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Hematopoietic-Prostaglandin D2 synthase
through PGD2 production is involved in the
adult ovarian physiology
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Abstract

Background: The prostaglandin D2 (PGD2) pathway is involved in numerous biological processes and while it has
been identified as a partner of the embryonic sex determining male cascade, the roles it plays in ovarian function
remain largely unknown. PGD2 is secreted by two prostaglandin D synthases (Pgds); the male-specific lipocalin (L)-
Pgds and the hematopoietic (H)-Pgds.

Methods: To study the expression of the Pgds in the adult ovary, in situ hybridization were performed. Then, to
evaluate the role of H-Pgds produced PGD2 in the ovarian physiology, adult female mice were treated with HQL-
79, a specific inhibitor of H-Pgds enzymatic activity. The effects on expression of the gonadotrophin receptors FshR
and LhR, steroidogenic genes Cyp11A1, StAR and on circulating progesterone and estradiol, were observed.

Results: We report the localization of H-Pgds mRNA in the granulosa cells from the primary to pre-ovulatory
follicles. We provide evidence of the role of H-Pgds-produced PGD2 signaling in the FSH signaling through
increased FshR and LhR receptor expression. This leads to the activation of steroidogenic Cyp11A1 and StAR gene
expression leading to progesterone secretion, independently on other prostanoid-synthetizing mechanisms. We
also identify a role whereby H-Pgds-produced PGD2 is involved in the regulation of follicular growth through
inhibition of granulosa cell proliferation in the growing follicles.

Conclusions: Together, these results show PGD2 signaling to interfere with FSH action within granulosa cells, thus
identifying an important and unappreciated role for PGD2 signaling in modulating the balance of proliferation,
differentiation and steroidogenic activity of granulosa cells.

Background
Folliculogenesis is under the control of growth factors
and two pituitary gonadotropin hormones; follicle-
stimulating hormone (FSH) and luteinizing hormone
(LH). These heterodimeric glycoproteins bind in the
ovary to specific G-protein coupled receptors, FshR and
LhR respectively, to facilitate the growth and differentia-
tion of ovarian cells and also to control the production
of the two steroid hormones estradiol and progesterone,
for review see [1,2].
Amongst the several autocrine and/or paracrine

growth factors produced by the follicle itself, prostaglan-
dins are critical for multiple stages of reproduction [3,4].

Mice lacking the cyclo-oxygenase-2 (Cox-2) gene encod-
ing the rate limiting step in prostaglandin synthesis,
show pre-implantation deficiencies throughout ovulation
and fertilization [5]. This phenotype is also seen in the
absence of prostaglandin E2 (PGE2) receptor EP2 [6].
A surge in LH levels in granulosa cells of pre-ovulatory
follicles induces expression of Cox-2 and EP2 [7], while
elevated PGE2 in turn, stimulates cumulus expansion by
elevating cAMP [8]. It has also been shown that PGE2
increases expression of the aromatase Cyp19A1 gene,
the key gene in estrogen biosynthesis in granulosa cells
[9], as well as acting as a luteotrophic component to
stimulate luteal progesterone secretion through a
cAMP-mediated pathway in both human and ruminants
[10]. Besides PGE2, prostaglandin PGF2a secretion via
cyclo-oxygenase COX-1 expression and the action of its
receptor FP, also plays an important role in diminishing
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progesterone levels and stimulating luteolysis, a crucial
stage in inducing labor and pup delivery during parturi-
tion in human and mice [11,12]. Whereas PGE2 and
PGF2a are both involved in regulating ovulation, lutei-
nization, luteolysis and fertility [13-16], the role(s) of
PGD2 signaling in folliculogenesis and ovarian physiol-
ogy is not precisely understood.
PGD2 has been implicated as a signaling molecule in

the mediation or regulation of various biological pro-
cesses such as platelet aggregation, broncho-constriction
and allergic diseases [17,18], whilst also being identified
as a partner of the embryonic sex-determining male cas-
cade [19,20]. Secreted PGD2 interacts with two recep-
tors: (i) the specific membrane-bound DP receptor
(DP1) associated with adenylcyclase and intracellular
cAMP production [21,22], and (ii) chemo attractant
receptor Th2 (CRTH2) cells (DP2) which is coupled to
Ca2+ signaling. A metabolite of PGD2, PGJ2, has also
been shown to bind the peroxisome proliferator-
activated receptor PPARg a member of the orphan
nuclear receptor superfamily implicated in key female
reproductory roles [23]. PGD2 is produced by two pros-
taglandin D synthases (Pgds) responsible for mediating
the final regulatory step in the biosynthetic pathway of
PGD2 production [24]: (i) the lipocalin-type Pgds (L-
Pgds), a member of the lipocalin ligand-carrier protein
family [24,25] and (ii) the hematopoietic-type Pgds (H-
Pgds) or GSH-requiring enzyme [26].
The L-Pgds transcript initially found in the brain [27],

represents one of the ten most abundant transcripts in
the cortex, hypothalamus and pituitary gland [28]. How-
ever, it is not expressed in either the embryonic or the
adult ovary [20,29,30] whereas H-Pgds is expressed in the
embryonic gonad of both sexes (submitted data). H-Pgds
is a cytosolic protein responsible for the biosynthesis of
PGD2 in immune and inflammatory cells such as mast
cells or Th2 cells, and is also expressed in the spleen, thy-
mus, skin and liver [26], in the microglia where H-Pgds-
produced PGD2 is responsible for the neuroinflammation
associated with brain injury and neurodegenerative dis-
eases [31], as well as in trophoblasts, uterine epithelium
and endometrial glands at the implantation site of the
human decidua [32]. H-Pgds expression was also found
in the hypothalamus-pituitary axis of hens and has been
associated with high egg production [33]. Recently,
PGD2 produced by H-Pgds and its metabolite PGJ2 have
been shown to induce transcription of the Lhb subunit
gene in the primary culture of chicken anterior pituitary
cells, via the PPARa and PPARg signaling pathways [34].
On the other hand, a stimulatory effect of PGD2 on pro-
gesterone secretion has been found in vitro in isolated
human corpus lutea [35]. However, the precise H-Pgds
expression profile and function of PGD2 signaling in the
adult ovary remain unknown.

Here, we report the characterization and ovarian loca-
lization of H-Pgds mRNA and provide evidence of a role
of H-Pgds-produced PGD2 signaling in the FSH signal-
ing via the increase of FshR and LhR receptor expres-
sion, leading to activation of steroidogenic Cyp11A1 and
StAR gene expression and progesterone secretion. We
found that in vivo inhibition of H-Pgds activity failed to
modify PGE2 and PGF2a synthesis in the ovary and
also identify a role for H-Pgds-produced PGD2 in folli-
cular growth regulation. Our results provide evidence
that PGD2 signaling is a modulator of the differentiation
and steroidogenic activity of granulosa cells.

Methods
Mouse strain and treatments
Female C57BL/6J mice (Charles River Laboratories,
Saint Germain sur l’Arbresle, France) were housed at
the IGH animal care facility under controlled environ-
mental conditions (12 h light/12 h darkness, tempera-
ture 21°C). Animal care and handling conformed to the
Réseau des Animaleries de Montpellier (RAM) and all
procedures were approved by the Languedoc-Roussillon
Regional Ethic committee (permit number 34-366, 2008
to BBB).
HQL-79 (4-benzhydryloxy-1-[3-(1H-tetrazol-5-

yl)-propylpiperidine) [36], an inhibitor of H-Pgds activ-
ity, was purchased from Cayman Chemical (SpiBio,
Interchim Montluçon, France). A HQL-79 solution (2.5
mg/ml) was made in methanol as recommended by the
supplier and diluted to 0.125 mg/ml in 0.6% saline solu-
tion. Daily oral administration of HQL-79 was performed
on 8 weeks old- cycling female mice for 5 to 9 days (for
ovaries analyzis at the estrous phase) or for 16 days (for
study of the length of the estrous cycle (three to four
cycles)), as mentioned in the text. According to previous
studies [36-38], 0.1, 1 or 10 mg/kg/day were admini-
strated for the first experiment and then 1 mg/kg/day
was administrated in the following experiments since the
three doses had the same impact on the expression of
ovarian markers. As a control, the same volume of vehi-
cle (0.5% methanol) was orally administrated into control
cycling mice during the same period.
Young cycling female mice (6 weeks) were treated

with 5 I. U. PMSG (pregnant mare serum gonadotropin,
Sigma-Aldrich, St Louis, MO, USA) without or with
administration of HQL-79 inhibitor (1 mg/kg/day).
PMSG was dissolved in 0.6% saline solution and injected
s.c. in a total volume of 0.1 ml, at the diestrous or
proestrous stages of the cycle to initiate follicular devel-
opment. Ovaries were dissected 48 h later for analysis.

Determination of estrous cycle
To determine the stages of estrous cycle, vaginal washes
were collected for 16 days (three to four cycles) from
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five wild type (WT) and five HQL-79 mice. Diestrous
phase was defined by the exclusive presence of leuko-
cytes; proestrous phase by leukocytes and nucleated
epithelial cells; estrous phase by large and squamous-
type epithelial cells without nuclei; and metestrous by
leukocytes and epithelial cells with translucent nuclei.

Histology, immunofluorescence and in situ hybridization
For each female mouse, one ovary was processed for
immunofluorescence and the other one was subjected to
quantitative RT-PCR. Tissues were fixed in 4% parafor-
maldehyde at 4°C overnight and then embedded in
OCT [39]. Cryosections (10 mm) were processed for
immunofluorescence, after rehydration. Sections were
then incubated overnight at room temperature with pri-
mary antibodies at the indicated dilutions: rabbit anti-
CYP11A1 (1/200 dilution, gift of Dr Nadia Cherradi,
CEA Grenoble) [40], rabbit anti-phospho-histone H3 (1/
100 dilution, sc-8656, Santa Cruz Biotechnology, Santa-
Cruz, CA, USA)), rat anti-H-Pgds (1/100 dilution, Cay-
man Chemical (SpiBio, France)), mouse anti- laminin
(1/500 dilution, Sigma Aldrich), goat anti-FOXL2 (1/100
dilution, Santa Cruz Biotechnology) and goat anti-AMH
(1/200 dilution, sc- 6886, Santa Cruz Biotechnology).
After washing, sections were incubated with appropriate
secondary antibodies (1/800 dilution, Alexa) (Molecular
Probes, Invitrogen, Carlsbad, CA, USA) for 40 min.
The antisense H-Pgds and FoxL2 RNA probes were

PCR-amplified from embryonic mouse cDNAs, cloned
in a pCRII Topo vector (Invitrogen) and sequenced

using an ABI automatic sequencer. Digoxigenin-labeled
riboprobes were synthesized using a digoxigenin RNA
labeling kit, following the manufacturer’s instructions
(Roche Diagnostics, Indianapolis, IN, USA) and used for
in situ hybridization experiments on cryosections of WT
ovaries, as previously described [20,41].

RNA isolation and quantitative RT-PCR analysis of gene
expression
RNA isolation using the RNeasy Midi kit (Qiagen,
Valencia, CA, USA) from frozen ovaries, reverse tran-
scriptase and quantitative RT-PCR using a LightCy-
cler480 apparatus (Roche Diagnostics) were carried out
as previously described [20]. Gene expression levels
were investigated using different pairs of primers (Table 1)
and normalized to those of Gapdh or Hprt .

Hormone and prostaglandin assays
Hormone assays for estradiol and progesterone were
performed from sera, by using ELISA kits (Cayman Che-
micals, Progesterone EIA kit 582601 and Estradiol EIA
kit 582251). Mice (n = 20 for WT and n = 20 for HQL-
79-treated) at the estrous phase of their cycle, were
anesthetized and blood was collected by cardiac punc-
ture into plastic eppendorf tubes containing heparin.
After centrifugation, the serum was extracted twice with
methylene chloride; after evaporation, steroid extracts
were stored at -80°C until assays were performed. Deter-
mination of the hormone concentrations was performed
in triplicate at two different dilutions according to the

Table 1 Sequences of oligonucleotides for real time PCR

Primers Sequence 5’-3’ Primers Sequence 5’-3’

mFSHRfwd gtgcgggctactgctacact mGapdhFwd tggcaaagtggagattgttgcc

mFSHRrev caggcaatcttacggtctcg mGapdhRev aagatggtgatgggcttcccg

mLHRqFwd gatgcacagtggcaccttc mP27Fwd gagcagtgtccagggatgag

mLHRqRev cctgcaatttggtggaagag mP27Rev tctgttctgttggccctttt

mStARqFwd ttgggcatactcaacaacca mCycD2Fwd ctgtgcatttacaccgacaac

mStARqRev acttcgtccccgttctcc mCycD2Rev cactaccagttcccactccag

mSCCqFwd aagtatggccccatttacagg mCox-1Fwd cctctttccaggagctcaca

mSCCqRev tggggtccacgatgtaaact mCox-1Rev tcgatgtcaccgtacagctc

mDP1Fwd cccagtcaggctcagactaca mCox-2Fwd gctcttccgagctgtgct

mDP1Rev aagtttaaaggctccatagtacgc mCox-2Rev cggttttgacatggattgg

mDP2Fwd catcgtggttgccttcgt mPges-2Fwd cccaggaaggagacagctt

mDP2Rev gcctccagcagactgaagat mPges-2Rev aggtaggtcttgagggcactaat

mSF-1Fwd cacgaaggtgcatggtctt mHPgdsFwd cacgctggatgacttcatgt

mSF-1Rev cagttctgcagcagtgtcatc mHpgdsRev aattcattgaacatccgctctt

mCYP19Fwd cctcgggctacgtggatg mLPgdsFwd ggctcctggacactacacct

mCYP19Rev gagagcttgccaggcgttaaa mLPgdsRev atagttggcctccaccactg

mEP2Fwd tgctccttgcctttcacaat mFPFwd ctggccataatgtgcgtct

mEP2Rev ctcggaggtcccacttttc mFPRev tgcaatgttggccattgtta

hGapdhFwd gagaaggctggggctcat hHPgdsFwd gagaatggcttattggtaactctgt

hGapdhRev tgctgatgatcttgaggctg hHPgdsRev aaagaccaaaagtgtggtactgc
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kits’manufacturer. In each case, the twenty values were
averaged.
PGD2, PGE2 and PGF2a levels were determined using

the PGD2 - MOX EIA Kit (Cayman Chemical 500151),
PGE2 express EIA kit (500141, Cayman Chemical) and
13,14-dihydro-15keto PGF2a (516671, Cayman Chemi-
cal), respectively. Ovaries were collected from mice trea-
ted (n = 8) or not (n = 8) by HQL-79 and immediately
frozen on dry ice and then stored at -80°C. Ovaries
were lyzed and proteins were extracted with cold acet-
one on ice and lyzates were evaporated under nitrogen
flow. Prostaglandins were resuspended in 500 μl EIA
buffer and assayed as recommended by the kits supplier.
Two dilutions (1 and 1/20) were assayed for prostaglan-
dins content. The eight values for each group were aver-
aged and statistical analysis was performed using
Student’s t test, and results were considered statistically
significant at a P < 0.05.

Statistical analysis
Quantified real time RT-PCR signals were normalized to
Gapdh or Hprt levels and the hormone levels of treated
ovaries were compared to those of untreated ovaries. All
values were presented as means ± SE. Student’s t test
was used to determine the significance of differences in
expression and hormone data. Results were considered
significant at P < 0.05 for two-sided analysis.

Results
H-Pgds and DP2 expression in adult mouse ovaries
The mRNA for H-Pgds was detected by in situ hybridi-
zation in the growing follicles from the primary to the
pre-ovulatory stage and in the corpus luteum. Figure 1A
shows an expression of H-Pgds mRNA in the granulosa
cells of the developing follicles similar to that of the
granulosa cell marker FoxL2 whereas hybridization with
the control sense H-Pgds cRNA probe showed no signif-
icant signal (data not shown). In the antral and pre-ovu-
latory follicles, H-Pgds expression is likely abolished in
the external layers of mural granulosa cells, remaining
only in the internal layers of granulosa cells and in gran-
ulosa cells forming the cumulus in the ovulatory follicle.
H-Pgds mRNA was not detectable in the other ovarian
cell types. In order to confirm H-Pgds expression in the
granulosa cells at the protein level, we used immuno-
fluorescence with (Figure 1B, arrows) or without (Figure
1C, IgG control) a specific H-Pgds antibody. We then
showed the DP2 receptor expression in the granulosa
cells of primary, secondary, preantral (Figure 2A), antral
(Figure 2B) and preovulatory (Figure 2C) follicles using
an anti-rabbit DP2 antibody together with anti-FOXL2
(A) or anti-AMH (B, C) antibodies, two specific granu-
losa markers. Specific expression of DP2 in the granu-
losa cells was confirmed by high magnification imaging

(Figure 2D). However, DP1 receptor was not detected in
any cell type at any stage (data not shown). Indeed,
using real-time RT-PCR we observed significant levels
of Dp2 transcripts (Figure 2E), whereas Dp1 expression
level remained undetectable in WT ovaries.

Prostaglandin synthesis in the ovary upon inhibition of H-
Pgds enzymatic activity
We evaluated the implication of H-Pgds mediated-PGD2
signaling within the ovarian physiology using the
H-Pgds specific inhibitor HQL-79 [36-38]. To confirm
the significance of the inhibition by HQL-79 and evalu-
ate the incidence of PGD2 depletion on prostaglandin
production, we measured the level of PGD2, PGE2 and
PGF2a in ovaries of HQL-79-treated mice. As expected,
the ovarian level of PGD2 was markely reduced by 65%
in the HQL-79 treated mice compared to that in the
untreated mice. However, no significant different levels
of PGE2 and PGF2a were measured (Figure 3A).
We then analyzed the PGD2 pathway components and

showed by real time RT-PCR that H-Pgds expression
was up-regulated concomitantly to the reduced level of
PGD2 in HQL-79 treated ovaries (Figure 3B). On the
other hand, no significantly different expression of the
Dp2 and PPARg genes (Figure 3B) was detected upon
HQL-79 treatment and no expression of L-Pgds and
Dp1 receptor genes was detected in the control or trea-
ted ovaries (data not shown).
To evaluate the impact of the PGD2 signaling on

other prostaglandin pathways and considering the
importance of PGE2 and PGF2a for ovarian function,
we then determined the mRNA contents of cyclooxy-
genases Cox1 and Cox2, prostaglandin synthase (mem-
brane-bound) m-Pges-2, and the receptors Ep2 and Fp
by quantitative RT-PCR in ovaries from mice (in estrous
phase) treated with vehicle or HQL-79. The ovarian
Cox1, Pges and Ep2, Fp mRNA levels were not signifi-
cantly different in the untreated or HQL-79 treated
mice (Figure 3C) that were in agreement with the stable
levels of PGE2 and PGF2a. However, the expression of
Cox-2 was significantly increased by 10 fold in HQL-79
treated ovaries compared to control ovaries (Figure 3C).
Taken together, these results indicate that 65% of H-

Pgds activity were inhibited by HQL-79 but this treat-
ment has no effect on PGE2 and PGF2a prostaglandin
pathways in the ovary; however, the reduced level of
PGD2 induces Cox-2 gene expression that could contri-
bute to the up-regulation of H-Pgds gene expression in
order to restore the intraovarian PGD2 content.

PGD2 signaling is necessary for FSH signaling and
steroidogenesis in the mouse ovary
Folliculogenesis and synthesis of steroid hormones in
the ovary depends on the coordinated actions of FSH
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and LH acting through their respective receptors FshR
and LhR [2]. We thus evaluated the implication of H-
Pgds mediated-PGD2 signaling within the gonadotropin
pathways. Adult female mice were treated with the H-
Pgds inhibitor HQL-79 (at doses 0.1-1 or 10 mg/kg/day)
[36-38] or with vehicle for five to nine days until mice
reached the estrous phase and the resulting ovaries were
examined in terms of their expression of gonadotropin
receptors and ovarian markers. For the three doses of
HQL-79, the reduced level of H-Pgds produced PGD2
clearly impaired ovarian gonadotropin receptor expres-
sion, as shown by the reduction in FshR and LhR levels
by 50% and 80% respectively (data not shown for 0.1
and 10 mg/kg/day and Figure 4A, dose 1 mg/kg/day).
Induced steroidogenesis is regulated by increased StAR
(steroidogenic acute regulatory) protein expression
under the positive control of gonadotropin signaling.
StAR is the primary regulator of cholesterol transport
into the mitochondria where the steroid precursor is
then converted by CYP11A1 side-chain cleavage enzyme
(P450scc) to pregnenolone. We demonstrated here that,

when compared to levels in the untreated ovary, inhibi-
tion of H-Pgds enzymatic activity significantly reduced
expression of StAR and Cyp11A1 genes by 60% and 50%
respectively (Figure 4B), whereas PGD2 signaling did
not affect expression levels of SF-1, a major activator of
steroidogenesis gene expression. In contrast, expression
levels of the Cyp19A1 gene increased significantly by
30% (Figure 4B). CYP11A1 protein expression was also
largely reduced in granulosa cells of the growing follicles
of ovaries treated by HQL-79, when compared to that
observed in WT ovaries (Figure 4C).
We next evaluated serum levels of the ovarian steroid

hormones estradiol and progesterone in twenty WT and
twenty female mice treated with HQL-79 for five to nine
days, all in the estrous period. The results showed a signif-
icant reduction of 50% in the basal level of progesterone in
the mice treated with HQL-79, when compared to that
measured in the WT (Figure 5A). In contrast, the estradiol
level increased by 50% in the HQL-79 treated mice com-
pared to WT (Figure 5B), following the increased aroma-
tase Cyp19A1 expression described above (Figure 4B).
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Fp (C) in ovaries of HQL-79 treated (n = 8) or not (n = 8) mice. By real time RT-PCR, no significant difference of Dp2, PPARg (B) and Cox-1,
mPges-2, Ep2, Fp (C) expression level was detectable whereas a large increase of Cox-2 and H-Pgds expression level was measured upon HQL-79
treatment. All the expression level values were normalized to those of Hprt. Data are expressed as means +/- SE (columns and bars); * P < 0.05
vs control.
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To evaluate the relationships between PGD2 signaling
and FSH action, we stimulated mice with PMSG which
mimics the function of FSH. As expected, FshR and LhR
expression was increased by 2.5 fold in PMSG-treated
versus untreated control ovaries (Figure 6A). Accord-
ingly, this stimulation was inhibited upon co-treatment
with the HQL-79 inhibitor (Figure 6A), indicating the
requirement for intact PGD2 signaling in order for
PSMG to take effect. Subsequently, inhibition of H-Pgds
activity also inhibited StAR expression induced after
PMSG treatment (Figure 6D) whereas Cyp11A1 expres-
sion decreased after HQL-79 treatment (Figure 6C), con-
firming that PGD2 is involved in Cyp11A1 activation. On
the other hand, SF-1 expression level remained indepen-
dent of PMSG and HQL-79 treatment (Figure 6B).

H-Pgds-produced PGD2 is implicated in the control of
granulosa cell proliferation
We assessed the length of estrous cycles in five WT and
five HQL-79-treated adult mice using vaginal smears
collected over 16 consecutive days (three to four cycles).
The WT mice (-HQL-79) had cyclical estrous cycles
lasting more than five days (5.3 days) whereas in con-
trast, HQL-79 treated (+HQL-79) mice had significantly
shorter cycles lasting less than four days (3.8 days) (Fig-
ure 7A, P-value: 0.0097). To characterize the observed
changes of inactivation of H-Pgds activity at the cellular
level, we examined the proliferation rate of granulosa
cells (GCs) in the developing follicles. GCs partially
depleted of PGD2 signaling showed an increased prolif-
eration upon immunostaining for mitosis marker
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phosphohistone H3 (phosphoH3) (Figure 7B). A signifi-
cant increase of 30% in granulosa cell proliferation was
seen in the pre-antral follicles and reached 50% in the
GCs of antral follicles of HQL-79 treated ovaries, com-
pared to untreated ovaries (Figure 7C). In contrast,
apoptosis in the GCs of the growing follicles was not
modified by the lack of PGD2 signaling (data not
shown). As shown in Figure 7D, this increase in cell
proliferation is associated with a significantly decreased
expression of CDKN1B (p27) in the treated ovaries,
whereas levels of CyclinD2 expression remained unmo-
dified. Consequently, the number of corpora lutea in
HQL-79 ovaries was increased by two fold compared to
that in untreated ovaries (Figure 7E) (female mice at the
proestrous phase of their cycle), suggesting that upon
HQL-79 treatment, the number of growing and matur-
ating follicles have increased. Collectively, these results
support the hypothesis where PGD2 signaling negatively
impacts GC proliferation in vivo, thus promoting condi-
tions favoring granulosa cell differentiation and subse-
quently steroidogenesis.

Discussion
In this study, we describe the expression of H-Pgds mRNA
in the adult mouse ovary. This localization includes granu-
losa cells from growing follicles through primary to antral
and pre-ovulatory stages, and the corpus luteum formed
after ovulation. H-Pgds is thus the sole source of PGD2 in
the ovary since the second enzyme able to produce PGD2
(L-Pgds) is not expressed [19]. In the embryonic gonad, L-
Pgds secreted PGD2 signals through the adenylcyclase-
coupled receptor DP1 to activate expression of the Sertoli
cell differentiating gene Sox9 and contribute to the nuclear

translocation of SOX9 protein [19,30]. In the adult ovary,
the Ca++ coupled DP2 receptor is exclusively expressed in
granulosa cells. Considering how Sertoli and granulosa
cells have common ancestor precursor cells [42], this dif-
ferential expression of both receptors and the dual func-
tional convergence between L- and H-Pgds might
constitute part of the antagonistic regulation between
male and female pathways [43,44] and be a key regulatory
step in maintaining the differentiation of both Sertoli and
granulosa cell types [45]. PGD2 is metabolized to 15d-
PGJ2, the high affinity natural ligand for the PPARg recep-
tor expressed in granulosa cells of developing follicles
[46,47]. These results thus suggest that both receptors
DP2 and PPARg might relay PGD2 signaling in the adult
ovary.
The process of granulosa cell differentiation occurring

throughout progression from a pre-antral to pre-ovula-
tory follicle is dependent on sufficient FSH stimulation
[48,49] and is marked by the acquisition of FshR and
LhR expression and increased steroidogenesis. In this
study, we demonstrated that H-Pgds enzymatic activity

0

2

4

6

8

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

C              C         R
el

at
iv

e 
SF

-1
 e

xp
re

ss
io

n

0

2

4

6

1

3

5

 P
M

SG

PM
SG+

HQL-7
9

C         

 P
M

SG

PM
SG+

HQL-7
9 C         

 P
M

SG

PM
SG+

HQL-7
9

0

0.2

0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

 P
M

SG

PM
SG+

HQL-7
9

A B

C D

LhR
FshR

*
*

*

*
R

el
at

iv
e 

C
yp

11
A

1 
ex

pr
es

si
on

R
el

at
iv

e 
St

A
R

 e
xp

re
ss

io
n

Figure 6 PGD2 signaling is necessary for FSH action. Adult
cycling female mice were treated with 5 I.U. PMSG without (PMSG)
or with (PMSG+HQL-79) administration of HQL-79 inhibitor. FshR,
LhR (A), Sf-1 (B), Cyp11A1 (C) and StAR (D) gene expression levels in
ovaries (n = 5 for each condition), were analyzed by real-time RT-
PCR. The values of at least two repeats of two different RT reactions
were averaged and normalized to Gapdh expression. Values
represent mean +/- SE and * represents significant differences P <
0.05 (A), P < 0.001 (C-D) compared with ovaries treated with PMSG
only.

0

10

20

30

0

200

400

600

-HQL79  +HQL79 -HQL79 +HQL79se
ru

m
 p

ro
ge

st
er

on
e 

pg
/m

l

se
ru

m
 e

st
ra

di
ol

 p
g/

m
l

*

*

A B

Figure 5 Progesterone and estradiol production is modified
upon H-Pgds enzymatic inhibition. (A), serum progesterone
levels. (B), serum estradiol levels were measured by Elisa on
extracted sera. Bars represent the average of twenty animals (n = 20
for untreated mice and n = 20 for HQL-79 treated mice). HQL-79
treatment induces a 50% decrease of progesterone production and
a 50% increase of estradiol production. * represents significant
differences P < 0.05, compared to untreated ovaries (-HQL-79).

Farhat et al. Journal of Ovarian Research 2011, 4:3
http://www.ovarianresearch.com/content/4/1/3

Page 9 of 13



is required in order for FSH to regulate expression of
both FshR and LhR receptors, suggesting PGD2 to be an
autocrine positive regulator of FshR and LhR expression
in the ovary. This regulation may act directly on the
FSH-induced FshR promoter activity as in the case of

inhibin-A [50], or might otherwise act indirectly by
increasing FshR mRNA stability, as in the case of IGF-I
[51]. The inhibition of H-Pgds enzymatic activity leads
to a decrease in FshR and LhR expression but does not
affect that of SF-1, the major activator of steroidogenesis
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gene expression [52]. This supports the implication of
PGD2 signaling in the FSH-induced expression of the
StAR gene, independently on SF-1. SF-1 is essential for
the development and function of the reproductive axis
at multiple levels [52] and FSH has been shown to acti-
vate SF-1-mediated transcription using various mechan-
isms [53]. Thus, regulation of FshR expression might be
one of the causes of LhR and steroidogenic gene down-
regulation, and of the decrease in progesterone produc-
tion upon PGD2 signaling inhibition [54].
In contrast, following the decrease in Cyp11A1 and

StAR expression levels upon PGD2 depletion, we found
that levels of both aromatase expression and serum
estradiol increased in treated female mice compared to
untreated animals. On the other hand, we observed that
granulosa cells partially depleted of PGD2 signaling
show increased proliferation based on immunostaining
for mitosis marker phosphohistone H3, which we con-
firmed at the molecular level through the significantly
decreased expression of CDKN1B (p27). This increased
proliferation lead to an increased number of the matur-
ating follicles that might explain the higher levels of
Cyp19A1 mRNA expression and secreted estradiol upon
HQL-79 treatment, rather than being a consequence of
the Cox-2 up-regulation that was detected in HQL-79
ovaries. The up-regulation of Cyp19A1 gene expression
via COX-2 was shown to be dependent on PGE2 synth-
esis and cAMP signaling in undifferentiated rat granu-
losa cells [9] or in human breast tumor cells [55]. Our
data showed that Cox-2 expression is up-regulated, how-
ever, PGE2 synthesis was not modified. Indeed, the side-
effect of HQL-79 treatment (i.e. increased PGE2 produc-
tion) [26] related in the lung tissues of sensitized guinea
pigs [56] was not detected in our system as it has not
been seen in sheep vesicular gland microsomes [56] or
in vivo in H-Pgds transgenic mouse strain [36].
In this study, we measured high levels of Cox-2 and

H-Pgds transcripts whereas no modification of Cox-1
has been measured in HQL-79 treated ovaries. The
functional coupling between H-Pgds/Cox-1 or H-Pgds/
Cox-2 has been demonstrated respectively, in the
immediate or the delayed response in mast cells during
the cytokine stimulation [38], even though tightly cou-
pling between H-Pgds and Cox-1 is preferentially docu-
mented [36,57]. The up-regulation of Cox-2 associated
with the down-regulation of H-Pgds protein expression
upon HQL-79 treatment has been previously described
in the mouse ischemic brain [58]. In the ovary, we can
assume that partial depletion of PGD2 might induce
Cox-2 gene expression that in turn, might activate H-
Pgds expression in order to restore the intraovarian
PGD2 content. PGJ2, a PGD2 metabolite was shown to
inhibit osteoblastic differentiation through PPARg acti-
vation and down-regulation of Cox-2 [59]. This process

would take place without any interaction with other
prostanoid-synthetizing mechanisms as it has been pre-
viously reported in other systems, induction of fever
[60] or induction of inflammation in muscle necrosis
[61], since PGE2 and PGF2a prostaglandin pathways are
not modified upon HQL-79 treatment.
Using the H-Pgds specific inhibitor HQL-79 known to

exactly mimic the phenotype of H-Pgds KO mice in var-
ious systems such as inflammation, muscle necrosis
[31,38], we identify an important and unappreciated role
for PGD2 signaling in modulating the balance of prolifera-
tion, differentiation and steroidogenic activity of the gran-
ulosa cells, through both FSH dependent and independent
mechanisms. Thus, these results suggest PGD2 as a modu-
lator of follicle development, even though no reproductive
defects have been reported in female H-Pgds KO mice
[31,62]. The physiological importance of PGD2 for ovarian
function and normal female fertility might be assessed in
this mouse strain or in mice conditionnally invalidated for
H-Pgds in the ovary under the control of Anti-Müllerian
hormone (Amh) promoter (Amh-cre, [63]) to overcome a
putative central effect of H-Pgds produced PGD2.
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