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OBJECTIVE—Apolipoprotein CIII (apoCIII) is an independent
risk factor for cardiovascular disease, but the molecular mecha-
nisms involved are poorly understood. We investigated potential
proatherogenic properties of apoCIII-containing LDL from hyper-
triglyceridemic patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS—LDL was isolated
from control subjects, subjects with type 2 diabetes, and apoB
transgenic mice. LDL-biglycan binding was analyzed with a
solid-phase assay using immunoplates coated with biglycan.
Lipid composition was analyzed with mass spectrometry. Hydro-
lysis of LDL by sphingomyelinase was analyzed after labeling
plasma LDL with [3H]sphingomyelin. ApoCIII isoforms were
quantified after isoelectric focusing. Human aortic endothelial
cells were incubated with desialylated apoCIII or with LDL
enriched with specific apoCIII isoforms.

RESULTS—We showed that enriching LDL with apoCIII only
induced a small increase in LDL-proteoglycan binding, and this
effect was dependent on a functional site A in apoB100. Our
findings indicated that intrinsic characteristics of the diabetic
LDL other than apoCIII are responsible for further increased
proteoglycan binding of diabetic LDL with high-endogenous
apoCIII, and we showed alterations in the lipid composition of
diabetic LDL with high apoCIII. We also demonstrated that high
apoCIII increased susceptibility of LDL to hydrolysis and aggre-
gation by sphingomyelinases. In addition, we demonstrated that
sialylation of apoCIII increased with increasing apoCIII content
and that sialylation of apoCIII was essential for its proinflamma-
tory properties.

CONCLUSIONS—We have demonstrated a number of features
of apoCIII-containing LDL from hypertriglyceridemic patients
with type 2 diabetes that could explain the proatherogenic role of
apoCIII. Diabetes 58:2018–2026, 2009

A
polipoprotein CIII (apoCIII) is a protein se-
creted mostly by the liver and, to a lesser
extent, by the intestine (1). In the circulation, it
is associated mainly with triglyceride-rich li-

poproteins (TRLs), HDLs, and, to a lower degree, LDLs
(1–3). Total plasma apoCIII levels have been identified as
a major determinant of serum triglycerides, and epidemi-
ological studies have demonstrated that apoCIII and apoB
lipoproteins that have apoCIII as a component indepen-
dently predict coronary heart disease (4,5). It has been
shown that lifelong deficiency of apoCIII has a cardiopro-
tective effect (6) and that the content of apoCIII in LDL is
an independent risk factor for coronary events in diabetic
patients: those with the quartile of LDL with the highest
apoCIII have a more than sixfold higher relative risk of
new coronary events than the quartile with the lowest
apoCIII content (5).

The molecular mechanisms that explain why apoCIII is
a strong risk factor for cardiovascular disease are in-
completely understood. Experiments in vitro show that
apoCIII induces hypertriglyceridemia by inhibition of li-
poprotein lipase (LPL) (7) and hepatic lipase (8) activity,
disruption of the interaction of TRLs with heparan sulfate
proteoglycans, and reduction of the clearance of apoB-
containing lipoproteins (9). Kinetic studies in humans also
indicate that apoCIII affects TRL metabolism (10,11). In
addition, apoCIII alone, or as a component of TRL and
LDL, induces activation of adhesion molecules and proin-
flammatory nuclear factor-�B in monocytes and endothe-
lial cells (12,13), showing that it is directly involved in
atherogenesis.

ApoCIII has also been shown to increase the binding of
LDL to artery wall proteoglycans and increase accumula-
tion of lipoproteins in the vessel wall (3,14). The mecha-
nisms involved are unclear, as apoCIII does not bind
directly to proteoglycans (14). Binding between LDLs and
proteoglycans involves an ionic interaction between clus-
ters of basic amino acids in apoB100 (site A at residues
3148–3158 and site B at residues 3359–3369) and nega-
tively charged sulfate groups on the glycosaminoglycan
chains of proteoglycans (15). Following subendothelial
retention, LDL is exposed to several enzymes, including
sphingomyelinases (SMase), which promote aggregation
and fusion of retained lipoproteins (16). ApoCIII increases
SMase-catalyzed hydrolysis by three- to fourfold in vitro
(17).

ApoCIII is present in three isoforms, termed apoCIII0,
apoCIII1, and apoCIII2 according to the number of sialic
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acid molecules bound to the protein (18). Each isoform
has been shown to contribute, respectively, to �10, 55,
and 35% of the total apoCIII levels in circulation (19). The
degree of sialylation of apoCIII seems to influence its
function as apoCIII2 inhibits LPL-mediated hydrolysis of
TRLs less efficiently than apoCIII1 (20), despite having an
apparent twofold greater affinity for TRL than the other
two apoCIII isoforms (21). Furthermore, the kinetics of
the sialylated isoforms shows the strongest associations
with the expression of many features of the metabolic
syndrome, including hypertriglyceridemia (22).

In this study, we investigated potential proatherogenic
properties of apoCIII-containing LDL from patients with
type 2 diabetes. In particular, we elucidated how apoCIII
induces increased binding of LDL to artery wall proteogly-
cans. We also identified unique characteristics of LDL with
the highest apoCIII content: for example, the lipoproteins
associated with the highest relative risk of new coronary
events in patients with type 2 diabetes (5).

RESEARCH DESIGN AND METHODS

Study population. In the Helsinki Centre, 270 subjects with type 2 diabetes
aged 50–75 years were recruited to the Fenofibrate Intervention and Event
Lowering in Diabetes (FIELD) study (23). Of these subjects, 101 volunteered
for this substudy. A group of 93 healthy subjects aged 50–75 years (44 women)
was recruited as control subjects. See online supplement for details available
at http://diabetes.diabetesjournals.org/cgi/content/full/db09-0206/DC1.
Isolation of human LDL. Blood samples were obtained after an overnight
fast. Lipoproteins were isolated from fresh serum by sequential ultracentrif-
ugation (24), and LDL subclasses were separated (25). See online supplement
for details.
Isolation of recombinant LDL. Recombinant LDL (d � 1.02–1.05 g/ml) were
isolated from human apoB100 transgenic mice expressing RK3148–3158SQ
LDL (site A mutant), RK3359–3369SA LDL (site B mutant), or recombinant
control LDL by sequential ultracentrifugation and dialyzed against 150 mmol/l
NaCl and 0.01% EDTA, pH 7.4 (26).
ApoB and apoCIII measurements. ApoB was determined by an immuno-
precipitation method (Thermo, Vantaa, Finland) and apoCIII by an immuno-
turbidimetric method (Kamiya, Seattle, WA). All analyses were performed on
a Konelab 20 autoanalyzer (Thermo).
Immunoaffinity isolation of apoCIII-containing LDL. LDL was isolated
from 0.5 ml of serum from eight subjects with type 2 diabetes with buffers of
physiological ionic strength and pH prepared with deuterium oxide (D2O) and
sucrose (27). The LDL was subjected to immunoaffinity isolation using
Dynabeads Protein A (Invitrogen, Carlsbad, CA) coated with Rabbit Anti-
Human ApoCIII (Academy-Medical, Houston, TX).
Enrichment of LDL with apoCIII. Enrichment of human or recombinant
LDL with human purified apoCIII (Chemicon, Temecula, CA) was performed
as described previously for apoE (28). ApoCIII-free LDL used for enrichment
studies was isolated after immunoaffinity isolation.
Proteoglycan- and receptor-binding assays. The binding of LDL to bigly-
can was assessed with a solid-phase assay using Maxisorp immunoplates
(NUNC) coated with biglycan (28).
Lipid extraction and lipid class separation. Lipid extraction and lipid class
separation were performed as described previously (29,30). Lipid classes were
detected and quantified using a PL-ELS 1000 detector (Polymer Laboratories,
Amherst, MA). See online supplement for details.
Mass spectrometry. The lipids were determined from a total lipid extract
using a QSTAR XL QqTOF mass spectrometer (MDS Sciex, Concord, Canada)
and normalized against the apoB protein value. See online supplement for
details.
Isolation and quantification of GM1. The GM1 ganglioside was extracted
as previously described (31) and measured using a microtiter well-binding
assay (32). See online supplement for details.
[3H]sphingomyelin labeling of LDL and SMase treatment of [N-

palmitoyl-9,10-3H]sphingomyelin-LDL. Plasma LDL was labeled with
[N-palmitoyl-9,10-3H]sphingomyelin as described by Schissel et al. (16,33).
SMase treatment of LDL was performed as described by Shissel et al. (16) with
minor modifications according to Oorni et al. (34). See online supplement for
details.
Quantitation of apoCIII isoforms. ApoCIII isoforms were quantified in LDL
after electric focusing and Western blot analysis as described by Wopereis et
al. (19). Samples with LDL-apoCIII/apoB molar ratios �0.20 were analyzed.

Five samples with higher LDL-apoCIII/apoB molar ratios were excluded from
the analysis because of insufficient sample size.
Desialylation of apoCIII using neuroaminidase. ApoCIII (Chemicon,
Temecula, CA) was desialylated as described (21). See online supplement for
details.
Incubation of human aortic endothelial cells with apoCIII. Human aortic
endothelial cells (HAECs) were seeded onto 6-well tissue culture plates
between passages five and six. HAECs were incubated for 24 h without
apoCIII (control subjects) or with 20 �g/ml neuraminidase-treated or un-
treated apoCIII. See online supplement for details.
Statistical analysis. The statistical analysis was performed using ANOVA
with all pair-wise multiple comparison procedures (Tukey’s test). Binding
parameters and their standard errors were determined using the nonlinear
regression (curve-fitting) function of GraphPad Prism (GraphPad Software,
San Diego, CA).

RESULTS

Increased binding of diabetic LDL to biglycan is only
partially mediated by apoCIII. To investigate the mech-
anism for the increased proteoglycan binding of apoCIII-
containing LDLs isolated from subjects with type 2
diabetes, we divided the patients into two groups accord-
ing to median value of LDL-apoCIII. We paired each
patient with high LDL-apoCIII with a patient with low
LDL-apoCIII according to age, A1C, LDL size, and LDL
cholesterol levels and identified 12 matched pairs. The
matched pairs had comparable particle composition in all
three LDL subclasses (supplementary Table 1). The LDL-
apoCIII/apoB molar ratios in the low– and high–LDL-
apoCIII groups were 0.56 � 0.23 and 2.04 � 0.72 (means �
SD), respectively (P � 0.001). LDL with high apoCIII
displayed higher binding to biglycan than LDL with low
apoCIII in every matched pair (Fig. 1A). The dissociation
constants (Kd) of LDL in the low- and high-apoCIII groups
were 12.2 � 1.0 nmol/l and 8.6 � 0.7 nmol/l (means � SD),
respectively (P � 0.001).

To elucidate if increased binding of high LDL-apoCIII to
proteoglycans is mediated by apoCIII or by other intrinsic
properties of the LDL, we then enriched the low–LDL-
apoCIII samples with apoCIII in vitro so that they on
average contained as much apoCIII as the high–LDL-apoCIII
samples (the maximal difference in each pair was 16%).
Binding studies to biglycan showed that apoCIII-enriched
LDL displayed higher binding to biglycan than LDL with low
apoCIII but significantly lower binding than LDL with endo-
genously high apoCIII (Kd � 11.0 � 1.0 nmol/l) (Fig. 1A). We
also performed the identical binding study with nondiabetic
control LDL. The results showed that increasing the apoCIII
content of control LDL did not significantly increase its
binding to biglycan (supplementary Fig. 1).

Taken together, these data indicate that apoCIII induces
a small increase in binding of diabetic LDL to artery
proteoglycans. However, other intrinsic characteristics of
diabetic LDL are essential for further increased proteogly-
can binding of apoCIII-containing LDL. We tested this
hypothesis by analyzing the binding to biglycan of four of
the 12 pairs of diabetic LDL with high or low apoCIII/apoB
molar ratio after immunoaffinity removal of the apoCIII-
containing LDL. The results showed that apoCIII-free LDL
isolated from LDL with high apoCIII/apoB molar ratio
bound significantly better than apoCIII-free LDL isolated
from LDL with low apoCIII/apoB molar ratio (Kd � 9.8 �
0.29 vs. 12.8 � 0.57 nmol/l, respectively).
ApoCIII-induced increase in LDL-proteoglycan bind-
ing is mediated by site A in apoB. To further elucidate
the mechanism for how apoCIII induces increased proteo-
glycan binding, apoCIII-free LDL isolated from subjects
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with type 2 diabetes was enriched in vitro with increasing
amounts of human apoCIII. Analysis showed that 41 � 8%
of the apoCIII-free LDL became enriched with apoCIII.
Solid-phase proteoglycan binding studies showed that
there was not a simple linear relationship between apoCIII
content and binding of human LDL to biglycan (Fig. 1B).
Initially, apoCIII enrichment increased the binding of LDL
to biglycan, and maximal binding was achieved with an
apoCIII/apoB molar ratio of approximately two: for exam-
ple, the molar ratio seen in diabetic LDL with high apoCIII.
Additional enrichment of LDL with apoCIII negatively
influenced the binding to biglycan, and an apoCIII/apoB
molar ratio higher than four inhibited binding of LDL to
biglycan compared with apoCIII-free LDL.

We next performed an identical binding study with
recombinant control LDL or recombinant LDL with apoB
mutated at proteoglycan binding site A or site B. The
binding of recombinant control LDL was almost identical
to binding of human LDL (Fig. 1C). In contrast, site A
mutant LDL did not display increased binding to biglycan
after enrichment with apoCIII but displayed the same
diminished binding to biglycan when the apoCIII/apoB
molar ratio was higher than four (Fig. 1C). Recombinant
site B mutant LDL failed to interact with biglycan both in
the absence and presence of apoCIII (data not shown).
Thus, the increased LDL-proteoglycan binding induced by
apoCIII is dependent on a functional site A in apoB100,
and enrichment with apoCIII does not substitute for the
lack of a functional site B.
Altered lipid composition in diabetic LDL with high
apoCIII/apoB molar ratio. As our results showed that
the increased binding of apoCIII-containing diabetic LDL
to biglycan was only partially explained by apoCIII, other
intrinsic characteristics of diabetic LDL with endog-
enously high apoCIII/apoB molar ratio must explain its
increased proteoglycan binding compared with LDL en-
riched with apoCIII in vitro. We tested the hypothesis that
the apoCIII content of diabetic LDL was associated with
alterations in the lipid composition of the LDL particles by
analyzing LDL isolated from control subjects (n � 20) or
patients with type 2 diabetes (n � 20) (see supplementary
Tables 2 and 3, available in an online appendix, for
characteristics of these subjects).

The results showed that the content of phosphatidylcho-
line, the major membrane lipid on LDL, did not correlate
with the apoCIII/apoB molar ratio in either LDL isolated
from control subjects or that from subjects with type 2
diabetes (Fig. 2A and B). In contrast, we showed a highly
significant negative correlation between the apoCIII/apoB
molar ratio and the content of unesterified cholesterol,
sphingomyelin, ceramide, and the ceramide-containing
ganglioside GM1 in LDL isolated from subjects with type 2
diabetes but not in LDL isolated from control subjects
(Fig. 2C–J). Furthermore, LDL isolated from subjects with
type 2 diabetes contained significantly less GM1 than LDL
isolated from control subjects (26.5 vs. 42.3 �mol/mg
apoB, respectively, P � 0.001).

Analysis of core lipids showed a significant negative
correlation between cholesteryl esters and the apoCIII/
apoB molar ratio in LDL isolated from subjects with type

FIG. 1. Effect of apoCIII content on binding of LDL to biglycan in vitro.
A: The binding of LDL isolated from patients with type 2 diabetes was
analyzed using solid-phase assays for biglycan in vitro. Twelve pairs of
LDL with low (● ) or high (�) LDL-apoCIII were analyzed. The low–
LDL-apoCIII samples were also enriched in vitro with human apoCIII
(E) so they contained approximately as much apoCIII as the high
LDL-apoCIII samples, and their binding was analyzed. The dissociation
constants (Kd) of the corresponding samples in each matched pair are
shown. *P � 0.005, **P < 0.001. B: LDL with no apoCIII was isolated
from subjects with type 2 diabetes and enriched in vitro with increasing
amounts of human purified apoCIII, and LDL binding was analyzed by
solid-phase assays for biglycan. C: Recombinant wild-type LDL (E) and

site A mutant LDL (�) were isolated from human apoB100 transgenic
mice and enriched with increasing amounts of human purified apoCIII.
The LDL binding was analyzed by solid-phase assays for biglycan and is
expressed as a percentage of apoCIII-free LDL binding to biglycan
(means � SD, n � 4–5). *P < 0.05 versus apoCIII-free LDL.
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2 diabetes and a significant positive correlation in LDL
isolated from control subjects (Fig. 3A and B). In contrast,
triglycerides did not correlate with the apoCIII/apoB molar
ratio in either LDL isolated from control subjects or that
from patients with type 2 diabetes (Fig. 3C and D).

However, there was a nonsignificant positive trend in
LDL isolated from subjects with type 2 diabetes. We
analyzed the association between LDL-apoCIII and LDL-
triglycerides (TG) in all subjects. The results showed no
significant correlation in the control group (n � 93) but a
positive correlation in subjects with type 2 diabetes (r �
0.451, P � 0.001, n � 101). The correlations for the three LDL
subclasses were LDL1-TG (r � 0.208, P � 0.047); LDL2-TG
(r � 0.304, P � 0.003); and LDL3-TG (r � 0.200, P � 0.056).

Not all LDL in the circulation contains apoCIII. We
complemented the studies where we analyzed the total
LDL fraction by comparing the lipid composition in apo-
CIII-containing and apoCIII-free LDL isolated from sub-
jects with type 2 diabetes. The total LDL was isolated and
subjected to anti-apoCIII immunoaffinity isolation. The
results showed that 29 � 5% of the LDL particles contained
apoCIII and that the apoCIII-containing LDL contained
significantly less unesterified and esterified cholesterol
and sphingomyelin and ceramide as well as significantly
more triglycerides than apoCIII-free LDL (Table 1).

Analysis of the LDL-apoCIII/apoB molar ratio versus the
LDL diameter of the analyzed samples shown in Fig. 2A–J
showed a significant negative correlation in subjects with
type 2 diabetes (P � 0.05) but not in control subjects (Fig.
4A and B). However, analysis of the LDL-apoCIII/apoB
molar ratio versus the LDL diameter in all available
samples showed a significant negative correlation in both
control subjects (n � 93; P � 0.05) and subjects with type
2 diabetes (n � 101; P � 0.0001) (Fig. 4C and D).
High apoCIII increases susceptibility of LDL to hy-
drolysis and aggregation by sphingomyelinase. Apo-
CIII interacts with sphingomyelin and has been proposed
to activate SMase (16). We analyzed the kinetics of SMase-
induced hydrolysis of LDL and the kinetics of lipoprotein
aggregation. LDL was isolated from subjects with type 2
diabetes and two groups were analyzed: apoCIII-free LDL
and LDL enriched with apoCIII in vitro with an average of
4.3 apoCIII molecules per LDL particle. The kinetics

FIG. 2. Correlation between the LDL-apoCIII/apoB molar ratio and
lipid content of apoCIII-containing LDL isolated from control subjects
(n � 20) or subjects with type 2 diabetes (n � 20). The levels of
phosphatidylcholine (A and B), unesterified cholesterol (C and D),
sphingomyelin (E and F), ceramide (G and H), and GM1 (I and J) were
analyzed as described in RESEARCH DESIGN AND METHODS and normalized
against the apoB level.

FIG. 3. Correlation between the LDL-apoCIII/apoB molar ratio and
lipid content of apoCIII-containing LDL isolated from control subjects
(n � 20) or subjects with type 2 diabetes (n � 20). The levels of
cholesteryl esters (A and B) and triacylglycerol (C and D) were
analyzed as described in RESEARCH DESIGN AND METHODS and normalized
against the apoB level.
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showed that LDL enriched with apoCIII was significantly
more hydrolyzed than apoCIII-free LDL (Fig. 5A). Further-
more, apoCIII-containing LDL aggregated more efficiently
than apoCIII-free LDL (Fig. 5B). The results also showed
that SMase-induced hydrolysis of LDL preceded the LDL
aggregation.
Increased apoCIII2 in subjects with type 2 diabetes.
We analyzed the relative distribution of apoCIII isoforms
in LDL isolated from control subjects (n � 44) and
subjects with type 2 diabetes (n � 42). At comparable
apoCIII/apoB molar ratios, LDL from patients with type 2
diabetes had more apoCIII2 and less apoCIII1 than that
from control subjects (Fig. 6). Furthermore, the propor-
tion of apoCIII0 was almost constant at 10%, whereas the
apoCIII1 decreased and the apoCIII2 increased with in-
creasing apoCIII/apoB molar ratio. Thus, apoCIII2 was the
dominating form of apoCIII on LDL with more than two
molecules apoCIII per LDL particle.
Sialylation of apoCIII is necessary for causing a
cellular response in HAECs. To test if the sialylation of
apoCIII influences secretion of proinflammatory mediators
and expression of adhesion molecules in HAECs, apoCIII

was treated with neuroaminidase to remove the sialic acid
residues. HAECs were incubated for 24 h without apoCIII
(control subjects) with 20 �g/ml untreated apoCIII or with
20 �g/ml apoCIII-treated neuraminidase (desialylated).
The untreated apoCIII contained �12% apoCIII0, 54%
apoCIII1, and 34% apoCIII2. Immunoanalysis of the me-
dium from cells incubated with untreated apoCIII showed
significantly higher concentrations of IL-6, tumor necrosis
factor (TNF)-�, and interleukin (IL)-8 than that in the
medium from control cells (Fig. 6). In contrast, incubation
of the cells with desialylated apoCIII did not influence the
concentrations of IL-6, TNF�, or IL-8 in the medium (Fig.
7). Immunoblot analysis showed that untreated but not
desialylated apoCIII induced significantly increased ex-
pression of the cellular protein intracellular adhesion
molecule (ICAM)-1 compared with control (Fig. 7D).

We then isolated apoCIII0, apoCIII1, and apoCIII2; en-
riched apoCIII-free LDL particles with these apoCIII-iso-
forms at an apoCIII/apoB molar ratio of approximately
four; and incubated HAECs for 36 h with 80 �g/ml LDL.
The result showed that the medium from cells incubated
with LDL containing apoCIII2 showed significantly higher
concentrations of IL-6 (294 � 34 vs. 221 � 29 pg/ml),
TNF-� (9.2 � 2.1 vs. 6.8 � 1.3 pg/ml), and IL-8 (6.4 � 0.4 vs.
5.2 � 0.3 pg/�l) than medium from cells incubated with
apoCIII-free LDL (means � SD, n � 5, P � 0.05). In
contrast, incubation of cells with LDL enriched with
apoCIII0 or apoCIII1 did not significantly increase the
concentration of Il-6, TNF�, or IL-8 in the medium com-

TABLE 1
Lipid composition of apoCIII-containing LDL and apoCIII-free LDL

ApoCIII-containing LDL ApoCIII-free LDL P

CE/phosphatidylcholine (ratio weight) 2.2 � 0.3 3.2 � 1.0 0.03
Triglycerides/phosphatidylcholine (ratio weight) 0.21 � 0.04 0.15 � 0.03 0.008
FC/phosphatidylcholine (ratio weight) 0.44 � 0.05 0.55 � 0.09 0.007
Sphingomyelin/phosphatidylcholine (ratio weight) 0.30 � 0.05 0.36 � 0.06 0.007
Ceramide (pmol/�g phosphatidylcholine) 3.5 � 1.0 4.7 � 1.1 0.037

Data are means � SD. ApoCIII-containing and apoCIII-free LDL was isolated from subjects with type 2 diabetes. The lipid composition of
the isolated LDL was analyzed using mass spectrometry-based lipid analysis. The amounts of triglycerides, unesterified cholesterol,
sphingomyelin, and ceramide were correlated to the amount of phosphatidylcholine (n � 8). CE, esterified cholesterol; FC, unesterified
cholesterol.

FIG. 4. Analysis of the LDL-apoCIII/apoB molar ratio versus the LDL
diameter of the samples analyzed in Fig. 2 showed a significant
negative correlation in subjects with type 2 diabetes (P < 0.05) but not
in control subjects (Fig. 4A and B). Analysis of the LDL-apoCIII/apoB
molar ratio versus the LDL diameter in all available samples showed a
significant negative correlation in both control subjects (n � 93; P <
0.05) and subjects with type 2 diabetes (n � 101; P < 0.0001) (Fig. 4C

and D).

FIG. 5. Kinetics of SMase hydrolysis and LDL aggregation induced by
SMase and the effects of enzymatic inhibition. A: LDL (0.5 mg/ml) was
incubated with 50 ng/ml Bacillus cereus SMase/ml at 37°C. At the
indicated time points, aliquots of the apoCIII-free LDL (E) or apoCIII-
enriched LDL (● ) were harvested then assayed for extent of SM
hydrolysis (A) and for aggregation (B). As a negative control, LDL was
incubated in the absence of SMase (f).
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pared with media from cells incubated with apoCIII-free
LDL (see supplementary Table 4, available in an online
appendix). Immunoblot analysis showed that LDL en-
riched with apoCIII1 and apoCIII2, but not apoCIII0, in-
duced significantly increased expression of ICAM-1
compared with apoCIII-free LDL (187 � 18%; 224 � 21 and
142 � 28%, means � SD, n � 5, P � 0.05).

DISCUSSION

In this study, we demonstrated that apoCIII induced a
small increase only in proteoglycan binding for LDL from
patients with type 2 diabetes. Our findings indicated that
intrinsic characteristics of diabetic LDL other than apoCIII

are essential for further increased proteoglycan binding of
apoCIII-containing LDL, and we showed that the amount
of LDL-apoCIII in diabetic LDL was associated with a
greatly altered lipid composition of the LDL. We also
showed that high apoCIII increased susceptibility of LDL
to hydrolysis and aggregation by SMase. In addition, we
demonstrated that sialylation of apoCIII increased with
increasing LDL-apoCIII content and that the sialylation of
apoCIII is essential for inducing a cellular response in
HAECs.

To further elucidate the mechanism for how apoCIII
induces increased proteoglycan binding we analyzed the
impact of increasing LDL-apoCIII on binding to biglycan
and observed that there was not a simple linear relation-
ship: an increase in LDL-apoCIII at moderate levels in-
creased the binding, whereas supraphysiological levels of
LDL-apoCIII inhibited the binding. Interestingly, very high
levels of LDL-apoCIII (apoCIII/apoB ration of 4.6) nega-
tively affected the binding of LDL to the LDL receptor
(data not shown), indicating that supraphysiological levels
of LDL-apoCIII disturb the conformation of site B, the
combined principal proteoglycan binding site (15), and the
LDL receptor binding site of apoB (26), resulting in a
diminished LDL receptor and proteoglycan binding.

We used recombinant LDL with apoB mutated at site A
to show that the increased proteoglycan binding was
dependent on a functional site A, and we propose that
moderate levels of LDL-apoCIII induce a conformational
change in apoB that activates site A. This proteoglycan
binding site has been shown to become active in modified
LDL and in small dense LDL (35).

We tested the hypothesis that an altered lipid composi-
tion in diabetic LDL with high endogenous apoCIII content
could account for its increased proteoglycan binding com-
pared with LDL enriched with apoCIII in vitro. The finding
that apoCIII-containing LDL contained less unesterified
cholesterol and more triglycerides than apoCIII-free LDL
is in agreement with earlier studies (2,36). The triglyceride
content of LDL is reciprocally related to the number of
exposed free lysine amino groups of apoB100 (37), and we
have earlier shown that the triglyceride content of LDL
decreases the affinity for proteoglycans (35). Therefore, it
is unlikely that the increased proteoglycan binding of
apoCIII-containing LDL is mediated by the increased LDL
triglycerides.

We analyzed the lipid monolayer in human LDL. This
comprises mainly unesterified cholesterol, phosphatidyl-
choline, and sphingomyelin at �55, 30, and 15 mol%,
respectively (38). We showed that a high apoCIII content
in diabetic LDL was associated with a reduction in unes-
terified cholesterol, sphingomyelin, ceramide, and the
ceramide-containing ganglioside GM1 but not in phos-
phatidylcholine. Cholesterol has been shown to positively
affect a closer lateral packing in LDL (39), and ceramide
induces a less fluid monolayer membrane (40). Therefore,
the change in lipid composition observed in diabetic LDL
with high apoCIII/apoB molar ratio could be associated
with higher membrane fluidity and higher freedom in
lateral moving, thus allowing apoB to acquire a conforma-
tion that is more favorable for proteoglycan binding.
Furthermore, a monolayer rich of phosphatidylcholine and
poor of unesterified cholesterol, in contrast to a mono-
layer rich in sphingomyelin and unesterified cholesterol, is
likely to favor penetration of core lipids toward the water
environment, thus making it possible for the water-soluble

FIG. 6. The relative distribution of apoCIII isoforms in LDL versus the
LDL-apoCIII/apoB molar ratio. ApoCIII isoforms were quantified in
LDL isolated from control subjects (n � 44; �) and subjects with type
2 diabetes (n � 42; ● ), using isoelectric focusing and Western blot
analysis. Disialylated apoCIII are shown in blue, monosialylated apo-
CIII are yellow, and nonsialylated apoCIII0 are green. The linear
regression is shown separately for control subjects (filled line) and
subjects with type 2 diabetes (dotted line). ApoCIII0 control subjects
(r � �0.67, P < 0.0001); apoCIII0 DM2 (r � 0.24, NS); apoCIII1 control
subjects (r � �0.59, P < 0.0001); apoCIII1 DM2 (r � �0.69, P <
0.0001); apoCIII2 control subjects (r � 0.76, P < 0.0001); and apoCIII2

DM2 (r � 0.73, P < 0.0001).

FIG. 7. Effect of desialylation of apoCIII on cellular response in
HAECs. HAECs were incubated for 24 h without apoCIII (control
subjects), with 20 �g/ml apoCIII desialylated apoCIII (ApoCIII-0), or
with 20 �g/ml untreated apoCIII (ApoCIII). Levels of IL-6, TNF-�, and
IL-8 in the cell culture medium were analyzed by multiplex analysis
(A–C). Levels of ICAM-1 in total cell lysates were measured by
immunoblot and corrected against �-actin level (means � SD, n � 12).
*P < 0.001.
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enzymes to reach the hydrophobic core lipids in the LDL
particles (41).

Previous studies have reported that lipoproteins ex-
tracted from human atherosclerotic lesions are enriched in
ceramide (33). Our results show that apoCIII-containing
LDL contains less ceramide. A possible explanation for
this discrepancy might be that ceramide could leave the
LDL particles in the plasma but that ceramide generated
locally by hydrolysis of SMase in atherosclerotic lesions
remain bound to the LDL particle.

It is not known if the lipid composition of diabetic LDL
is altered by increased apoCIII or if the high membrane
fluidity of diabetic LDL simply allows more apoCIII mole-
cules to bind to LDL. However, it has been reported that
secretory SMase activity is elevated in the serum of
patients with type 2 diabetes (42). In addition, depletion of
cell surface sphingomyelin with SMase has been shown to
result in increased efflux of unesterified cholesterol (43),
which could explain the parallel decrease of sphingomye-
lin and unesterified cholesterol in diabetic LDL with high
apoCIII. We showed that enrichment with apoCIII in vitro
increased the susceptibility of LDL to hydrolysis and
aggregation by SMase, indicating that diabetic LDL with
high apoCIII content is particularly susceptible to proath-
erosclerotic modifications by SMase. Thus, it is possible
that the lipid alterations we demonstrated in diabetic LDL
with high apoCIII could be induced by both increased
SMase activity and increased susceptibility of LDL to
SMase. However, we cannot exclude the possibility that
other mechanisms could induce the altered lipid compo-
sition of diabetic LDL with high apoCIII.

The results showed that the apoCIII content of control
LDL did not significantly increase its binding to biglycan.
However, apoCIII enrichment of recombinant LDL iso-
lated from human apoB transgenic mice increased binding
to biglycan. A possible explanation for this is that the
recombinant LDL was isolated from mice fed a high-fat
diet, and high-fat feeding is known to induce hyperlipid-
emia and impaired glucose tolerance in mice (44).

The increased susceptibility of apoCIII-enriched LDL to
hydrolysis and aggregation by SMase could also contribute
to the increased inflammatory response observed in ath-
erosclerosis. For example, modification of LDL by SMase
in the artery wall promotes the release of ceramide and
arachidonic acid (45). It is not known how apoCIII stimu-
lates the hydrolysis of sphingomyelin. However, results by
Schissel et al. (16) indicate that apoCIII acts as a bridge
between SMase and membrane sphingomyelin, thereby
stimulating sphingomyelin hydrolysis. In addition, our
lipid composition studies showed that LDL isolated from
subjects with type 2 diabetes contained significantly less
GM1 than LDL isolated from control subjects and that high
apoCIII was associated with lower GM1 content. Interest-
ingly, GM1 is an inhibitor of SMase (46). Thus, we showed
that apoCIII-containing LDL both had enhanced suscepti-
bility for SMase and contained a reduced amount of a
SMase inhibitor. This combination appears to increase
proatherogenic features of LDL. Furthermore, sphingomy-
elin appears to inhibit hydrolysis of LDL phospholipids by
group IIa and group V sPLA2 (47), two enzymes known to
promote atherosclerosis (48,49). Thus, the apoCIII-
containing diabetic LDL with reduced sphingomyelin con-
tent likely displays increased susceptibility for hydrolysis
by group IIa and group V sPLA2.

We also showed that LDL isolated from subjects with
type 2 diabetes had more disialylated apoCIII and less

monosialylated apoCIII compared with control subjects.
Furthermore, the relative contribution of apoCIII2 in-
creased with increasing apoCIII content. The results also
showed an inverse correlation in diabetics between apo-
CIII/apoB molar ratio in LDL and LDL diameter. ApoCIII-
containing LDL has been shown to be larger in size and
richer in triglyceride than LDL without apoCIII (2,36).
Thus, the results might indicate that diabetics with high
apoCIII in LDL also have apoCIII-free small dense LDL.
Indeed, recent results show that the kinetics of apoCIII1 and
apoCIII2 are the strongest correlate of the expression of the
small, dense LDL phenotype (22). We also showed that the
sialylation of apoCIII was important for its proinflammatory
properties. The sialylation of proteins, and especially of
apolipoproteins, is poorly understood, and the molecular
mechanism(s) that explains how increased sialylation influ-
ences the cellular response remains to be elucidated.

Lee et al. (50) showed that apoCIII was associated with
plasma triglyceride concentration but that VLDL, interme-
diate-density lipoprotein, and LDL with apoCIII were sim-
ilar in diabetic and nondiabetic groups. Because we did
not include a comparable hypertriglyceridemic control
group in this study, we cannot discriminate if the alter-
ations in LDL are because of either the diabetes or the
hypertriglyceridemia.

In conclusion, we have demonstrated features of dia-
betic LDL with high apoCIII that could explain the
proatherogenic role of apoCIII. We showed that increases
in apoCIII content only play a minor role in the increased
proteoglycan binding of diabetic LDL with high apoCIII
and propose that alterations in lipid composition in LDL
with a high endogenous apoCIII/apoB molar ratio allow
apoB to acquire a conformation that is more favorable for
proteoglycan binding. We also propose that our observed
alterations in lipid composition could be caused by an
increased susceptibility of diabetic LDL with high apoCIII to
SMase. Finally, our results suggest that increased levels of
apoCIII sialylation on LDL could also increase the proathero-
genic impact of diabetic LDL with high apoCIII content.
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