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Abstract

Minimum squared error based classification (MSEC) method establishes a unique classification model for all the test
samples. However, this classification model may be not optimal for each test sample. This paper proposes an improved
MSEC (IMSEC) method, which is tailored for each test sample. The proposed method first roughly identifies the possible
classes of the test sample, and then establishes a minimum squared error (MSE) model based on the training samples from
these possible classes of the test sample. We apply our method to face recognition. The experimental results on several
datasets show that IMSEC outperforms MSEC and the other state-of-the-art methods in terms of accuracy.
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Introduction

The minimum squared error based classification (MSEC) is

sound in theory and is able to achieve a high accuracy [1,2]. It has

been proven that for two-class classification MSEC is identical to

linear discriminant analysis (LDA) under the condition that the

number of training samples approximates the infinity [1,2]. In

addition, MSEC can be applied to multi-class classification by

using a special class label matrix [3]. Various improvements to

MSEC such as orthogonal MSEC [4] and kernel MSEC [5–8]

have been proposed. The MSEC has been applied to a number of

problems such as imbalanced classification [7], palm-print

verification [9], low-rank representation [10,11], super-resolution

learning [12], image restoration [13], and manifold learning [14].

In recent years, representation based classification (RC) method

[15–18] has attracted increasing attention in pattern recognition.

The main difference between RC and MSEC is that RC tries to

use the weighted sum of all the training samples to represent the

test sample, whereas MSEC aims to map the training samples to

their class labels. RC can be categorized into two types. The first

type is the so-called sparse representation method (SRM) such as

the methods proposed in [19,20]. The goal of SRM is to

simultaneously minimize the L1 norm of the weight vector and the

representation error that is the deviation between constructed

sample and test sample. The second type is the so-called non-

sparse representation method such as the methods proposed in

[21–26]. The goal of the non-sparse representation method is to

simultaneously minimize the L2 norm of the weight vector and the

representation error. The non-sparse representation method has a

closed-solution and is usually more computationally efficient than

SRM [21].

In this paper, we focus on multi-class classification problem and

propose an improved minimum squared error based classification

(IMSEC) method. The basic idea of IMSEC is to select a subset of

training samples that are similar to the test sample and then build

the MSE model based on them. The advantage of the IMSEC is

that it seeks the optimal classifier for each test sample. However,

MSEC categorizes all the test samples based on a unique classifier.

Therefore IMSEC has better performance than MSEC.

The minimum Squared Error Based Classification for
Multi-class Problems

Suppose that there are N training samples from c classes. Let

the p-dimensional row vector xi denote the i-th training sample,

where i~1,:::,N. We use a c-dimensional row vector gi to

represent the class label of the i-th training sample. If this sample is

from class k, the k-th entry in gi is one and the other entries are all

zeroes.

If a mapping Y can approximately transform each training

sample into its class label, we have

XY~G: ð1Þ

where X~

x1

:
:
:
xN

2
66664

3
77775

, G~

g1

:
:
:
gN

2
66664

3
77775

. Clearly, X is an N|p matrix, G is

an N|c matrix, and Y is a p|c matrix that is to be solved. As

Eq. (1) cannot be directly solved, we convert it into the following
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equation:

X T XY~X T G ð2Þ

If X T X is non-singular, Y can be solved by

Y~(X T X ){1X T G: ð3Þ

In general, we use Y~(X T XzcI){1X T G to obtain a stable

numerical solution, where c and I denote a small positive constant

and the identity matrix, respectively.

Finally, we classify a test sample t as follows: the class label of t is

predicted using tY , and then the Euclidean distance between tY
and the class label of each class is calculated, respectively. The

class label of thej-th class is a row vector whosej-th element is one

and whose other elements are all zeros (j~1,2:::,c). Among the c
classes, if tY is closest to the k-th class, then x is classified into the

k-th class.

The Algorithm of Improved Minimum Squared Error
Based Classification

Suppose the j-th class has nj training samples. Let zk
j be the k-th

training sample of the j-th class, where k~1,:::,nj ,j~1,:::,c. The

algorithm of IMSEC has the following three steps.

Step 1. Determine L possible classes of the test sample, where

Lvc. First, the test sample t is represented as a weighted sum of

the training samples of each class, respectively. For thej-th class, it

is assumed that t~
Pn

k~1 wk
j zk

j is approximately satisfied.

t~
Pn

k~1 wk
j zk

j can be rewritten as t~ZjWj , where

Wj~½w1
j :::w

n
j �

T
and Zj~½z1

j :::z
n
j �. Then we have

�WWj~(ZT
j ZjzcI){1Zjy. DDt{Zj

�WWj DD is the representation error

between the training samples of j-th class and the test sample. The

L classes that have the smallest L representation errors are

determined, and they are referred to as base classes.

Step 2. Use the base classes to establish the following MSE

model

X̂XŶY~Gz, ð4Þ

where X̂X is composed of all the training samples of the base classes,

and Gz is composed of the class labels of these training samples. ŶY

is computed using ŶY~(X̂X T X̂XzmI){1X̂X T Gz. m and I are a small

positive constant and identity matrix, respectively.

Step 3. Exploit ŶY and Gz to classify the test sample t. The

class label of this test sample can be predicted by using tŶY .

Calculate the Euclidean distance between tŶY and the class label of

each base class, respectively. Let difk denote the distance of the

between gt and the class label of the k-th class. If h~ arg min
k

difk,

then test sample t is assigned into the h- th class.

Analysis of the Proposed Method
The proposed method and the MSEC have the following

differences. MSEC attempts to obtain a unique model for all the

test samples, whereas the proposed method constructs a special

MSE for each test sample. MSEC tries to minimize the mean

square error between the predicted class labels and the true class

labels of the training samples. That means MSEC is capable of

Figure 1. The face images of one subject in the ORL database.
doi:10.1371/journal.pone.0070370.g001

Figure 2. The face images of one subject in the AR database.
doi:10.1371/journal.pone.0070370.g002
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mapping the training samples to the correct class labels. However,

this does not imply that the model of MSEC can map the test

sample to the correct class label accurately. Since the test sample

and the training samples that are ‘‘close’’ to the test sample have

the similar MSE models, it can be expected that IMSEC performs

better in mapping the test sample to the correct class label than

CMSE.

The proposed method works in the way of coarse-to-fine

classification. In detail, step 1 of the proposed method indeed

roughly identifies the possible classes of the test sample. Step 2 of

the proposed method assigns the test sample into one of the

possible classes. For the complicated classification problem, the

way of coarse-to-fine classification is usually more effective than

the way in one step [27–29].

It is worth pointing out that the proposed method is different

from CRC [21] and linear regression based classification (LRC)

[30]. The proposed method tries to establish a model to map the

training samples to their true class labels, whereas CRC uses the

weighted combination of all the training samples to represent the

test sample, and LRC uses the class-specific training samples to

represent the test sample. Moreover, when classifying a test

sample, the proposed method and LRC need to solve one and C

MSE models, respectively, where C is the number of the classes.

As a result, the proposed method is more efficient than LRC.

Experiments

A. Ethics Statement
Some face datasets were used in this paper to verify the

performance of our method. These face datasets are publicly

available for face recognition research, and the consent was not

needed. The face images and the experimental results are reported

in this paper without any commercial purpose.

B. Experimental Results
Face recognition has become a popular pattern classification

task. We perform the experiments on ORL, FERET and AR face

databases. Our method, CMSE, CRC, SRC, Eigenface [31],

Fisherface [32], Nearest Neighbor Classifier (1-NN), 2DPCA [33],

Alternative-2DPCA [34], 2DLDA [35], Alternative-2DLDA [36]

and 2DPCA+2DLDA [37] were tested in the experiments. Before

implementing each method, we converted every face image into a

unit vector with the norm of 1. When CRC was implemented, the

regular parameter was set to 0.001. In Eigenface method, we used

the first 50, 100…, 400 Eigenfaces for feature extraction,

respectively, and reported the lowest error rate. In the 2D based

subspace methods, including 2DPCA, Alternative-2DPCA,

2DLDA, Alternative-2DLDA and 2DPCA+2DLDA, the number

of the projection axes was set to 1,2,…,5, and the lowest error rate

was reported.

In the ORL database, there are 40 subjects and each subject has

10 different images. For some subjects, the images were taken at

different times, varying the lighting, facial expressions (open/

closed eyes, smiling/not smiling) and facial details (glasses/no

Figure 3. Some face images from the FERET database.
doi:10.1371/journal.pone.0070370.g003

Table 1. Rates of classification errors of the methods on the
ORL database (%).

Number of the original
training samples
per class 3 4 5 6

The proposed method 11.07 5.83 4.50 1.87

CMSE 13.93 7.92 7.50 3.75

CRC 15.36 9.17 8.00 5.63

SRC 19.29 15.00 14.50 11.87

Eigenface 26.07 20.00 14.00 10.00

Fisherface 23.01 22.64 23.29 9.08

1-NN 20.36 15.00 14.00 8.75

2DPCA 14.29 11.25 9.50 3.75

Alternative-2DPCA 13.93 10.42 8.50 3.75

2DLDA 11.79 7.92 9.50 4.37

Alternative-2DLDA 17.50 13.75 13.50 4.37

2DPCA+2DLDA 16.07 12.50 10.00 4.37

doi:10.1371/journal.pone.0070370.t001

Table 2. Rates of classification errors of the methods on the
AR database (%).

Number of the original
training samples per class 4 5 6 7

The proposed method 25.27 23.29 22.96 20.92

CMSE 27.92 24.88 25.87 25.48

CRC 29.89 28.02 29.71 28.90

SRC 41.97 43.41 34.04 29.78

Eigenface 41.78 47.66 24.79 26.05

Fisherface 44.17 40.71 25.13 23.89

1-NN 37.69 39.40 25.87 25.04

2DPCA 40.38 41.87 30.83 31.36

Alternative-2DPCA 40.23 40.87 30.63 31.54

2DLDA 50.68 52.22 35.33 33.25

Alternative-2DLDA 54.09 55.83 41.96 36.40

2DPCA+2DLDA 35.53 37.90 26.42 28.03

doi:10.1371/journal.pone.0070370.t002
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glasses). All the images were taken against a dark homogeneous

background with the subjects in an upright, frontal position (with

tolerance for some side movement). Each face image contains

92|112 pixels, with 256 grey levels per pixel [38]. We resized

each face image into a 46 by 56 matrix. Figure 1 shows the face

images of one subject in the ORL database. We took the first

three, four, five and six face images of each subject as training

images and treated the others as test images, respectively. In our

method, L was set to 0:3|c.

For AR face database, we used 3120 gray face images from 120

subjects, each providing 26 images [39]. These images were taken

in two sessions and show faces with different facial expressions, in

varying lighting conditions and occluded in several ways. Figure 2

shows the 26 face images of one subject in the AR database. We

took the first four, five, six, seven and eight face images of each

subject as training images and treated the others as test images,

respectively. In our method, L was set to 0:15|c.

A subset of the FERET face database is used to test our method.

This subset includes 200 subjects, and each subject has 7 images. It

is composed of the images whose names are marked with two-

character strings: ‘ba’, ‘bj’, ‘bk’, ‘be’, ‘bf’, ‘bd’, and ‘bg’. This

subset involves variations in facial expression, illumination, and

pose [40]. The facial portion of each original image was cropped

to form a 40|40 image. Figure 3 shows some face images from

the FERET database. We took the first five and six face images of

each subject as training images and treated the others as test

images, respectively. In our method, L was set to 0:15|c.

Tables 1, 2 and 3 show the classification error rates of the

methods on the ORL, AR and FERET databases, respectively.

We can observe that our method always obtains the lowest

classification error rate. In other words, our method can achieve

the desirable classification result.

Conclusions
The proposed method, i.e. IMSEC, establishes a special MSE

model for each test sample. When building the classification

model, IMSEC uses only the training samples that are close to the

test sample. Theoretical analyses were presented to explore the

properties of IMSEC. Compared with MSEC that classifies all the

test samples based on a unique model, IMSEC can perform better

in classifying the test samples. We tested the proposed method on

three face datasets. The experimental results clearly demonstrated

that IMSEC outperforms MSEC and the other state-of-the-art

methods.
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