thickness (assumed to be equivalent 
to plaque volume) in addition to vascular lumen size (4). For 
example, Nissen and colleagues reported two major prospective 
trials that observed patients with CAD who were treated with 
high dose statins using IVUS: (1) the Reversal of Atherosclerosis 
with Aggressive Lipid Lowering (REVERSAL) trial (139), 
and, (2) A Study to Evaluate the Effect of Rosuvastatin on 
Intravascular Ultrasound-Derived Coronary Atheroma Burden 

(ASTEROID) (140). In the REVERSAL study, they found that 
LDL-C reduction greater than 50 percent in patients treated 
with atorvastatin for 18 months was associated with decreases 
in plaque volume of 0.4 percent (139). In the ASTEROID trial, 
LDL-C dropped from 130.4 mg/dl to an average of 60.8 mg/
dl with rosuvastatin treatment for 24 months, and this was 
associated with a 0.98 percent decrease in plaque volume (140). 
The Study of Coronary Atheroma by Intravascular Ultrasound: 
Effect of Rosuvastatin versus Atorvastatin (SATURN) showed 
similar findings using IVUS, where plaque volume decreased 
by 0.99 percent in the atorvastatin treatment group and by 1.22 
percent in the rosuvastatin treatment group after 24 months of 
LDL-C lowering treatment (141).

More recently, Nicholls and colleagues assessed the efficacy 
of proprotein convertase subtilisin kexin type 9 (PCSK9) 
antibodies to lower circulating LDL-C in the Global Assessment 
of Plaque Regression With a PCSK9 Antibody as Measured by 
Intravascular Ultrasound (GLAGOV) trial (142). They found 
that the group treated with PCSK9 antibody had significantly 
lower LDL-C levels compared to controls (36.6 mg/dL compared 
to 93.0 mg/dL after 76 weeks of treatment) and a 0.95 percent 
decrease in plaque volume compared to baseline (142). These 
studies provide consistent evidence that extensive lipid lowering 
can lead to plaque regression as measured by decreases in plaque 
volume. The modest quantitative changes in plaque volume, 
however, recall the surprising results of Brown and colleagues, 
which suggested that changes in plaque composition might 
pre-dominate over changes in plaque size after lipid-based 
interventions. As implied above, confirmation of this hypothesis 
will require more sensitive, preferably non-invasive, imaging 
methods as reviewed in (143).

Another therapeutic intervention that has been recently 
studied using IVUS was the infusion of HDL-like complexes 
into patients with acute coronary syndromes (ACS). Nissen 
and colleagues used APOA1-Milano. This form was originally 
identified in 40 carriers in northern Italy who had very low 
levels of HDL-C, but less CAD risk than expected (144, 145), 
suggesting increased HDL functionality, for example by removal 
of more cholesterol from plaque foam cells. They found that 
the group treated with APOA1-Milano infusions for 5 weeks 
had a 1.06 percent decrease in plaque volume compared with 
baseline volume (144). Interestingly, they found that increasing 
the dose from 15 to 45 mg/kg did not improve the results (144). 
In a subsequent study, Tardif and colleagues used reconstituted 
HDL using wild-type APOA1, and found that patients treated for 
4 weeks had a 3.4 percent decrease in plaque volume compared 
to baseline (146).

The impact of these HDL infusion results on clinical thinking, 
however, has been limited not only by their small size, but also by 
a number of recent studies in which elevations in HDL-C are not 
necessarily linked to reductions in major adverse cardiovascular 
events. These studies include mendelian-randomization genetic 
(147–149), as well as HDL-C raising interventions with niacin 
(150, 151) or cholesteryl ester transfer protein (CETP) inhibitors 
(152–154). These results have highlighted the differentiation of 
the level of HDL-C from the function of HDL particles, with the 
latter being considered to be more strongly associated with risk 
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protection (155). Thus, the promise of the HDL infusion and 
the disappointment in the above cited mendelian randomization 
and intervention studies may reflect the different functional 
capabilities of the HDL particles depending on the method of 
increasing their levels in circulation (4, 155, 156). In particular, 
the results from the HDL infusion studies may reflect the ability 
of increased numbers of functional HDL particles to favorably 
remodel plaques, as we and others have observed in mouse (43, 
106, 157) and rabbit models (92, 158).

In summary, observational studies going back to 1924 and 
in more recent intervention trials support the regressibility of 
atherosclerotic plaques in humans. In the intervention studies, 
plaque regression is typically small (<1%) with aggressive 
lipid reductions, yet where outcome data are available, this is 
associated with significantly fewer events, suggesting that plaque 
compositional changes, not detectable by IVUS or angiography 
(which predominately measure wall thickness or luminal 
stenosis, respectively), may be a major contributing factor. 
Imaging modalities to detect changes in plaque composition is 
a very active field (e.g., 131, 147–150). While there have been 
advances (such as the use of optical coherence tomography, near 
IR spectroscopy, and NMR) there are still limitations because 
of either invasiveness or limited applicability to coronary sites. 
Undoubtedly, further progress will be made so that coronary 
artery compositional changes will become more common 
outcomes of clinical studies. Even then, given the limited 
mechanistic information possible to glean from clinical studies, 
for the understanding of how extensive lipid lowering or other 
interventions can lead to plaque regression and compositional 
changes, as well as the identification of the molecular pathways 
within the plaques that may be therapeutic targets, the pre-

clinical models described earlier are invaluable. These studies 
have led to a number of insights, particularly in regard to plaque 
macrophage biology, which will be reviewed next.

MACRoPhAgeS in AtheRoSCleRoSiS 
RegReSSion

In regressing atherosclerotic plaques, we have observed that there is 
reduced expression of classical inflammatory genes characteristic of 
M1 macrophages, such as CCL2, TNFα, and iNOS. This reduction 
coincides with increased expression of genes encoding markers 
of alternatively activated, anti-inflammatory, tissue-remodeling 
M2 macrophages, such as Arg1, mannose receptor (MR/CD206), 
CD163, C lectin receptor, and IL-10 in CD68+ cells (43, 118, 122, 
124, 125). This intriguing finding is consistent with the studies 
in mouse models that have shown that loss of nuclear hormone 
receptor 77 (NUR77) or Krüppel-like factor 4 (KLF4), two factors 
associated with lower macrophage inflammation (i.e., a more 
“M2-like” phenotype) leads to more plaque inflammation and 
atherosclerosis progression (159–163). Additionally, the induction 
of IL-4 or IL-13 mediated M2 macrophage polarization also 
favorably changes plaque composition to a less inflammatory state 
and reduces atherosclerosis progression (3, 21, 164, 165). Thus, 
the enrichment in M2 macrophages is a signature of regressing 
plaques suggesting that the healthier microenvironment not only 
reduces the signals for macrophage activation, but also provides 
signals for M2 polarization. This results in reduced inflammation 
and favorable tissue remodeling (3), consistent with the results 
from altering the M1/M2 balance in progression.

We were interested in the source of the M2 macrophages in 
regressing plaques. We had previously observed that despite 
the rapid and significant lipid lowering we often used to induce 
regression, there was still ongoing recruitment of monocytes to the 
plaques (166), suggesting these new cells may be the precursors. 
Another possibility is that these M2 macrophages resulted from 
proliferation and polarization of existing macrophages already in 
the plaque (167, 168) that originated from circulating monocytes 
recruited during progression or from tissue resident macrophages of 
embryonic origin (yolk sac-derived) and maintained through self-
renewal (169, 170). We did not find evidence of much proliferation 
of macrophages in regressing plaques [e.g., (44)], which focused 
our attention on the role of newly recruited monocytes.

Conventionally, it is thought that Ly6Chigh monocytes are the 
precursors of M1 macrophages, while Ly6Clow monocytes are the 
precursors of M2 macrophage (22, 23, 27, 37). Using normolipidemic 
mice deficient in either CCR2 or CCR5, which are selectively 
used to recruit Ly6Chigh or Ly6Clow monocytes, respectively into 
atherosclerotic plaques (22), we conclusively showed that M2 
macrophages in regressing plaques were surprisingly derived 
from cells recruited from the Ly6Chigh circulating subset after 
lipid lowering (44). That the enrichment in M2 macrophages 
was not just associated with, but was required for, regression was 
demonstrated in experiments using normolipidemic mice deficient 
in STAT6, which as noted above, is a required factor for canonical 
(i.e., IL-4 or IL13-induced) M2 polarization. As will also be noted 

FiguRe 2 |  Key molecules involved in innate immunity and atherosclerosis 
pathogenesis. There are multiple molecules and pathways involved in the 
progression of atherosclerosis that have also been implicated in 
atherosclerosis regression. They include: 1. LDL/oxLDL, 2. Chemokines that 
induce monocyte recruitment into the plaque, 3. HDL, 4. Proliferation, 
5. Polarization, 6. Pro-inflammatory mediators, 7. Pro-resolving mediators, 8. 
Apoptosis and efferocytosis, and 9. Macrophage egress out of the plaque.
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in the next section, these results point to the limitations of lipid 
lowering alone to achieve atherosclerosis regression, as when this 
was achieved without being able to enrich in M2 macrophages, 
regression was impaired. The results also stimulated us to seek the 
nature of the signals that were responsible for the polarization of 
the newly recruited monocytes.

inFlAMMAtion ReSolution AS A 
theRAPeutiC tARget And itS 
CliniCAl RelevAnCe

Besides the pre-clinical findings just reviewed, there is also 
ample evidence from the clinical literature to argue that new 
directions are clearly needed to augment the traditional approach 
of lowering LDL-C by statins in order to achieve atherosclerosis 
regression and cardiovascular risk reduction. This point was 
driven home by a summary of the results of 6 “mega-trials” of 
statins- the Scandinavian Simvastatin Survival Study (4S), the 
Cholesterol And Recurrent Events (CARE) study, the Air Force 
Coronary Atherosclerosis Prevention Study/Texas Coronary 
Atherosclerosis Prevention Study (AFCAPS/TexCAPS), the Long-

term Intervention with Pravastatin in Ischemic Disease study 
(LIPID) study, and the Heart Protection Study (HPS). While all 
showed reductions in coronary heart disease events, two thirds of 
patients still experienced events while on statin treatment, clearly 
demonstrating that LDL-C lowering alone does not lead to optimal 
therapeutic benefit (7).

The recent Canakinumab Anti-inflammatory Thrombosis 
Outcomes Study (CANTOS) trial (171) has brought to clinical focus 
what our pre-clinical studies have shown, namely that the benefits of 
LDL-C lowering are enhanced when inflammation is reduced. In this 
2 year study, patients at high risk of CAD were treated with statins to 
lower LDL-C to 82 mg/dL, with half also receiving an antibody to the 
potent inflammatory mediator IL-1β. Indeed, there were decreased 
events in those in the antibody group, which  demonstrated  the 
clinical importance of the  “residual risk of inflammation” that 
persisted after LDL-C lowering in some patients, particularly those 
whose levels of CRP, considered to be a biomarker of inflammation, 
were ≥2 mg/dL (171, 172). The CANTOS results have antecedents 
in the Pravastatin or Atorvastatin Evaluation and Infection Therapy–
Thrombolysis in Myocardial Infarction 22 (PROVE IT–TIMI 22) 
study  (172). After intensive statin therapy, Ridker and colleagues 
found there were 4 groups of patients with differential risk of having 

tABle 1 |  Key molecules and therapeutic potential for resolving innate immune inflammation during atherosclerosis progression and regression.

examples of 
Molecules

examples of therapeutics or 
Potential Approaches

effect on Plaque Progression effect on Plaque Regression

LDL/oxLDL Statins, PCSK9 Inhibitors, antibodies 
to oxidized lipids, vaccination to 
oxLDL

Retarded progression in humans Lowering LDL leads to some 
regression in humans and more in 
animal models. Antibodies to oxLDL 
retard progression in mice; not 
tested in regression

Chemokine Gradient CCL2/MCP-1, CCL5, 
CX3CRL1

CCR2 Inhibitors Inhibiting chemokine function impairs 
progression in mice

Inhibiting chemokine function (CCR2) 
impairs regression in mice

HDL ApoA1, ABCA1, CETP HDL Infusions (ApoA1-Milano, 
ApoA1- WT), Niacin, CETP Inhibitors; 
anti-miR33

Increasing number of functional HDL 
particles (HDL-P) impairs progression in 
mice; limited human studies agree; raising 
HDL-C has not been effective

Increasing HDL-P via infusions leads 
to some regression in humans and 
significant regression in mice; anti-
miR33 treatment leads to significant 
regression in mice; being tested in 
non-human primates

Pro-inflammatory 
mediators

Cytokines, e.g., IL-1β, 
IL-6, IL-12, TNF-α

Canakinumab (IL-1β Inhibitor) Lowering inflammatory cytokines impairs 
progression in humans and mice

Not tested

Leuokotrienes 5-lipoxygenase activating protein 
inhibitor

Reducing leukotrienes impairs progression 
in mice; polymorphisms in the gene 
associated with atherosclerosis in human 
genetic studies

Not tested

Pro-resolving mediators Cytokines includiing 
IL-4, IL-10, IL-13

The cytokines themselves delivered 
systemically or as part of targeted 
nanoparticles

Timing and context matter but in general 
decreasing anti-inflammatory cytokines 
promotes, and increasing them retards, 
progression in mice

STAT6 (downstream of IL-4 and IL-
13) required for regression in mice

Lipoxins, resolvins, 
maresins, protectins

Treatment with annexin 1, resolvin 
D1, resolvin D2, maresin 1, 
and resolvin E1 systemically or as 
part of targeted nanoparticles

Increasing pro-resolving mediators impairs 
progression in mice

Not tested

Apoptosis/efferocytosis Stimulators of efferocytosis, such as 
LXR agonists delivered as targeted 
nanomedicines given hepatic 
toxicity when given systemically

Early apoptosis and active efferocytosis can 
retard plaque progression but apoptosis 
and failed efferocytosis at advanced stages 
promote plaque progression by contributing 
to necrotic core formation in mice

Not tested

Emigration/Egress Out 
of Plaque

Netrin 1, CCR7 Delivery of siRNA or anti-sense 
oligonucleotides to netrin 1 in 
targeted nanoparticles

Netrins inhibit emigration of macrophages 
and promote progression in mice

Blocking CCR7 leads to impaired 
emigration of macrophages and 
impairs regression in mice
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a recurrent heart attack – (1) LDL ≥70 mg/dL, CRP ≥2 mg/L (highest 
risk), (2) LDL ≥70 mg/dL, CRP <2 mg/L, (3) LDL <70 mg/dL, CRP 
≥2 mg/L, and (4) LDL <70 mg/dL, CRP <2 mg/L (lowest risk). 
Intriguingly, they found that patients with LDL ≥70 mg/dL, CRP <2 
mg/L or LDL <70 mg/dL, CRP ≥2 mg/L had similar risk of recurrent 
risk, which suggested that heightened inflammation impeded the 
benefits of LDL-C lowering (172), consistent with the CANTOS 
results and our pre-clinical findings (44, 171).

Given the direct evidence it provides in humans, the CANTOS 
trial has catapulted the interest in clinical approaches to reducing 
plaque inflammation and promoting its resolution, whose benefits 
have heretofore been heavily based in pre-clinical settings. Potential 
therapies, in addition to enhancing STAT6-induced M2 macrophage 
polarization, could include using plaque targeted therapies to 
increase lipid-derived (e.g., resolvins) and protein mediators (e.g., 
cytokines) to promote resolution, by blocking inflammatory cell 
influx, promoting their egress, clearing pathogens and cellular 
debris, reducing inflammatory cytokines, increasing the clearance 
of dying macrophages by efferocytosis, and repairing tissue damage 
by creating an environment that promotes tissue remodeling M2 
macrophage polarization (173, 174). In parallel developments, 
nano-vehicles to direct some of these therapies directly to plaques 
are being intensely pursued. These will allow not only more potent 
attacks on inflammation, but have the potential to avoid systemic 
adverse effects, such as the increased fatal infections observed with 
systemic IL-1β antagonism in the CANTOS trial.

ConCluding ReMARKS

It has been considered for some time [reviewed in, e.g., (15, 
18, 175)] that atherosclerosis plaque progression, like many 

inflammatory processes, begins as a typical defense mechanism 
against a threat, in this case retained APOB-lipoproteins. For the 
reasons discussed above, there are a number of unfortunate events, 
such as the relentless entry of lipoproteins (which in addition 
to the lipids they bring, give rise to PAMPS), and the ensuing 
tissue damage, which produces DAMPS. These phenomena both 
amplify the innate immune responses and extend the mayhem 
to involve adaptive immunity. Thus, the normally homeostatic 
resolution of inflammation does not occur. As we have reviewed, 
progress in understanding the immunology of atherosclerosis 
based on pre-clinical models of progression and regression, 
coupled with advances in clinical investigations, puts the field 
well on its way towards the goal of achieving this homeostasis, 
which will result in improved primary and secondary prevention 
strategies and a reduction in atherosclerotic cardiovascular 
disease. In Figure 2 and Table 1, we have summarized some of 
the pathways and factors implicated in potentially limiting, or 
even better, resolving plaque inflammation.
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