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4-O-β-tri-N-acetylchitotriosyl moranoline (GN3M) is a transition-state analogue for hen egg
white lysozyme (HEWL) and identified as the most potent inhibitor till date. Isothermal
titration calorimetry experiments provided the thermodynamic parameters for binding
of GN3M to HEWL and revealed that the binding is driven by a favorable enthalpy change
(ΔH° � −11.0 kcal/mol) with an entropic penalty (−TΔS° � 2.6 kcal/mol), resulting in a free
energy change (ΔG°) of −8.4 kcal/mol [Ogata et al. (2013) 288, 6,072–6,082]. Dissection of
the entropic term showed that a favorable solvation entropy change (−TΔSsolv

° � −9.2 kcal/
mol) is its sole contributor. The change in heat capacity (ΔCp

°) for the binding of GN3M was
determined to be −120.2 cal/K·mol. These results indicate that the bound water molecules
play a crucial role in the tight interaction between GN3M and HEWL.
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INTRODUCTION

Lysozyme (EC 3.2.1.17) is an enzyme that hydrolyzes the β-1,4-glycosidic bond between
N-acetylmuramic acid and N-acetylglucosamine (GlcNAc) in peptidoglycan, a major structural
component of the bacterial cell wall (Jollès and Jollès, 1984). Hen egg white lysozyme (HEWL) is the
first enzyme to have its three-dimensional structure determined by X-ray diffraction (Blake et al., 1965),
consequently its catalytic mechanism has been intensively studied. Based on the modeled structure of
HEWL-chitohexaose, it was proposed that HEWL has six subsites for binding of sugar residues in the
active site cleft, termed −4 to +2 (formerly A, B, C, D, E, and F), and the cleavage occurs between sugars
located at subsites −1 and +1 through the cooperative action of Glu35 and Asp52 (Johnson and Phillips,
1965; Blake et al., 1967; Phillips, 1967). In the catalytic reaction, Glu35 is thought to act as a general acid
catalyst to protonate the glycosidic oxygen, while Asp52 acts as a conjugate base and stabilizes the
carbonium ion intermediate that adopts a half-chair conformation with C1 carbon displaying sp2

hybridization. This is known as the Phillips mechanism, widely supported by a number of experimental
observations including mutagenesis studies of these amino acids (Malcolm et al., 1989).
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Meanwhile, Vocadlo et al. reported the crystal structure of
HEWL, covalently bound to C1 carbon of the −1 sugar, which
exhibits a chair conformation with C1 carbon in sp3 hybridization
(Vocadlo et al., 2001). Recently, we synthesized 4-O-β-tri-
N-acetylchitotriosyl moranoline (GN3M) from chitoteratetraose
(GlcNAc)4 and moranoline with the aid of the lysozyme-catalyzed
transglycosylation reaction and examined its inhibitory action toward
HEWL (Figure 1) (Ogata et al., 2013). GN3M with C1 carbon in sp3

hybridization was found to be the most potent lysozyme inhibitor till
date with an inhibition constant Ki of 1.84 μM and bind tightly to
HEWL (Kd � 0.76 μM at 25°C). Furthermore, in the HEWL-GN3M
complex structure, GN3M was well superimposed on NAG2FGlcF
((GlcNAc)2-fluoro-glucosyl fluoride), covalently bound to HEWL
mutant E35Q and the moranoline moiety bound to subsite −1 was
in a chair conformation (without distortion) as the −1 sugar of the
covalently bound NAG2FGlcF. From these results, we concluded to
support the covalent glycosyl-enzyme intermediate formation in the
reaction catalyzed by the wild-type HEWL. This is known as the
Koshland mechanism, now more widely accepted by enzyme
researchers (Koshland, 1953).

In this study, in order to elucidate the driving forces
responsible for the tight binding of GN3M (a transition-state
analogue inhibitor) to HEWL, we conducted a detailed
thermodynamic analysis using isothermal titration calorimetry.
The thermodynamic data obtained from our study would be
useful to understand the substrate binding mechanism of HEWL
and to design novel glycosidase inhibitors with moranoline moiety.

MATERIALS AND METHODS

Materials
4-O-β-tri-N-acetylchitotriosyl moranoline (GN3M) was prepared
by lysozyme-mediated transglycosylation from the substrates
tetra-N-acetylchitotetraose (GlcNAc)4, and moranoline (1-
deoxynojirimycin) as described previously (Ogata et al., 2013).
HEWL, which was recrystallized six times, was purchased from
Seikagaku Kogyo Co. (Tokyo, Japan). All other reagents were of

the highest quality commercially available and were used without
further purification.

Isothermal Titration Calorimetry (ITC)
Experiments
The HEWL solution (45 μM) in 20 mM phosphate buffer (pH
7.0) was degassed and its concentration was determined by
measuring the absorbance of ultraviolet light at 280 nm.
GN3M was dissolved (0.5 mM) in 20mM phosphate buffer (pH
7.0), degassed, and loaded into a syringe, whereas the HEWL
solution (0.2028ml) was loaded into the sample cell. Calorimetric
titration was performed with an iTC200 system (Microcal
Northampton, MA, United States). For the titrations, 2.5 μl of a
ligand was injected into the sample cell at an interval of 180 s with a
stirring speed of 1,000 rpm. The heat of dilution caused by an
injection of GN3M was measured under identical buffer, injection,
and temperature conditions but by adding ligand to a sample
solution that lacked protein. The heat of dilution was subtracted
from the heat change that occurred in presence of the protein.
Origin® software was used to analyze the ITC data. Using the
single-site binding model, individual datasets obtained from the
titration experiments fitted well to the theoretical curves, providing
stoichiometries (n), equilibriumbinding association constants (Ka),
and enthalpy changes (ΔH°) of the protein-ligand interactions. The
value of n was found to be between 1.02 and 1.22 for all titrations.
The binding free energy change (ΔG°) and the entropy change
(ΔS°) were calculated from the relationship described in Eq. 1.

ΔG° � −RT · ln Ka � ΔH° − ΤΔS° (1)

To examine temperature dependence, ITC measurements were
performed at pH 7.0 and the temperature was varied in five-
degree increments from 15 to 35°C. Methods for obtaining the
heat capacity change (ΔCp+) and parameterizing the entropic
term have been described previously (Ohnuma et al., 2011).
Briefly, the binding heat capacity change (ΔCp

°) was obtained
from the ITC titrations over temperature range. Measurements of
temperature dependence of ΔH° for GN3M binding to HEWL in

FIGURE 1 | Chemical structure of GN3M and (GlcNAc)3.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6547062

Ogata et al. Thermodynamic Analysis for Binding of GN3M to HEWL

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


the temperature range yielded a straight line of slope equal to
ΔCp

°. Errors are reported as standard deviations of at least three
experiments at each temperature.

RESULTS AND DISCUSSION

In addition to chitin oligosaccharides (GlcNAc)n (n � 2–3), we
previously investigated the inhibitory effects of 4-O-β-tri-
N-acetylchitotriosyl-2-acetamido-2,3-dideoxydidehydroglucopyranose
(GN3D), 4-O-β-tri-N-acetylchitotoriosyl-2-acetamido-2,3-
dideoxydidehydroglucono-δ-lactone (GN3L), and 4-O-
β-tri-N-acetylchitotriosyl moranoline (GN3M) against
HEWL (Figure 1). GN3M was found to be the most potent
inhibitor (Ki � 1.84 μM). Based on the thermodynamic
parameters provided by ITC experiments for HEWL binding of
these compounds, GN3M was found to be a tight binding inhibitor
(ΔG° � −8.4 kcal/mol; Kd � 0.76M) (Ogata et al., 2013). Figure 2A
shows a typical ITC thermogram and theoretical fit to the
experimental data for binding of GN3M at 20°C. Figure 3A
shows superimposed structures of (GlcNAc)3-liganded HEWL
(PDB code 1lzb) and GN3M-liganded HEWL (PDB code 4hp0)
complexes (Maenaka et al., 1995; Ogata et al., 2013). The main
chain of GN3M-liganded HEWL overlapped well with that of

(GlcNAc)3-liganded HEWL with a RMS deviation of 0.235 Å in
the superimposition of the corresponding 128 Cα-atoms. The
(GlcNAc)3 moiety of GN3M bound to HEWL also overlapped
with (GlcNAc)3 bound to HEWL. All saccharide rings in the
complex structures were in the 4C1 chair conformation with
small variations. Thus, the potent inhibitory activity and tight
binding ability of GN3M (a (GlcNAc)3-moranoline conjugate)
towards HEWL, in comparison to other compounds may be
attributed to the moranoline moiety of GN3M. The ΔG° value for
(GlcNAc)3 binding to HEWL was found to be −6.9 kcal/mol. In
this case, (GlcNAc)3 binds to the subsites −4, −3, and −2 of
HEWL, as shown in the crystal structure of the HEWL-
(GlcNAc)3 complex (Figure 3B, left). Therefore, it appears
that moranoline residue attached to the reducing end of
(GlcNAc)3 contributes to the binding free energy of
−2.5 kcal/mol (ΔΔG° � −8.4 − (−6.9) kcal/mol), resulting in a
12.2-fold enhancement in the binding affinity (Kd of 0.76 μM for
GN3M and 9.3 μM for (GlcNAc)3). Williams et al. synthesized
the xylobio-deoxynojirimycin analogue (a xylanase inhibitor
and xylose-moranoline conjugate) and demonstrated that it
binds to the retaining family of 10 xylanase Cex from
Cellulomonas fimi approximately 830-fold more tightly than
xylobiose (Ki of 5.8 μM for xylobio-deoxynojirimycin analogue
and 4,800 μM for xylobiose) (Williams et al., 2000). Arai et al.

FIGURE 2 | ITC thermogram (upper) and theoretical fit to the experimental data (lower) for binding of GN3M at 20°C. Inset shows the bar diagram of the
thermodynamic parameters (A). Temperature dependence of GN3M binding to HEWL; the plot of ΔH° versus temperature yielded a change in the heat capacity (ΔCp

°)
based on the slope of the line. The ΔCp

° value was calculated to be −120.2 cal/K·mol (B).
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synthesized (glucose)n-deoxynojirimycin (n � 1–8) conjugates
by the transglucosylation action of bacterial saccharifying
amylases and showed that these compounds have inhibitory
activity against α- and β-amylases of various origins (Arai et al.,
1986). Therefore, conjugation of moranoline to the reducing
end site of mono- or oligosaccharides is an excellent strategy to
design potent inhibitors of the target glycosidases. Since GN3M
lacks an acetamido group at the C2 of the moranoline moiety
bound to the −1 subsite of HEWL (Figure 3B, right),
conjugation of N-acetylmoranoline to the reducing end of
(GlcNAc)3 could improve the inhibitory activity of
(GlcNAc)3 (de la Fuentea et al., 2016).

Determination of temperature dependence of ΔH° for binding
of GN3M at pH 7.0 in the temperature range of 15–35°C, yields a
change in the reaction heat capacity (ΔCp

°) (Figure 2B). The ΔCp
°

value for GN3M binding to HEWL was found to be
−120.2 cal/K·mol (Table 1). Negative heat capacity changes are
often attributed to the release of well-ordered water molecules
from the interface between the protein and the ligand into a bulk
solvent by forming hydrophobic contacts. Therefore, we
decomposed the entropic terms for binding of GN3M to
HEWL as follows. By recognizing that the entropy of solvation
is close to zero for proteins near 385 K, ΔCp

° can be related to the
solvation entropy change (ΔSsolv°) of the binding reaction at t �

FIGURE 3 | Crystal structures of (GlcNAc)3-liganded and GN3M-liganded HEWL (A) Stereo view of superimposed structures of (GlcNAc)3-liganded HEWL (green;
PDB code 1lzb) and GN3M-liganded HEWL (cyan; PDB code 4hp0) complexes. The catalytic residues Glu35 and Asp52 of HEWL are indicated as sticks (GlcNAc)3 and
GN3M are shown as orange and yellow sticks, respectively. (B) The binding modes of (GlcNAc)3 and GN3M to HEWL. Amino acid residues involved in the binding of
ligands (GlcNAc)3 and GN3M are also indicated as sticks. The numbers, −4 to −1, indicate the subsite positions. Dashed lines indicate the possible hydrogen
bonds. Red spheres represent oxygen atoms of water molecules.

TABLE 1 | Parameterization of the entropic term for binding of GN3M to HEWL at 25°C.

Inhibitor ΔCp
°a (cal·K−1·mol−1) −TΔS° (kcal·mol−1) −TΔSmix

°b (kcal·mol−1) −TΔSsolv
°c (kcal·mol−1) −TΔSconf

°d (kcal·mol−1)

GN3M –120.2 2.6 2.4 –9.2 9.3

aData are derived from the temperature dependence of ΔH°.
bΔSmix

° � Rln (1/55.5) � −8 cal/K mol (Baker and Murphy, 1997).
cΔSsolv

° � ΔCp ln (T298 K/T385 K) (Baldwin, 1986; Murphy et al., 1990; Baker and Murphy, 1997).
dDerived using ΔS° � ΔSsolv

° + ΔSmix
° + ΔSconf

° (Baker and Murphy, 1997).
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25°C as described in Eq. 2 (Baldwin, 1986; Murphy et al., 1990;
Baker and Murphy, 1997).

ΔSsolv° � ΔCp° ln(T298 K/T385K) (2)

Furthermore, the mixing entropy change (ΔSmix
°) is a statistical

correction that reflects mixing of solute and solvent molecules
and the changes in translational/rotational degrees of freedom as
described in Eq. 3 (Baker and Murphy, 1997).

ΔSmix° � R ln(1/55.5) � −8 cal/K ·mol (3)

The conformational entropy change (ΔSconf°) details the
change in side-chain and backbone conformational entropy
associated with binding. The reaction entropy change (ΔS°),
which is derived from the ITC experiment, can be viewed as
the sum of ΔSsolv°, ΔSmix

° and ΔSconf° (Baker and Murphy, 1997).
The results summarized in Table 1 show that at pH 7.0 − TΔSsolv°
is equal to −9.2 kcal/mol (ΔSsolv° � 30.8 cal/K·mol), −TΔSmix

° �
2.4 kcal/mol (ΔSmix

° � −8.0 cal/K·mol) and −TΔSconf° is equal to
9.3 kcal/mol (ΔSconf° � −31.1 cal/K·mol). As shown in Table 1,
while the −TΔSsolv° value for binding was negative (−9.2 kcal/
mol), the −TΔSconf° value was positive (9.3 kcal/mol), resulting in
a net entropic penalty of 2.6 kcal/mol. These results indicate that
the favorable solvation entropy change is the only contributor in
the entropic term. A negative value of −TΔSsolv° (positive value of
ΔSsolv°) implies water molecules are expulsed upon ligand binding
due to hydrophobic interactions. Although the precise
information regarding the solvation state of HEWL before and
after binding to GN3M is not available, upon GN3M binding to
HEWL, the apolar solvent accessible surface area (ASAapolar) was
reduced with over 7%. On the other hand, the same difference in
ASAapolar between (GlcNAc)3-bond and ligand free HEWL was

negligibly small (calculated using GetArea 1.1, TX, United States,
based on the crystal structures to ligand-bound and ligand-free
HEWL) (Table 2) (Fraczkiewicz and Braun, 1998). Figure 3B shows
the binding modes of (GlcNAc)3 and GN3M to HEWL. Compared
to the HEWL-(GlcNAc)3 complex structure, more water molecules
were observed at HEWL-GN3M interfaces. However, the solvation
entropy change upon GN3M binding to HEWL is favorable
(positive) (Table 1). Therefore, it is likely that dehydration for
GN3M binding involves the ligand, the active site, or, in case of
conformational changes upon binding, the bulk of protein.

In this study, the thermodynamic analysis for binding of
GN3M yielded valuable information regarding the driving
forces behind the tight binding of this inhibitor. In addition to
the enthalpic contribution, the favorable solvation entropy
change is the only contributor in the entropic term. Since they
mimic the transition states of the hydrolytic reactions,
iminosugar-conjugated glycosidase inhibitors containing
moranoline residues have been designed and synthesized (Arai
et al., 1986; Notenboom et al., 2000; Williams et al., 2000; Kato
et al., 2011). They are known to have potent inhibitory activity
against the target glycosidases. Therefore, it would be relevant to
consider their thermodynamic properties for binding to the target
enzymes, especially the solvation entropy change, in the rational
design of novel inhibitors with improved properties.
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