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Simple Summary: Supplementation of nitrocompounds in animal diets has been studied to in-
vestigate their effects on economic animals. It has been known that nitrocompounds are capable
of inhibiting pathogens, parasites, methane and ammonia production. The toxicity, metabolism,
and mechanisms of actions have been discussed in the review to conclude the advantages and
disadvantages of application of nitrocompounds in animal production.

Abstract: Nitrocompounds are derivatives of hydrocarbons, alcohols, fatty acids, and esters, con-
sisting one or more nitro functional groups. Either natural sources of nitrocompounds or synthetic
chemicals have been applied in animal diets to investigate their effects on economic animals, since
conjugates of 3-nitropropanol and 3-nitropropionic acid were isolated from Astragalus oblongifolius. In
this review, emphasis will be placed on nitrocompounds’ antimicrobial activity, toxicity, metabolisms
and mechanisms of actions. Nitrocompounds can be metabolized by ruminal microbials, such as
Denitrobacterium detoxificans, or alcohol dehydrogenase in the liver. Moreover, it has been found that
nitrocompounds are capable of inhibiting pathogens, parasites, methane and ammonia production;
however, overdose of nitrocompounds could cause methemoglobinemia or interfere with energy
production in mitochondria by inhibiting succinate dehydrogenase.

Keywords: nitrocompounds; nitropropanol; nitroethanol

1. Introduction

Nitrocompounds are derivatives of hydrocarbons, alcohols, fatty acids, and esters
which contain one or more nitro functional groups (-NO2) [1]. Short chain aliphatic nitro-
compounds, such as unitary alphatic nitroalkanes, aliphatic nitroalcohols, and aliphatic
nitroacids, have been widely used in the chemical industry because they are readily ac-
cessible and stable for syntheses of various organic compounds [2]. Most of the aliphatic
nitrocompounds are not technically produced from biological sources, but 3-nitropropanol
(3NPOH) and 3-nitropropionic acid (3NPA) can be extracted from Astragalus, Coronilla, and
Indigofera genera of the Leguminosae family [3]. The most common sources of nitrocom-
pounds in nature are glucose esters of nitropropionic acid and glycoside of nitro-propanol,
3-nitro-1-propyl-beta-D-glucopyranoside, collectively known as miserotoxin. This toxin
was first isolated from Astragalus oblongifolius [4,5]. Moreover, 3NPA and 3NPOH are
observed in fungi, such as Penicillium spp. and Aspergillus spp., as well as kernel of the fruit
of the karaka tree (Corynocarpus laevigatus) [6]. Understanding the properties and functions
of nitrocompounds may provide us with novel insights and strategies for future application
of nitrocompounds in the animal industry. Therefore, we have reviewed the literature and
highlight how alphatic nitrocompounds, including 3-nitropropanol, 2-nitro-1-propanol,
nitroethane, and 2-nitroethanol, impact on animal production.

2. Inhibition of Pathogenic Bacteria, Ammonia and Methane Production

Previous studies have reported that nitrocompunds exhibit broad-spectrum antimicro-
bial activity both in vitro and in vivo [7–11]. The effects of nitrocompounds on pathogen in-
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hibition have been reviewed and listed in Table 1. Jung et al. [12] and Dimitrijevic et al. [13]
indicated that Enterococcus faecalis and Listeria monocytogenes were reduced in the medium
containing 10 mM 2-nitro-1-propanol (2NPOH), whereas Salmonella Typhimurium and
Escherichia coli were significantly inhibited by 2.5 mM 2NPOH. An unpublished test con-
ducted in our lab also showed that 2NPOH (4 and 8 mM) and 2-nitroethanol (2NEOH) (8
mM) significantly inhibited growth of Clostridium perfringens. Moreover, 2NPOH, 2NEOH,
nitroethane (NE), and 2-nitro-methyl-propionate have been reported to reduce Campylobac-
ter jejuni and Campylobacter coli in culture of Bolton broth at pH 8.2, whereas 2NPOH are
more capable inhibiting Listeria monocytogenes than 2NEOH and NE [13,14]. Additionally,
Kim et al. [15] reported that 2NEOH, 2NPOH, and 3NPA have the potential to reduce uric
acid-utilizing microorganisms isolated from poultry manure. The study also suggested
that nitrocompounds had superior inhibitory effects compared to their acid and alcohol
counterparts [15]. Furthermore, 2NPOH reduced Listeria monocytogenes, Salmonella enterica
serovar Enteritidis, Escherichia coli, Staphylococcus aureus, and Bacillus cereus inoculated on
Russian-type salad and corn-flour-based doughs [11,16,17].

Table 1. Summary of Antimicrobial ability of nitrocompounds in vitro and in vivo.

Nitrocompound Dosage Unit Pathogens Inhibition Reference

In vitro
2NEOH 10, 20 mM Campylobacter coli [14]

10, 20 mM Campylobacter jejuni [14]
8 mM Clostridium perfringens Unpublished data
15 mM Listeria monocytogenes strain 18 [13]
50 mM uric acid-utilizing microorganisms [15]

2NMP 10, 20 mM Campylobacter jejuni [14]
2NPOH 5 % Bacillus cereus1 [11]

10, 20 mM Campylobacter coli [14]
10, 20 mM Campylobacter jejuni [14]

4, 8 mM Clostridium perfringens Unpublished data
10 mM Enterococcus faecalis [12]

2.5, 5, 10 mM Escherichia coli [12]
0.5, 2, 5 % Escherichia coli1 [11]
10, 15 mM Listeria monocytogenes strain 18 [13]

50 mM Listeria monocytogenes2 [17]
0.5, 2, 5 % Salmonella enterica serovar Enteritidis 1 [11]
2.5, 5, 10 mM Salmonella Typhimurium [12]
0.5, 2, 5 % Staphylococcus aureus 1 [11]

50 mM uric acid-utilizing microorganisms [15]

3NPA 50 mM uric acid-utilizing microorganisms [15]
NE 10, 20 mM Campylobacter coli [14]

10, 20 mM Campylobacter jejuni [14]
15 mM Listeria monocytogenes strain 18 [13]

In vivo/feces incubation
2NEOH 20 mM Escherichia coli [18]

20 mM Escherichia coli [18]
44 mM Salmonella Typhimurium [19]

13, 65, 130 mg/bird Salmonella Typhimurium2 [8]
44 mM Salmonella Typhimurium [19]
20 mM Salmonella Typhimurium [18]

100 mM uric acid-utilizing microorganisms [10]

3NPA 100 mM uric acid-utilizing microorganisms [10]
Ethyl-nitroacetate 44 mM Salmonella Typhimurium [19]

NE 12 mM Escherichia coli [19]
44 mM Salmonella Typhimurium [19]
20 mM Salmonella Typhimurium [18]
12 mM Total Coliforms [19]

2NEOH, 2-Nitroethanol; 2NMP, 2-Nitro-methyl-porprionate; 2NPOH, 2-Nitro-1-propanol; 3NPA, 3-Nitropropionic acid; NE, Nitroethane.
1 Inoculated on corn flour-based doughs; 2 Inoculated on Russian-type salad.

On the other hand, previous studies reported the effects of nitrocompounds on the
microbial community in the animal intestine, manure or ruminal fluid. Jung et al. [8]
demonstrated that a bird gavaged with 13, 65 and 130 mg 2NPOH inhibited Salmonella Ty-
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phimurium and regulated volatile fatty acids in the cecal content, whereas broilers fed
with 16.7 ppm 2NPOH significantly reduced ammonia nitrogen in feces [20]. It is sug-
gested that nitrocompounds reduce ammonia production by inhibiting uric acid-utilizing
microorganisms in animal manure [10,20]. Early work by Kim et al. [10] confirmed that
100 mM 2NPOH and 3NPA significantly suppressed uric acid-utilizing microorganisms
isolated from poultry feces. Furthermore, Ruiz-Barrera et al. [19] observed that NE reduced
Escherichia coli and total coliforms after incubation of layer hen manure for 24 h, whereas
2NEOH and 2NPOH reduced Salmonella Typhimurium in feces of 6-month-old poultry litter
and manure collected from mature sows [18]. Additionally, nitrocompounds regulated
immune responses in laying hens challenged with Salmonoella [7]. The previous study
reported that Salmonella challenge increased gene expression of interferon-γ, interleukin-1B,
and Toll-like receptor-4 in the ileum of laying hens, but 2NPOH downregulated these
cytokines and numerically reduced Salmonella in the ceca [7].

Nitrocompounds not only inhibited pathogens and reduced ammonia production
in poultry, but also decreased skatole levels in swine manure [21], as well as methane
production in ruminants [22]. Zhang et al. [1] summarized the roles of nitrocompounds
as methanogenic inhibitors in ruminant animals. Nitrocompounds were first evaluated
in an in vitro study [23], indicating that methane production was inhibited by 2NPOH,
NE, 2NEOH in the ruminal fluid collected from Holstein-Friesian cows. These results
were in agreement with another in vitro study which suggested that NE, 2NPOH, and
2NEOH enhanced volatile fatty acids production and reduced methane formation in the
broiler cecal content after 24 h inoculation [24]. Moreover, several in vivo studies have
been conducted to confirm the methane-inhibiting ability of selected nitrocompounds.
Anderson et al. [9] demonstrated that daily administration of 2NEOH and 2NPOH reduced
methane production in mature ewes, whereas Gutierrez-Banuelos et al. [25] reported that
NE inhibited methane-producing ability in the rumen and feces of steers. Furthermore,
methane emissions and the ratio of acetate to propionate were linearly reduced in response
to the increase in NE supplementation. To access the effect of NE on methanogenesis, the
same research group conducted an in vitro test. The study showed that NE increased nitro-
metabolizing bacteria, reduced methane production, but did not accumulate hydrogen
levels in the ruminal fluid [26]. Apart from alphatic nitroalkanes, nitroalcohols, and
nitroacids, another nitrocompound has been studied recently. It has been reported that
3-nitrooxypropanol (3NOP) also has methane-inhibitory effects in ruminants [22,27,28]. In
addition, dairy cows could produce less methane production for 10 additional weeks after
withdrawal of 3NOP [29]; thus, it suggested that 3NOP might be a potential feed additive
acting as a methane inhibitor in ruminant animals [1].

3. Inhibition of Eimeria spp.

Interestingly, nitrocompounds act like monensin, in terms of both inhibiting methane
production and suppressing parasite colonization in ruminants and chickens [23,30–35].
Teng et al. [32] demonstrated that 0.5 mg/mL of monensin and 0.5 mM 2NPOH and 2NEOH
significantly inhibited development of sporozoites in the Madin-Darby bovine kidney cells.
Moreover, dietary supplementation of 200 ppm 2NPOH reduced cecal lesion scores, as well
as improved digestibility of energy in the birds challenged with Eimeria spp. [32]. However,
2NPOH did not improve intestinal permeability in a recent experiment [35]. In the rumi-
nants, NE and monensin exhibit similar effects on inhibition of methane production [26,33].
Furthermore, monensin could further regulate butyrate formation, whereas NE did not
show significant effects on production of ruminal volatile fatty acids [26]. A recent study
was conducted to compare the effects of monensin and NE on digestibility and growth
performance of lambs. The authors demonstrated that both monensin and NE did not
improve digestibility of crude protein, organic matter, neutral detergent fiber, and acid
detergent fiber [33]. However, lamb fed with NE had higher average daily gain and better
feed conversion rate compared to the group administrated with monensin [33].
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4. Toxicity of Nitrocompounds

Even though nitrocompounds induce several positive outcomes on inhibiting pathogens
as well as reducing methane and ammonia production in the gastrointestinal tracts, the
toxicity of these organic compounds has caused consumers’ caution. Previous in vitro
studies have reported that 0.4 to 3 mM is the range of cytotoxic threshold of various testing
cells following exposure to nitrocompounds [32,36,37]. It should be noted that the toxicity
thresholds of cells are much lower than the thresholds of pathogens (from 4 to 50 mM),
indicating that animal cells are more vulnerable than pathogens to nitrocompounds.

Ingestion of Astragalus spp. may cause livestock poisoning in ruminant and mono-
gastric animals [38]. Moreover, several reviews have concluded that miserotoxin of
Astragalus spp. is less toxic to ruminants than nonruminants after oral administration [3,39].
Miserotoxin (3-nitro-1-propyl-beta-D-glucopyranoside) was isolated and characterized from
Astragalus spp. by Stermitz et al. [5]. The concentrations of miserotoxin in Astragalus spp.
vary from 2 to 6% [40]. Miserotoxin is relatively innocuous to animals compared to the
pure nitrocompounds, such as 3NPA or 3NPOH. A previous study reported that the
LD50 of miserotoxin to rats was greater than 2.5 g/kg, whereas the LD50 of 3NPOH was
77 mg/kg [41]. The symptoms of toxicity caused by miserotoxin or nitrocompounds are
similar to methemoglobinemia, including depression of feed intake, a tendency to fall
down, difficulty in breathing and head extension [3]. These observed reactions in animals
are also classic symptoms of nitrite poisoning. However, nitrocompounds do not cause
lethal levels of methemoglobinemia as nitrite does [3]. The toxicity of 3NPA and 3NPOH
in humans and animals has been reviewed by [4,6]. The 3NPA does not exhibit chronic
toxicity; furthermore, the acute toxicity of LD50 dose of 3NPA is between 60 to 120 mg/kg
(oral challenge). Burdock et al. [6] also concluded that the acceptable daily intake of 3NPA
should not be above 25 mg/kg/day for human.

Toxicity levels of nitroalkanes and nitroalcohols have been concluded in a previous
review article. Smith et al. [39] indicated that the acute LD50 values for mice following
intraperitoneal injection of nitromethane, NE, 1-nitropropane, 2-nitropropane, and 2NEOH
were 110, 310, 250, 800, and 2100 mg/kg body weight, respectively. Moreover, rats under
inhalation exposure to NE at 100 or 200 ppm for 2 years had no significant effects on body
weights, hematology, nonneoplastic, and neoplastic pathology [42]. An early study also
demonstrated that supplementation of less toxic nitrocompounds, such as NE, was capable
to prevent Astragalus spp. poisoning in ruminants [43].

Less is known regarding toxicity of dietary supplementation of synthetic pure ni-
trocompounds on economic animals. Previous studies have not indicated any adverse
effect of nitrocompounds on performance of laying hens and ovine [7,9]. However,
Jung et al. [8] reported that 6-day-old broiler chickens gavaged with a single dose of
130 mg 2NPOH caused 30% mortalities, whereas 13 mg 2NPOH showed no apparent ad-
verse effects. Moreover, dietary supplementation of 33 and 100 ppm 2NPOH and 2NEOH
had no impacts on growth performance of young broiler chickens, but 200 ppm 2NPOH
and 2NEOH addition resulted in decrease in body weight [20,32]. In summary, toxicity of
nitrocompounds is diverse and is influenced by various factors, including animal species,
ages, and types and doses of nitrocompounds. Little evidence of chronic toxicity caused by
nitrocompounds was reported in previous studies; thus, further investigation is needed
before the application of nitrocompounds in animal production.

5. Metabolism of Nitrocompounds

The metabolism of natural sources of nitrocompounds is illustrated in Figure 1. In
ruminants, glycoside of nitro-propanol and glucose esters of nitropropionic acid are hy-
drolyzed by microbial β-glucosidase and esterase, respectively, in the rumen. The rate of
hydrolyzation is estimated at 0.75 g mol/mL/h in ruminal fluid [44]. After liberating free
3NPA and 3NPOH, ruminal microbials rapidly metabolize 3NPOH to 3NPA, indicating
that these nitrocompounds are equally toxic to animals [44,45]. Apart from metabolizing to
3NPA, 3NPOH is also oxidized to 3-aminopropanol, whereas 3NPA is further metabolized
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to 3-aminopropionic acid (β-alanine) in the rumen [46]. A previous study indicated that
the metabolism of 3NPA was faster than 3NPOH, and the disappearance of 3NPOH was
proceeded at a faster rate than that of 2NPOH [44]. It has been reported that the efficiency
of ruminal metabolism was influenced by dietary treatments, such as supplementation
of NE [43,47]. Dietary protein also contributed to the rate of microbial detoxification [43].
A recent study demonstrated that ruminal microbials could cleave 3NPOH and 3NPA to
nitrite [48], and the nitrate will further be degraded to ammonia by rumen microorgan-
isms [49]. However, nitrocompounds are not only metabolized to their respective amines,
nitrite, and ammonia, but are also directly absorbed by reticulo-rumen in both sheep and
cattle [50,51]. If the 3NPOH was not metabolized to 3-aminopropanol, 3NPA, or nitrate in
the rumen, it might be further metabolized to 3NPA in the liver [52].

Figure 1. Metabolism of natural sources of nitrocompounds in ruminants and non-ruminants. (A) Glucose esters of
3-nitropropionic acid; (B) glycoside of 3-nitro-propanol (3-nitro-1-propyl-beta-D-glucopyranoside); (C) 3-nitropropionic
acid; (D) 3-nitropropanol; (E) 3-aminopropionic acid (β-alanine); (F) nitrite; (G) 3-aminopropanol.

Unlike ruminants, monogastric animals, such as pigs and chickens, are not able to
secrete β-glucosidase; thus, they absorb miserotoxin in the upper gastrointestinal tract [4]
(Figure 1). Though little is known regarding how non-ruminants hydrolyze miserotoxin to
liberate free 3NPOH after absorption, previous studies indicated that free 3NPOH is me-
tabolized to 3NPA by aldehyde dehydrogenase and hepatic alcohol dehydrogenase [52,53].
Moreover, monogastric animals are able to metabolize glucose esters of nitropropionic acid
by tissue esterase [4].

The metabolism of NE, 2NEOH, and 2NPOH in animals might not share the same path-
way as 3NPOH and 3NPA. It has been suggested that NE is transformed to acetaldehyde
and nitrite in animals [39]. The acetaldehyde might be oxidized to acetate by acetaldehyde
dehydrogenase and further enter into tricarboxylic acid (TCA) cycles, but nitrite is criti-
cal to cause acute poisoning [39,54]. Zhang et al. [48] reported that 90% of NE could be
degraded by microorganisms, whereas only 75% of 2NEOH and 60% of 2NPOH were me-
tabolized in the ruminal fluid. Moreover, NE, 2NEOH, and 2NPOH might be degraded to
ethylamine, amino-ethanol, and 2-amino-1-propnol, respectively, and these intermediates
might be further metabolized to nitrite and ammonia by ruminal microbials. The authors
also suggested that NE and 2NPOH produced more ammonia compared to 2NEOH [48].
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Several ruminal bacteria are able to degrade nitrocompounds and metabolize ni-
trite anaerobically, including Megasphaera spp., Coprococcus spp., Ramibacterium spp., and
Selenomonas spp. [49]. Moreover, a new group of anaerobic bacteria, Denitrobacterium detox-
ificans, was identified by Anderson et al. [55]. The author demonstrated that growth of
Denitrobacterium detoxificans was supported by 3NPA, 3NPOH, 2NPOH, NE, and 2NEOH as
electron acceptors, whereas hydrogen and formate served as electron donors. Furthermore,
Clostridium spp. also has similar effects on the reduction of aliphatic nitrocompounds by
hydrogenase and ferredoxin [56].

6. Mechanisms of Actions of Nitrocompounds

Three mechanisms of actions of nitrocompounds have been proposed in previous
studies, explaining how nitrocompounds cause toxicity to animals and how nitrocom-
pounds inhibit pathogens and methanogenesis [55,57–60]. The most common toxicity
of nitrocompounds is associated with nitrite poisoning shown in Figure 2. After being
reduced by ruminal microbial, nitrite acts as a strong reductant in the circulation which
rapidly reduces ferrous (Fe2+) iron in oxyhemoglobin (oxyHb) to ferric (Fe3+) state also
known as methemoglobin (metHb). The reaction between nitrate and oxyHb not only
generates methemoglobin, but also produces hydrogen peroxide and nitrate. The hydro-
gen peroxide will initiate an autocatalytic propagation with metHb, forming a ferrylhe-
moglobin (ferrylHb)-radical. The ferrylHb-radical reduces back to metHb by generating
two molecules of nitrogen dioxide from nitrite. The nitrogen dioxide can further oxidize
oxyHb to ferrylHb-radical, leading to the unstoppable autocatalytic propagation. As the
propagation will not be terminated until most of the nitrite in the circulation system is con-
sumed [61], the serial reactions elevate metHb precipitously. Moreover, deoxyhemoglobin
also reacts with nitrite, forming nitrosyl hemoglobin as the end product [62]. Both MetHb
and Nitrosyl hemoglobin are incapable of carrying oxygen; thus, animals fed high levels of
nitrocompounds or nitrite will fail to transport oxygen to tissue and result in death due to
severe hypoxia [57].

It is speculated that the more nitrite generated from nitrocompounds, the stronger toxicity
that might be observed. As it is discussed above, in the ruminants, nitrocompounds are
degraded to various organic compounds by ruminal microorganisms, whereas monogastric
animals only produce nitrite as the final product. If animals were fed the same amount of
nitrocompounds, ruminants could generate less nitrite than non-ruminants do; thus, previous
studies have concluded that miserotoxin is less toxic to ruminants than non-ruminants [39].

On the other hand, 3NPA could inhibit succinate dehydrogenase (SDH) and manipu-
lates energy production of cells (Figure 3). SDH plays important roles in both TCA cycle
and respiratory complex II, an enzyme involved in the electron transport chain [63]. SDH
regulates oxidation of succinate to fumarate and the reduction of quinone to quinol in
the membrane [63]. Hylin et al. [64] first reported the effects of 3NPA on SDH in the
heart muscle of rat. It was proposed that 3NPA can act as a suicide inhibitor of SDH
because chemical structure of 3NPA is similar to succinic acid, the substrate of SDH [58].
Coles et al. [59] further summarized how 3NPA inactivates the enzyme. In the initiating
step, 3NPA is metabolized to 3-nitroacrylate, following with two electrons transferring to
the flavin and generating reduced flavin adenine dinucleotide (FADH2) on the enzymes.
The nucleophilic of a thiol group is later added to the double bound of 3-nitroacrylate,
formatting a thioether on the SDH. Even though FADH2 can be oxidized by respiratory
chain, the 3-nitroacrylate is not able to release from the enzyme anymore; thus, the effect
of 3NPA on SDH is considered as an irreversible reaction. Moreover, a previous study
reported that nitrocompounds could inhibit formate dehydrogenase, formate hydrogen
lyase, and hydrogenase activity [60]. As SDH, formate dehydrogenase, and formate hydro-
gen lyase play important roles in energy metabolism in both eukaryotes and prokaryotes,
it is concluded that nitrocompounds might impede energy production in pathogens and
parasites by suppressing metabolism of formate and hydrogen as well as inhibiting the
SDH involved in complex II and TCA cycle [65–67].
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Figure 2. Mechanisms of actions of nitrite poisoning caused by nitrocompounds administration.
Once nitrocompounds are metabolized to nitrite in the gastrointestinal tracts in animals, nitrite will
interact with both oxyhemoglobin and deoxyhemoglobin, leading to failure of oxygen transportation.
Nitrite could further initiate an autocatalytic propagation that keep oxidizing oxyhemoglobin to
methemoglobin and end up with the formation of nitrosyl hemoglobin.

Figure 3. Inhibition of succinate dehydrogenase in electron transport chain by 3-nitropropionic acid (3NPA). 3NPA has a
similar chemical structure as succinic acids which make it possible to attach on succinate dehydrogenase and irreversibly
inactive the enzyme, causing failure of electron transportation in mitochondria.
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The presence of Denitrobacterium detoxificans and the inhibition of formate dehydro-
genase by nitrocompounds are the main mechanisms of actions that reduced methane
production in the ruminants. D. detoxificans processes nitrocompounds metabolizing ac-
tivity and causes the reduction of nitrite, nitroalkanes and nitroalcohols with oxidation of
hydrogen and formate (Figure 4). In the reaction, hydrogen and formate are oxidized to
water, carbon dioxide and hydrogen, whereas nitrite and nitrocompounds are reduced to
ammonia and nitrite, respectively [68]. Zhang et al. [1] further concluded that nitrocom-
pounds act as alternative electron acceptors, diverting the flow of reducing equivalent away
from methanogenesis (Figure 4, [pathway 3]). On the contrary, other studies indicated that
the inhibition of methane production was independent to the presence of D. detoxificans
and the loss of reducing equivalents by the reduction of nitrocompounds [23,69]. Though
competing reductants might not be the main mechanisms of actions of nitrocompounds, it
should be noted that metabolizing nitrocompounds by D. detoxificans, indeed, spares the
reducing equivalents from the production of methane [68].

Figure 4. Possible mechanisms of actions of nitrocompounds withhold methanogenesis in ruminants. Nitrocompounds
might directly inhibit methanogens [pathway 1] or suppress dehydrogenase which is an enzyme metabolizing formate
to methane [pathway 2]. Metabolism of Nitrocompounds by D. detoxificans consumes reductant in the rumen, such as
hydrogen and formate. Nitrocompounds might compete these reductants with carbon dioxides, indirectly reducing methane
production. [pathway 3] Reductant competition is a possible mechanism of action of nitrocompounds, but it might not play
the main role on inhibition of methanogenesis in ruminants.

It has been proposed that nitrocompounds reduce methane production by inhibiting
methanogens directly or suppressing ability of formate dehydrogenase [60] (Figure 4,
[pathway 1] and [pathway 2]). The ruminal methanogens are capable of metabolizing
formate to carbon dioxide and hydrogen, which are rapidly oxidized to methane [70].
Additionally, some methanogens could degrade formate to carbon dioxides, water, and
methane directly via formate dehydrogenase [71]. Approximately 18% of ruminal methane
was formed from formate rather than carbon dioxide [72]; thus, inhibiting dehydrogenase
for formate oxidation is a potential mechanism of action of nitrocompounds in withholding
methanogenesis in the rumen.
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7. Conclusions

Conjugates of 3NPOH and 3NPA in forages, and various synthetic nitrocompounds
have been reviewed in the context of their effects on the inhibition of foodborne pathogens,
parasites, methane, and ammonia production in economic animals. The toxicity, metabolism,
and mechanisms of actions have been discussed in the current review to conclude the
advantages and disadvantages of application of nitrocompounds in animal production.
Previous studies have elucidated the properties of 3NPA and 3NPOH comprehensively
because they are the only nitrocompounds observed from natural sources so far. It has been
demonstrated that the toxicity of 3NPA and 3NPOH is associated with nitrite poisoning and
inactivation of SDH. Nevertheless, little is known regarding the mode of actions and toxic-
ity of 2NPOH, NE, and 2NEOH. Even though the effects of short-chain nitrocompounds on
broiler chicken, laying hen, cattle, lamb and swine have been studied for decades, further
research is needed to determine a range of safe dosages in order to use nitrocompounds as
a novel strategy for the control of pathogens in animal production.
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