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Alzheimer’s disease (AD) progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ)
oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to
the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta
rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence
of Aβ (peptide 25–35) reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences
differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive
decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show
that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts
the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of
Aβ-treated animals responds to sensory stimulation (tail pinch) with an increase in lower frequencies. These findings demonstrate
that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced
hippocampal and cognitive dysfunctions.

1. Introduction

Alzheimer’s disease (AD), the most common form of demen-
tia, is characterized by a progressive decline in cognitive func-
tion [1–5] that correlates with the extracellular accumulation
of amyloid beta protein (Aβ) [1, 4, 5]. Deterioration of
hippocampal function, likely induced by Aβ oligomers, con-
tributes to the memory deficits associated with Alzheimer’s
disease (AD) [5–8]. Normal hippocampal function is strong-
ly dependent on a 3 to 10 Hz oscillatory activity, namely, the
theta rhythm [9–11]. Theta oscillations have been associated
with various cognitive processes in several species, including
humans [9–11]. Theta rhythm abnormalities are usually
related to memory deficits and pathological changes in the
brain [12–14]. In fact, subjects with AD show a typical
“electroencephalographic slowing” that includes increased

slow rhythms and decreased fast rhythms [6, 13, 15, 16].
Regarding theta rhythm, AD patients show increased theta
rhythm at rest [6, 15, 16], but they also show a decrease in
induced-theta rhythm; both of these changes in theta rhythm
correlate with a reduced cognitive performance [17]. A
similar contradictory scenario has been found in transgenic
mice that overproduce Aβ and exhibit AD-like symptoms
[18, 19]. The complex relationships between AD pathology
and theta rhythms have been explained by the theta rhythm
heterogeneity that exists both in humans and in mice [12,
20]. Experimentally, the reduction in resting hippocampal
theta rhythm has been mimicked by Aβ application,
both in vitro [21–23] and in vivo [24, 25]. However, just
one previous study has shown that intracerebroventri-
cular injection of monomers of a short Aβ sequence (peptide
25–35) decreases the power of the induced theta rhythm
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[26]. This finding still needs to be confirmed because
different Aβ peptides, as well as their aggregation states,
differentially affect similar hippocampal rhythms [27]. Thus,
in this study we explored the effect of oligomers of the full-
length Aβ sequence (peptide 1–42) on induced theta rhythm
in vivo. The use of Aβ1–42 oligomers has more relevance for
the study of AD-related neural network disruption since
early symptoms of AD are better correlated with the amount
of soluble Aβ than other histopathological makers [2, 3]. Our
data show that intracisternal application of Aβ slows down
sensory-induced hippocampal oscillations, supplanting the-
ta oscillations with a slower rhythm.

2. Materials and Methods

Experimental protocols were approved by The Local Com-
mittees of Ethics on Animal Experimentation (CICUAL-
Cinvestav and INB-UNAM) and followed the regulations
established in the Mexican Official Norm for the Use and
Care of Laboratory Animals (“Norma Oficial Mexicana”
NOM-062-ZOO-1999). For these experiments, Wistar rats
(300–330 g) were briefly and lightly anesthetized with ether
vapor just before receiving a single, intracisternal injection
of 5 μL of either vehicle (F12 medium) or oligomerized
Aβ1–42 (5 and 50 pmoles). The injector was connected
to a Hamilton syringe mounted on dual perfusion pump
(Harvard Apparatus Co., MA, USA). Animals were allowed
to recover for 1 h after the intracisternal injection. Then,
the animals were anesthetized with urethane (1.3 g/Kg; i.p.)
and secured in a Kopf stereotaxic frame with the nose bar
positioned at −3.3 mm [28, 29]. A bipolar electrode was
implanted in the left dorsal hippocampus (A = −3.6 mm
L = 2.4 mm and V = 4.2 mm from bregma, according
to the atlas of Paxinos and Watson [30]) using standard
stereotaxic procedures. The electrodes were attached to male
connector pins, which were inserted into a connector strip.
Hippocampal field recordings were amplified and filtered
(highpass, 0.5 Hz; lowpass, 1.5 KHz) with a wideband AC
amplifier (Grass Instruments, Quincy, MA, USA). Theta
rhythm was elicited with sensory stimulation, consisting of
a tail pinch produced by a plastic clamp positioned on the
tail 2 cm from its base. A tail pinch, lasting 75 s, was applied
each 10–20 min for at least 1 h. At the end of the hippocampal
field recordings, all animals were processed for histological
location of the electrode [28, 29, 31]. The recording site was
visually confirmed to be located in the hippocampal fissure.

All recordings were digitized at 3–9 KHz and stored
on a personal computer with an acquisition system from
National Instruments (Austin, TX, USA) by using custom-
made software designed in the LabView environment. The
recordings obtained were analyzed offline by performing
classical power spectrum analysis with a resolution of 0.61 Hz
[26, 27, 32]. Segments of 30 sec were analyzed using a Rapid
Fourier Transform Algorithm, with a Hamming window, in
Clampfit (Molecular Devices). The power spectra during the
tail pinch, at any given frequency, were also divided by their
corresponding prestimulus power spectra and expressed as
percentage of control (100% meaning no difference between

Table 1: Power and peak frequency of the hippocampal activity
recorded in anaesthetized animals in control conditions and after
the intracisternal injection of amyloid beta (Aβ). No significant
differences were observed among or within groups.

Condition Power (nV2)
Peak Frequency

(Hz)

Urethane 4.3± 2.5 2.5± 0.5

+ Tail pinch 5.1± 2.6 3.0± 0.4

Urethane + Aβ 5 pmoles 1.2± 1.0 3.4± 0.6

+ Tail pinch 1.5± 1.3 3.4± 0.6

Urethane + Aβ 50 pmoles 2.9± 1.7 3.9± 0.1

+ Tail pinch 3.6± 2.1 3.4± 0.4

tail-pinch and prestimulus power spectra). The mean differ-
ence spectra were then calculated by averaging the differences
obtained in any given group [33–35]. For time-frequency
analysis, segments of 40 s were analyzed using the Morlet
wavelet basis and plotted as a time-frequency representation
(TFR) [26, 32].

Data are expressed as mean ± standard error of mean
(SEM). To analyze the data, the Wilcoxon signed-rank test
was used to compare control versus tail-pinch spectra in the
same group of animals. The Mann-Whitney U test was used
to compare groups. A value of P < 0.05 was accepted as
significant.

3. Results

Under urethane anesthesia, hippocampal local field potential
showed a pattern of irregular activity (Figure 1(a); blue
trace) that resembles the so-called large amplitude irregular
activity (LIA) and that corresponds to the activity ob-
served during immobility and slow-wave sleep [9, 12]. Such
activity turns into more steady, oscillatory activity upon
sensory stimulation (tail pinch; Figure 1(a); red trace). The
spectrograms show that basal hippocampal activity un-
der urethane anesthesia consists of a variable mixture of
frequency components that vary over time (Figure 1(b)).
In contrast, upon sensory stimulation, hippocampal activity
exhibits a more constant oscillatory pattern (Figure 1(b)).
The power spectrum shows that basal hippocampal activity
under urethane anesthesia peaks at 2.5 ± 0.5 Hz, whereas
theta rhythm has a frequency of 3.0 ± 0.4 Hz (Figure 1(b)).
Quantification of the change in power upon tail pinch, com-
pared with basal hippocampal activity, shows that sensory
stimulation significantly increases the power in the low theta
range (3.7–4.3 Hz) (Figure 1(c); inset).

When testing the effects of Aβ oligomers on hippocampal
activity, we did not find any significant difference in the
hippocampal activity compared with control animals, due
to the high variability among groups, either in power or
peak frequency, due to the high variability among groups
(Table 1). As illustrated in Figure 2, the hippocampal activity
recorded after intracisternal injection of 5 pmoles of Aβ
oligomers is still characterized by a pattern of nonstationary,
irregular activity under urethane anesthesia (Figure 2(a);
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Figure 1: Sensory stimulation induces hippocampal theta oscillations. (a) Representative field recordings obtained from the hippocampal
fissure in a urethane-anaesthetized rat at rest (blue recording) and upon sensory stimulation (red trace). (b) and (c) show the spectrograms
and the power spectra, respectively, of the traces shown in (a). The blue power spectrum corresponds to the recording at rest, and the red
power spectrum corresponds to the recording upon sensory stimulation. The inset in (c) shows the quantification of the change in power
upon sensory stimulation, compared with basal hippocampal activity. ∗Indicates a significant difference compared to the control (P < 0.05;
Wilcoxon signed-rank test).
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Figure 2: Effect of 5 pmoles amyloid beta on the sensory-induced hippocampal theta oscillations. (a) Representative field recordings
obtained from the hippocampal fissure in a urethane-anaesthetized rat at rest (blue recording) and upon sensory stimulation (red recording).
(b) and (c) show the spectrograms and the power spectra, respectively, of the traces shown in (a). The blue spectrum corresponds to
the recording at rest, and the red power spectrum corresponds to the recording upon sensory stimulation. The inset in (c) shows the
quantification of change in power upon sensory stimulation, compared with basal hippocampal activity. ∗Indicates a significant difference
compared to control (P < 0.05; Wilcoxon signed-rank test).
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Figure 3: Amyloid beta slows, in a dose-dependent manner, the oscillatory activity induced by sensory stimulation. Change in power induced
by sensory stimulation in control rats (black circles; n = 9) compared to that in amyloid beta-injected rats (gray circles; n = 6). Animals were
injected with two doses of amyloid beta. With 5 pmoles (a), the increase in power, upon sensory stimulation, shifts towards slow frequencies.
Injection of 50 pmoles of amyloid beta (b) also shifts the increase in power, upon sensory stimulation, towards slow frequencies, and it also
significantly reduces the increase in theta rhythm. ∗Indicates a significant difference compared to control rats (P < 0.05; Mann-Whitney U
test).

blue trace). This activity also turns into a more homogeneous
oscillatory activity upon sensory stimulation (tail pinch;
Figures 2(a), 2(b); red trace). The spectrograms show that
basal hippocampal activity under urethane anesthesia con-
sists of a variable mixture of frequency components that
change over time (Figure 2(b)). In contrast, upon sen-
sory stimulation hippocampal activity turns into a more sta-
tionary, oscillatory state (Figure 2(b)). On average, in ani-

mals injected with 5 pmoles of Aβ oligomers and under
urethane anesthesia, basal hippocampal activity peaks at
3.4 ± 0.6 Hz, and the tail pinch-induced rhythm has a
frequency of 3.4 ± 0.6 Hz (Table 1). As mentioned, neither
the power nor the peak frequency of hippocampal activity
changed upon Aβ application in either basal or sensory-
stimulated conditions (Table 1). However, quantification of
the change in power upon tail pinch shows significant
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changes compared with basal hippocampal activity. Sensory
stimulation in Aβ-treated animals significantly increases the
power in low frequencies (0.01–2.4 Hz) (Figure 2(c); inset
and Figure 3). In fact, the increase in power of those fre-
quencies was significantly higher in Aβ-treated animals than
in control (vehicle-treated) animals (Figure 3). Although
sensory-induced theta rhythm was not significantly changed
relative to control animals by injection of 5 pmoles of Aβ,
it was significantly reduced at 4.3 Hz by a higher dose, 50
pmoles of Aβ (Figure 3).

4. Discussion

Our results show that intracisternal application of Aβ1–
42 oligomers does not produce any significant effect on
spontaneous hippocampal activity, but it disrupts the hip-
pocampal activation induced by sensory stimulation. Aβ-
treated animals do respond to sensory stimulation (tail
pinch), but the increase occurs in lower frequencies than
in control animals. These findings may correlate with the
EEG slowing observed in AD patients [6, 13, 15, 16] as
well as with the reduction in evoked theta rhythm [17] that
was also observed in AD patients. In our previous report,
we demonstrated that intracerebroventricular injection of
monomers of the short Aβ sequence (25–35) reduced the
power of induced theta rhythm [26]. However, in that study
we did not find the change in theta frequency observed
here. The simplest explanation for this difference is that
oligomers of Aβ1–42 may act on different cellular targets and
produce different effects than monomers of Aβ25–35 [27].
If so, without ignoring the advantages of using monomers
of Aβ25–35 [23, 26], we believe that the use of Aβ1–42
oligomers may represent a more valid model to explore some
of the changes related to AD pathology. A second potential
explanation is that in the current study we used intracisternal
application of Aβ in contrast to the intracerebroventricular
injections used previously [26]. It has been found that
intracerebroventricular and intracisternal administration of
the same substance do not always produce the same effect,
probably due to differences in the brain structures preferen-
tially reached by the injection in those sites, as well as to the
different concentrations of the injected substance reached at
those structures [36–42].

Our results are in agreement with previous findings
that direct application of Aβ, either in the medial septum
or in the hippocampus, reduces theta-rhythm power both
in vivo and in vitro [22–26, 43]. However, in our hands,
intracisternal application of Aβ also shifts the frequency
of sensory-evoked oscillations to the left. Several factors
have been associated with the reduction in theta power. For
instance, we have shown that this reduction is related to a
reduction in intrahippocampal glutamatergic transmission
[22, 26], but the reduction in power also has been associated
with the blockade of several K+ channels [23, 44] or with Aβ-
induced changes in septal neuron firing [23–25]. The shift
in frequency induced by Aβ might be related to changes in
the activity of interneurons in the hippocampus or elsewhere
[23–25] or to the effect of Aβ on transient potassium currents

[44]. Overall, the effects of Aβ on hippocampal theta rhythm
seem to involve a complex mixture of effects on several neural
types within several neural networks. It is well known that
hippocampal theta rhythm could be affected by a decoupling
of one or several autonomous oscillators within the hip-
pocampus [45] or in other interconnected neural networks
[24, 25]. Correlative in vitro experiments are required to cor-
roborate this hypothesis and to determine viable molecular
targets to prevent Aβ-induced neural network disruption.
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