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Introduction: Accurate segmentation of tumors and quantification of tumor features are important for
cancer detection, diagnosis, monitoring, and planning therapeutic intervention. Due to inherent noise
components in multi-parametric imaging and inter-observer and intra-observer variations, it is common
that various segmentation methods may produce large segmentation errors in tumor volumes and their
associated radiomic features. The purpose of this study is to carry out the stability analysis for radiomic
features with respect to segmentation variation in oropharyngeal cancer (OPC).
Methods: In this study, 436 contrast-enhanced computed tomography (CT) axial images were collected
from patients with OPC. In order to derive various segmentations of tumor volumes, two additional seg-
mentations were obtained via resizing the original segmented regions of interest (ROIs) based on their
geometric information on the boundary. For three ROI image groups, we calculated 109 radiomic fea-
tures. Then, a logistic regression model was built to investigate the correlation between the radiomic fea-
tures extracted from GTVp and the response to chemotherapy and radiation in terms of overall survival
(OS). Finally, in order to evaluate the stability of each feature with respect to segmentation results, based
on the prediction probabilities, we assessed the inter-rater reliability and reproducibility by calculating
the intra-class correlation coefficients (ICC) and concordance correlation coefficients (CCC).
Results: Most radiomic features in this study varied a lot when the ROIs were not well segmented. For
both the representation agreement and predictive agreement, the ICC and CCC were below 0.5 for all
the features. We still found some robust features with relatively high ICC and CCC compared to most fea-
tures. For example, 25percentile (ICC = 0.38, CCC = 0.37 in representation agreement and ICC = CCC = 0.27
in predictive agreement) is a quantile based feature, which is robust to the extremely high or low values;
and Hu_1_std (ICC = 0.31, CCC = 0.31 in representation agreement) is a feature calculated based on the
first Hu moment, which is invariant to the transformation of ROIs.
Conclusion: In OPC studies, the tumor segmentation variation affects the radiomic features from CT
images in terms of both representation and prediction. Some features that are robust to the extreme val-
ues or invariant to the transformation of ROIs may be treated as radiomic markers to assist with OPC
treatment monitoring and prognostic prediction.
� 2019 Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Medical imaging has been widely used for the management of
head and neck cancers, serving as the gold standard for pre-
therapy staging and post-therapy tumor control assessment [1].
As a consequence, thousands of medical imaging data are gener-
ated daily that are yet to be explored [2]. The emerging technology
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of ‘radiomics’ (extracting quantitative imaging features from rou-
tine imaging data through a series of image processing/data-charac
terization algorithms) [3] further leverages existing imaging data
to provide increasing degrees of predictive capacity. However,
radiomic features are often affected by various techniques, includ-
ing image acquisition protocols (e.g., 2D or 3D modes) [4,5], recon-
struction algorithms (e.g., grid size, iteration number, and full
width at half maximum) [6,7], and image preprocessing methods
(e.g., tumor segmentation) [8]. Moreover, the effect of these tech-
niques on radiomic features is still unclear. Thus, a common objec-
tive when using radiomic features is to assess the variability of
radiomic features derived from different techniques.

Delineating a tumor as the volume of interest prior to radiomic
feature extraction is a key rate-limiting step in quantitative imag-
ing analysis [8]. It is common for various segmentation methods,
including manual segmentation and computer-aided segmentation
methods, to produce large under-segmentation and/or over-
segmentation errors due to the high variability of tumor shape,
size, and intensity, and the low contrast between a tumor and
the surrounding tissues. For instance, manual human segmenta-
tion is time-consuming and raises concerns of inter-observer and
intra-observer variability and validation. Semi-automated
approaches, which are more rapid and uniform, are still being val-
idated for applicability in different scenarios [8]. Such segmenta-
tion errors may eventually introduce large errors into the
calculation of radiomic features, leading to bad predictions.

To ensure the reliability of quantitative radiomic features, accu-
rate and robust tumor delineation is essential. Recently, more and
more researches are working on the impact of variations in seg-
mentation on radiomic features for different cancer types. For lung
cancer, inter-observer variability with respect to manual versus
semiautomated segmentation (3D Slicer) was studied in which
semiautomated methods were found to have improved feature
reproducibility in positron emission tomography (PET) image [8].
Textural feature reproducibility with respect to two different semi-
automated segmentation algorithms was also studied, and homo-
geneity, contrast, dissimilarity, and coarseness were found to be
the most reproducible features [9]. For head and neck cancer, dif-
ferent PET segmentation methods (manual, semiautomated, and
fully automated) were compared, and more than half of the radio-
mic features were found to be reproducible [10]. Studies on other
cancer types can be found in the recent review paper [11] and ref-
erences therein. However, most existing studies focused on the PET
images, while only one multi-center study was designed for CT
image [12]. Thus, it is of great importance to pay more attention
to the impact of variations in CT image segmentation.

To that end, our team carried out stability analysis of standard
radiomic features with respect to manual segmentation variability
based on the contrast-enhanced computed tomography (CT) axial
images of 436 patients with oropharyngeal cancer (OPC).
Specifically, we created three sets of tumor segmentation results,
representing manual segmentation results, under-segmentation
results, and over-segmentation results. We assessed the inter-
rater reliability and reproducibility of the three segmentation
results via calculating the intra-class correlation coefficient (ICC)
and concordance correlation coefficient (CCC), which are com-
monly used in existing literature [11]. To test reproducibility, we
assessed the correlation to treatment-related outcomes as a func-
tion of the radiomic features.

2. Material and methods

2.1. Patient demographics and clinical end points

The 436 patients with OPC treated with curative-intent
intensity-modulated radiation therapy (IMRT) at The University
of Texas MD Anderson Cancer Center were drawn from a larger
oropharynx cohort between the years 2005 and 2012. Patients
were retrieved from an internal University of Texas MD Anderson
Cancer Center database after getting approved by the University
of Texas MD Anderson Cancer Center Institutional review board
(IRB). All methods for this study were performed in accordance
with the University of Texas MD Anderson Cancer Center IRB
guidelines and regulations. Being an HIPAA-compliant retrospec-
tive study waived the prerequisite for informed consent. The
records of all the 436 patients were thoroughly screened for speci-
fic demographic data, disease characteristics, treatment details and
outcomes [13]. In particular, the patients’ demographics data
included: gender, age at diagnosis and race. Disease characteristics
encompassed: tumor laterality and oropharynx subsite of origin.
Furthermore, TNM (Tumor, node and metastases) classification
was also provided, where T category described the original (pri-
mary) tumor, as regard its size and extent, per the American Joint
Committee on Caner (AJCC) and Union for International Cancer
Control (UICC) cancer staging system, 7th edition. Similarly, N cat-
egory described whether or not the cancer has reached nearby
lymph nodes, per the AJCC and UICC cancer staging system, 7th
edition, along with the corresponding AJCC stage. Also, individual
patient’s vital status was dichotomously reported as ‘1 = alive’ or
‘0 = dead’, as an indicator for overall survival (OS) status. More
details about the patient demographics and clinical information
can be found in the work of Elhalawani et al [13].

2.2. Image acquisition

Contrast-enhanced CT images were performed independently in
the course of pre-treatment diagnostic work-up according to insti-
tutional protocol. The contrast-enhanced CT images were restored
from the patients’ electronic medical records, with a section thick-
ness of 1–5 mm (median: 1.25 mm in 84.7% of the cases) and an X-
ray tube current of 100–584 mA (220 mA for 68.1% of the patients)
at 100–154 kVp (120 kVp for 66% of the patients). Most of the CT
scans (92%) were obtained using GE Medical Systems scanners,
LightSpeed16 (55.2%) and LightSpeed VCT (27.4%) models. The dis-
play field of view was 25 cm; axial images were acquired by using
a matrix of 512 � 512 pixels and reconstructed with a voxel size of
0.048828 cm� 0.048828 cm along the x-axis and y-axis. Forty-four
patients had CT scans with a slice thickness (Z-dimension) that was
not equal to 1.25 mm (range 0.5 to 5 mm). One hundred and
twenty milliliters of contrast material were injected at a rate of
3 ml sec�1, followed by scanning after a 90-s delay [13].

2.3. Image preprocessing

Some preprocessing steps, including smoothing, normalization,
and resampling, were applied on the raw CT images. In order to
implement these steps, an open infrastructure software platform,
named ”IBEX” [14], were considered here. Specifically, the Gaus-
sian smoothing method and histogram matching method [15]
were selected for the smoothing step and normalization step,
respectively. For those forty-four CT scans with a slice thickness
not equal to 1.25 mm, the UpDown-Sampling method was adopted
to make all the images with the consistent slice thickness, i.e.,
1.25 mm.

2.4. Manual segmentation of regions of interest (ROIs)

We performed manual segmentation by using commercial
treatment planning software VelocityAI 3.0.1. Gross tumor vol-
umes (GTVs) for the primary tumor (GTVp) constituted our regions
of interest (ROIs) for this project. The segmentation result of one
randomly selected patient is shown in Fig. 1. Tumor volumes were



Fig. 1. Illustration of manual segmentation result. (a) original CT image; (b) CT image with tumor highlighted in red; (c) segmented tumor ROI image.
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manually segmented on each individual patient’s diagnostic
contrast-enhanced CT axial images and simulation CT images by
the collaborators independently. They were blinded to relevant
clinical meta-data, and a radiation oncologist (H.E.) revised the
segmentation according to the regulations that we followed for
previous projects [16]. The segmentation process was governed
by the guidelines of the International Commission on Radiation
Units and Measurements, report 83. Segmentation primarily relied
on the findings from physical examination, fiberoptic nasopharyn-
golaryngoscopy and imaging studies.

2.5. Under-segmentation and over-segmentation ROIs

To understand the effects of different segmentation results on
radiomic features, the original manually segmented ROIs were
resized based on their geometric information, i.e., normals, on
the surface. For simplicity, instead of considering 3D surface, here
we focused on the middle slice along the Z-axis, which contains the
biggest area and the most information of ROI. In particular, the nor-
mal to a 2D closed curve at a point P is a vector that is perpendic-
ular to the line that is tangential to that closed curve at P. The
normalized outer-pointing normal, NP, of point P on the boundary
was calculated by using the corresponding neighboring points. In
order to guarantee the uniqueness of normal vectors, only the nor-
malized outer-pointing normal was considered here.

For a given interior point Q inside the ROI, the distance between
points P and Q , denoted as dPQ , was calculated. The aim of intro-
ducing point Q is to address the potential issue when the closed
ROI curve is with concave shape. Assuming that the resize scale
factor is a, the point Pnew on the curve of the resized ROI was cal-
culated as

Pnew ¼ Pþ ða� 1ÞdPQNP: ð1Þ
According to the formula (1), it can be found that, the distance

between new point P new and P strongly depends on the distance
between P and the chosen point Q . Then, for the ROI in concave
shape, the point Q is useful since it can be chosen to make sure
the new generated ROI boundary is a simple closed curve without
self-crossing.

The pipeline to construct modified segmented ROIs is illustrated
in Fig. 2. The over-segmentation and under-segmentation groups
were created by respectively setting different resize scale factors.
We tried multiply scale ratios, like 0.7, 0.8, 0.9 & 1.1, 1.2, 1.3. How-
ever, we found that the down-stream analysis results don’t vary
too much across different scale ratios for neither under nor over
segmentations. Here we only conducted all the down stream anal-
ysis for two resize scale factors: a = 1.2 and a = 0.8.

2.6. Radiomic features

For each ROI of the three segmentation groups, we used an
internally developed application to import the ROI data file and
then calculated 109 radiomic features, including first-order fea-
tures, second-order textural features, shape descriptors, and
wavelet-based features from each ROI. Detailed features can be
found in Tables A1–A4 (Supplementary materials). For a total of
109 image features, 9 first-order features (extracted from image
intensity statistics) were calculated directly from volume intensity
histograms; 13 second order gray-level co-occurrence matrix
(GLCM) features, originally described by Haralick et al. [17], were
implemented based on the gray-level matrix metric; 45 moment-
based shape descriptors were calculated by the Hu-moments
[18] and Zernike-moments [19] for each 2D slice along the
Z-direction. The number of moment features shown in Table A3
(Supplementary materials) is 6; noticing that some first-order
operators (e.g., max, min, and std.) were applied on each moment
across all the slices; 42 wavelet-based features were calculated by
local binary pattern (LBP) and threshold adjacency statistics (TAS)
[20] For example, 5 first-order features were calculated from the
LBP map [21], 3 first-order features were calculated from the local
feature maps derived based on TAS [22], and 9 first-order features
were calculated from the wavelet-based local feature maps. The
detailed formulas for first-order features, shape based features,
GLCM features, and wavelet features can be found in existing
literature[23,24].

2.7. Prediction based on radiomic features

Our first goal was to identify a set of top radiomic features in
the prediction of OS of patients with OPC among all 109 imaging
features using receiver operating characteristic (ROC) analysis
across the three segmented ROI groups. We ranked these features
according to their area under the ROC curve (AUC) values. For each
of the three ROI image groups, the top 10 ranked features were
cross-validated by the following scheme of leave 1/3-out cross-
validation:



Fig. 2. Illustration of manual segmentation rescaling. (a) original ROI; (b) annotation; (c) normalized outer-pointing normals; (d) rescaled ROIs (blue: over-segmentation ROI
with scale factor 0.8; green: under-segmentation ROI with scale factor 1.2). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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1. Split the data into a training set (2/3 of the data) and a test set
(1/3 of the data) of the data.

2. Fit the logistic regression model using the training set and apply
the model to the test data in order to calculate the AUCs.

3. Repeat this process 1000 times and average out the obtained
AUCs.

The validation set is not needed here because there is no any
tuning parameters when we apply the logistic regression model
on each feature for classification. The aim of repeating the splitting
process for 1000 times is to average the obtained AUC for each fea-
ture, which can avoid the instability of one-time data random split-
ting. We also set the random seeds in the R code for reproducibility.

2.8. Stability analysis

Our primary goal was to evaluate the stability of each radiomic
feature with respect to the segmentation results. We investigated
two aspects of stability: feature representation and prediction.
For each aspect, we assessed the inter-rater reliability and repro-
ducibility via calculating the ICC [25] and CCC [26].

The ICC is a statistical measure that ranges between �1 and 1,
indicating null and perfect reproducibility, respectively. ICC values
for the intra-observer segmentations were obtained from one-way
analysis of variance. Similarly, the CCC ranges between �1 and 1. A
value of 1 corresponds to perfect agreement; a value of �1 corre-
sponds to perfect negative agreement; and a value of 0 corresponds
to no agreement. In terms of the representation of each feature, the
ICC and CCC were calculated directly based on the feature values
from each pair of the ROI groups. Whereas in terms of feature-
based prediction, the ICC and CCC were calculated based on the
predictive probabilities derived from the logistic regression model.
In particular, there were three comparisons for each feature: orig-
inal ROI group vs. over-segmentation ROI group; original ROI group
vs. under-segmentation ROI group; and over-segmentation ROI
group vs. under-segmentation ROI group. For each comparison,
the point estimate and lower and upper bounds of the confidence
interval of both ICC and CCC were calculated by using the R pack-
age agRee (various methods for measuring agreement).
3. Results

3.1. Patients’ disease information

The information regarding the patients’ disease is included in
Table A5 (supplementary materials). Of note, for this cohort, the
median age was 58 years, 86% (n = 374) were male, and 90.8%
(n = 395) were Caucasian. There was a relatively even distribution
of patients when considering smoking status, where 21.6%, 37%,
and 41.4% were current, former, or never smokers, respectively.
Regarding HPV status, 52.4% (n = 228) were HPV+, 10.8% (n = 47)
were HPV-, while the rest (36.8%) had ‘unknown’ HPV status coded
in the electronic medical records. Primary tumors most commonly
originated at the base of the tongue or the tonsillar region (52.6%
and 39.5%, respectively). For the entire patient cohort, tumors were
most commonly locally advanced neoplasms (95.5%).

3.2. Top 10 radiomic features in term of AUC

For each ROI segmentation group, the top 10 radiomic features
with highest AUCs are listed in Table 1. First, in the original ROI
group, there are two features with AUCs above 0.7, including
GLCM_sum_var, and GLCM_contrast. There is no features with this
level of AUC in neither under- nor over-segmentation ROI groups.
This may indicate that the original ROI segmentation group outper-
forms the other two segmentation groups in OS prediction. Second,
the average AUCs for the top 10 features in the over-segmentation
ROI group are lower than those in the under-segmentation ROI
group. This result may be reasonable since the magnification of
these over-segmentation ROIs may increase heterogeneity within
the ROI. It might increase prediction errors when a specific feature
might be sensitive to such heterogeneity. Third, the GLCM-based
features (e.g., GLCM_sum_var) performed much better in the orig-
inal ROI group than in the under- and over-segmentation groups.
This may indicate that these traditional features are sensitive to
segmentation results in terms of prediction of OS.

3.3. Top radiomic features in terms of ICC & CCC

Table 2 presents the ICC and CCC values of the top 5 radiomic
features with highest representation agreement across all three
ROI groups. The lower and upper bounds of the 90% confidence
intervals of ICC and CCC are presented as well. In order to show
the prediction performance for all the top features, the correspond-
ing averaged AUCs are also presented in Table 2. In comparing the
original ROI group with each resized ROI group, the ICC and CCC
associated with the top feature are almost the same and both are
above 0.3. Moreover, both the ICC and CCC are close to 0 for most
features. Considering the comparison of the original ROI group and
the under-segmentation ROI group, the top feature is Hu_1_std,
which is a feature based on the Hu Moment and invariant to the
transformation of ROIs. Considering the comparison between the



Table 2
Top 5 features with highest representation agreement when comparing each pair of ROI groups. Original = original segmentation ROI group; Under = under-segmentation ROI
group; Over = over-segmentation ROI group; ICC = intra-class correlation coefficient; C.I. = 90% confidence interval; CCC = concordance correlation coefficient; AUC = averaged
AUCs of features in each of the two ROI groups respectively.

Original vs Under Feature ICC C.I. AUC Feature CCC C.I. AUC

Hu_1_std 0.31 [0.24, 0.38] [0.58, 0.62] Hu_1_std 0.31 [0.24, 0.38] [0.58, 0.62]
TAS_6_std 0.12 [0.04, 0.20] [0.64, 0.58] TAS_6_std 0.13 [0.06, 0.21] [0.64, 0.58]
TAS_5_std 0.12 [0.04, 0.20] [0.60, 0.59] TAS_5_std 0.13 [0.05, 0.20] [0.60, 0.59]
TAS_4_std 0.09 [0.01, 0.17] [0.59, 0.57] TAS_4_std 0.09 [0.01, 0.16] [0.59, 0.57]
TAS_2_std 0.07 [�0.01, 0.15] [0.58, 0.58] TAS_2_std 0.07 [�0.01, 0.15] [0.58, 0.58]

Original vs Over Feature ICC C.I. AUC Feature CCC C.I. AUC

25percentile 0.38 [0.31, 0.44] [0.65, 0.64] 25percentile 0.37 [0.30, 0.44] [0.65, 0.64]
TAS_1_min 0.13 [0.05, 0.21] [0.64, 0.56] max 0.07 [0.02, 0.13] [0.65, 0.59]
TAS_2_min 0.12 [0.05, 0.20] [0.58, 0.58] entropy 0.07 [�0.01, 0.15] [0.69, 0.58]
TAS_3_min 0.12 [0.04, 0.20] [0.56, 0.59] kurtosis 0.06 [�0.03, 0.13] [0.63, 0.58]
TAS_6_min 0.12 [0.04, 0.20] [0.58, 0.56] median 0.04 [�0.03, 0.12] [0.64, 0.56]

Under vs Over Feature ICC C.I. AUC Feature CCC C.I. AUC

TAS_1_min 0.06 [�0.01, 0.14] [0.59, 0.56] max 0.02 [�0.02, 0.07] [0.60, 0.59]
TAS_1_std 0.04 [�0.04, 0.12] [0.57, 0.57] entropy 0.02 [�0.06, 0.09] [0.60, 0.58]
median 0.02 [�0.06, 0.10] [0.54, 0.56] median 0.02 [�0.06, 0.09] [0.54, 0.56]

LBP_median 0.01 [�0.07, 0.09] [0.54, 0.54] std 0.01 [�0.07, 0.09] [0.60, 0.58]
std 0.01 [�0.07, 0.09] [0.60, 0.58] Hu_1_max 0.00 [�0.00, 0.00] [0.60, 0.62]

Table 1
Top 10 features with highest AUCs in prediction of OS.

Original ROI Under-segmentation ROI Over-segmentation ROI

Feature AUC Feature AUC Feature AUC

1 GLCM_contrast 0.71 Zernike_3_std 0.69 Zernike_8_min 0.67
2 GLCM_sum_var 0.70 Hu_5_std 0.68 Zernike_5_max 0.67
3 Entropy 0.70 TAS_5_max 0.67 TAS_4_max 0.65
4 Zernike_7_max 0.68 Zernike_4_max 0.65 Hu_3_std 0.65
5 GLCM_diff_var 0.66 Hu_2_std 0.65 DWT_25percentile 0.65
6 Std 0.66 DWT_75percentile 0.65 Zernike_3_std 0.65
7 GLCM_var 0.66 LBP_min 0.65 25percentile 0.64
8 GLCM_entropy 0.65 25percentile 0.62 Zernike_4_std 0.63
9 TAS_2_max 0.65 Min 0.62 Hu_1_max 0.62
10 25percentile 0.65 Zernike_8_std 0.62 75percentile 0.61
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original ROI group and the over-segmentation ROI group, the top
feature is 25percentile, which is robust to the extremely high
and low values. In addition, in a comparison of the under- and
over-segmentation ROI groups, the ICC and CCC values associated
with the top feature are both below 0.1, which means that all of
the features show very low representation agreement between
the two resized ROI groups. Fig. 3 confirms this finding based on
the Bland–Altman plot.

The ICC and CCC values of the top 5 features with highest pre-
dictive agreement in comparing each pair of ROI groups are listed
in Table 3, along with the lower and upper bounds of the 90% con-
fidence intervals of ICC and CCC. Here the corresponding averaged
AUCs of all the top features are presented as well. In comparing the
original ROI group with the under- and over-segmentation ROI
groups, the top feature is the same, i.e., 25percentile, with the
ICC and CCC associated with the top feature being the same,
0.27. Thus, we may have the following findings: (i) First, 25per-
centile is very robust to heterogeneity when comparing the feature
representation of the original ROI group and the over-
segmentation ROI group; and (ii) Second, 25percentile is among
the top 10 features with highest AUCs when predicting OS from
all the three ROI groups [27]. Therefore, feature 25percentile can
be treated as a potential radiomic marker with robustness of seg-
mentation variability. Another interesting finding is that GLCM-
based features (e.g., GLCM_ang_2m) have low ICC and CCC (<0.3)
when comparing the original ROI group and each resized ROI
group; whereas they have high ICC and CCC (>0.9) when compar-
ing the two resized ROI groups. In spite of the high ICC and CCC,
these GLCM-based features were found to show poor performance
when predicting OS according to their AUCs. Specifically, for both
under- and over-segmentation groups, all the prediction probabil-
ities are above 0.6 and most of them are around 0.8, which leads to
a serious false positive error. Thus, in the comparison between
under- and over-segmentation groups, all the top features are ran-
dom predictors although they have high predictive agreement.
Fig. 4 confirms this finding based on the Bland–Altman plot and
scatter plot.

4. Discussion

This study carried out stability analysis for various radiomic
features with respect to segmentation results based on the
contrast-enhanced CT axial images of 436 patients with OPC. The
segmentation variability was illustrated via resizing the original
segmented ROIs and constructing under- and over-segmentation
ROIs. For the three segmentation ROI groups, 109 radiomic features
were calculated, and a logistic regression model was built to find
the top features with high AUCs in predicting OS. ICC and CCC were
adopted to assess the representation and predictive agreement
when comparing each pair of segmentation ROI groups.

According to the results, it can be induced that the radiomic fea-
ture values vary a lot when the ROIs are not well segmented.
Specifically, in comparing the original ROI group and the resized
ROI group, both the ICC and CCC were below 0.5 for all the features
(see Table 2 and Fig. 3), and close to 0 for most of the features. Nev-
ertheless, we still found some robust features with relatively high



Fig. 3. Bland-Altman plot (bottom left) and scatter plot (top right) for the top feature with highest representation agreement when comparing each pair of ROI groups. (a)
Hu_1_std (ICC = 0.31, CCC = 0.31) in original vs. under-segmentation; (b) 25percentile (ICC = 0.38, CCC = 0.37) in original vs. over-segmentation; (c) TAS_1_min (ICC = 0.06) in
under-segmentation vs. over-segmentation; (d) max (CCC = 0.02) in under-segmentation vs. over-segmentation.

Table 3
Top 5 features with highest representation agreement when comparing each pair of ROI groups. Original = original segmentation ROI group; Under = under-segmentation ROI
group; Over = over-segmentation ROI group; ICC = intra-class correlation coefficient; C.I. = 90% confidence interval; CCC = concordance correlation coefficient; AUC = averaged
AUCs of features in each of the two ROI groups respectively

Original vs Under Feature ICC C.I. AUC Feature CCC C.I. AUC

25percentile 0.27 [0.19, 0.34] [0.65, 0.62] 25percentile 0.27 [0.22, 0.32] [0.65, 0.62]
TAS_6_max 0.14 [�0.12, 0.24] [0.57, 0.57] GLCM_sum_var 0.02 [�0.01, 0.06] [0.70, 0.61]
TAS_9_std 0.08 [�0.11, 0.15] [0.63, 0.54] GLCM_var 0.01 [�0.02, 0.05] [0.66, 0.62]

Zernike_3_std 0.05 [�0.08, 0.08] [0.57, 0.69] kurtosis 0.01 [�0.07, 0.09] [0.63, 0.58]
Zernike_6_max 0.03 [�0.08, 0.09] [0.56, 0.57] Hu_2_std 0.01 [�0.06, 0.07] [0.57, 0.65]

Original vs Over Feature ICC C.I. AUC Feature CCC C.I. AUC

25percentile 0.27 [0.19, 0.34] [0.65, 0.64] 25percentile 0.27 [0.21, 0.32] [0.65, 0.64]
DWT_min 0.16 [�0.09, 0.17] [0.61, 0.54] Hu_1_max 0.01 [�0.07, 0.08] [0.58, 0.62]
TAS_8_max 0.14 [�0.04, 0.16] [0.63, 0.58] GLCM_corr 0.01 [�0.03, 0.04] [0.63, 0.59]

Zernike_8_max 0.11 [�0.03, 0.19] [0.64, 0.58] median 0.00 [�0.03, 0.04] [0.64, 0.56]
Zernike_6_min 0.07 [�0.01, 0.15] [0.62, 0.58] kurtosis 0.00 [�0.01, 0.01] [0.63, 0.58]

Under vs Over Feature ICC C.I. AUC Feature CCC C.I. AUC

GLCM_ang_2m 0.97 [0.97, 0.98] [0.53, 0.54] GLCM_ang_2m 0.97 [0.97, 0.98] [0.53, 0.54]
TAS_8_min 0.97 [0.97, 0.98] [0.57, 0.55] GLCM_inv_diff_m 0.95 [0.94, 0.96] [0.60, 0.60]

LBP_25percentile 0.96 [0.89, 0.92] [0.60, 0.60] GLCM_diff_var 0.95 [0.94, 0.95] [0.60, 0.60]
LBP_75percentile 0.96 [0.82, 0.96] [0.56, 0.54] GLCM_sum_entropy 0.93 [0.92, 0.94] [0.59, 0.58]
GLCM_inv_diff_m 0.95 [0.94, 0.96] [0.60, 0.60] GLCM_entropy 0.93 [0.92, 0.94] [0.60, 0.59]
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ICC and CCC compared to most features. For example, 25percentile
(ICC = 0.38, CCC = 0.37) is a quantile based feature, which is robust
to the extremely high or low values; and Hu_1_std (ICC = 0.31,
CCC = 0.31) is a feature calculated based on the first Hu moments,
which is invariant to the transformation of ROIs. Thus, in order to
avoid the influence of under- and over-segmentation errors, in the
future it will be helpful to seek or develop some features that are
either robust to the extreme values or invariant to the transforma-
tion of ROIs.

Besides the feature representation agreement, it is also of great
importance to discuss the link with segmentation variability and
predictive accuracy. According to the results, it was found that
the prediction performance decreased when the ROIs were either
under- or over-segmented in terms of averaged AUCs. For example,



Fig. 4. Bland-Altman plot (bottom left) and scatter plot (top right) for top feature with highest predictive agreement when comparing each pair of ROI groups. (a)
25percentile (ICC = 0.27, CCC = 0.27) in original vs. under-segmentation; (b) 25percentile (ICC = 0.27, CCC = 0.27) in original vs. over-segmentation; (c) GLCM_ang_2m
(ICC = 0.97, CCC = 0.97) in under-segmentation vs. over-segmentation.
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the averaged AUCs of traditional GLCM-based features could
achieve around 0.7 for the original ROI group while only 0.6 or
even lower for the other two ROI groups (see Table 1). Although
these GLCM-based features had really high predictive agreement
in comparing under- and over-segmentation ROI groups, they
could only be treated as random features since there was serious
false positive error in the prediction probabilities. In addition, it
was also found that the prediction performance for the under-
segmentation ROI group outperformed that for the over-
segmentation ROI group, which could be caused by the additional
heterogeneity introduced by the over-segmented ROIs. Thus, it will
be meaningful to derive some features that are not sensitive to the
heterogeneity.

Finally, we still found some reasonable features that had rela-
tively high predictive agreement in terms of ICC and CCC when
comparing the original ROI group with other two groups. For
example, 25percentile was the top one feature with highest ICC
and CCC in both two comparisons (see Table 3). It also showed
great consistency across different ROI groups in terms of averaged
AUCs (see Table 3). Therefore, the feature 25percentile, which is
robust to segmentation variability in terms of both representation
and prediction, may be treated as a potential radiomic marker to
assist with OPC treatment monitoring and prognostic prediction.

Some future research directions are considered here. First,
although we have 3D ROI data, this paper conducted all the com-
parisons and analysis only on the selected 2D slice. In the future,
it will be interesting to see all the stability analysis based on the
entire 3D ROIs. Second, besides the segmentation step, some other
steps, e.g., normalization, in the preprocessing pipeline are also
have potential influences on the feature’s representation and pre-
diction accuracy. So it will be also interesting to conduct all the sta-
bility analysis on those steps. Third, as we mentioned in the image
acquisition section, two different scanner models (LightSpeed16
and LightSpeed VCT models in GE medical system scanner) were
considered. For some other image modalities, e.g. PET image, the
stability analysis of radiomic features with respect to image acqui-
sition protocol variation has been investigated [4]. Thus, it is of
great importance to conduct the stability analysis on CT images
in oropharyngeal cancer studies.
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