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Abstract: The single nucleotide polymorphism (SNP) rs4148727 in ABCB1 (encoding p-glycoprotein)
is associated with lipid levels; however, its association with type 2 diabetes (T2DM) and its the genetic
correlation with lipid profiles and T2DM are unclear. We included 2300 participants from 593 families.
A generalized estimating equations (GEE) model and Cox regression models were used to estimate
the SNP’s effects on T2DM and lipid profiles. The participation of the SNP in T2DM pathogenesis
through lipid-associated pathways was tested using mediation analysis. The G allele of the SNP
was related to a 32% (6–64%, p = 0.015) increase in T2DM risk. It was also associated with a 10%
(1–20%, p = 0.029), 17% (3–32%, p = 0.015), and 4% (1–7%, p = 0.015) increment in total cholesterol
(TC), triglyceride (TG), and apolipoprotein A (Apo-A) concentrations, respectively. According to the
mediation analysis, only TG (6.9%) and Apo-B (4.0%) had slight but significant mediation effects
on the total impact of the SNP on T2DM. The pleiotropic effects of the ABCB1 variant on T2DM
and lipids likely act via different pathways. The biological mechanisms should be verified in a
future study.

Keywords: pleiotropic effects; lipid profiles; type 2 diabetes; mediation

1. Introduction

Globally, one of the fastest growing diseases is type 2 diabetes mellitus (T2DM) [1].
The International Diabetes Federation (IDF) estimated that in 2109, 463 million adults had
diabetes worldwide, which could exceed 700 million by 2045 [2]. China has the largest
number of patients with diabetes in the world, and its incidence is still increasing [3]. Type
2 diabetes can lead to serious complications, such as cardiovascular disease and neuropathy,
bringing a heavy disease burden to patients and society [1].

Several large-population based studies, conducted mainly using multiple ethnicities,
have reported that lipid profiles are associated with risk of diabetes [4–9]. Furthermore,
a bidirectional relationship between lipid profiles and diabetes has been reported [5,6].
High levels of triglycerides reduce insulin sensitivity and islet β cell function through
lipid toxicity, inflammatory responses, and enhanced endoplasmic reticulum (ER) pressure,
resulting in a glucose metabolism disorder in vivo (via inflammation or ER pressure path-
ways) [8,10,11]. By contrast, insulin reduces the production of free fatty acids by adipocytes,
inhibits the production of very low-density lipoprotein (VLDL) in liver cells, and increases
the production of low-density lipoprotein (LDL) [10,12,13]. At the same time, an abnor-
mally elevated blood glucose level will be transformed into excessive fatty acids through
the lipid regeneration pathway, combining with VLDL in liver cells to form LDL, which
will be secreted [10–13]. Therefore, prediabetes or diabetes is usually accompanied by
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dyslipidemia because of decreased insulin secretion [10,13,14]. The comorbidity between
lipid profiles and T2DM remains a common public health concern.

Family-based genetic studies have reported that lipid profiles and T2DM have a
certain heritability, and some studies suggest that blood lipid profiles and T2DM might
share a genetic basis [8,14–16]. Previous studies have reported that some adiponectin
genes and some genes in the obesity pathway may influence both lipid levels and type 2
diabetes [17,18]. In addition, this genetic correlation was different among different ethnic
groups and previous studies were conducted in western countries [14–16]. However, to
date, the common genetic risk factors and biological pathways between T2DM and lipid
profiles have not been fully determined. Intestinal epithelial cells, hepatocytes, and renal
tubules express ABCB1 (formerly MDR1), which encodes ATP binding cassette subfamily
B Member 1 (also known as p-glycoprotein (P-GP)), a protein involved in lipid synthesis
and reabsorption from the intestine [19,20]. ABCB1 has been reported to have relationship
with lipid metabolism susceptibility [20,21]. The association between genetic variation of
ABCB1 and lipid levels remained after adjustment for age, sex, body mass index, statin use
and underlying ischemic heart disease [19]. However, the association between T2DM and
the non-synonymous single nucleotide polymorphism (SNP) rs4148727 in ABCB1 remains
to be explored, including its regulation and mechanism of action on blood lipids and T2DM.
Further exploration of the pleiotropic effect of ABCB1 on lipid metabolism and T2DM will
help us to better understand the shared genetic basis of lipid metabolism and T2DM, so as
to accurately prevent the co-occurrence of these two diseases.

Therefore, this study aimed to investigate the relationship between rs4148727 T2DM
and lipid profiles (i.e., apolipoprotein B (APO-B), apolipoprotein A (APO-A), high-density
lipoprotein (HDL) cholesterol (HDL-C), LDL cholesterol (LDL-C), total triglycerides (TG),
and total cholesterol (TC)) in Chinese families, to explain ABCB1’s pleiotropic genetic effect.

2. Materials and Methods
2.1. Population and Study Design

This was a cohort study. We selected the study population from the Fangshan/Family-
based Study in China (FISSIC) program. The FISSIC program was conducted in Fangshan
District (39◦30′~39◦55′ N, 115◦25′~116◦15′ E), Beijing, from 2005 to 2017. The FISSIC
project is a community-based, hospital-centered genetic epidemiological study of multiple
chronic diseases. The study design was an ischemic stroke, type 2 diabetes, hypertension
spectrum-based family study involving the proband, their siblings, and their parents. Cases
diagnosed as chronic diseases are the probands; After obtaining their informed consent,
their parents, siblings, and unaffected spouses were recruited and screened using the
proband initiated contact method. Disease diagnosis is verified at the central hospital.
Demographic data were collected through questionnaires and longitudinal follow-up was
arranged. Clinical examinations were conducted through the Preventive Health Network
in the study area, and blood samples were collected from all enrolled participants. Samples
are sent to a central laboratory for processing, testing and genotyping. Genotypic data were
then combined with clinical, environmental, and follow-up data for analysis. The proband-
initiated contact method was used to recruit 8323 participants from 5727 families. All
participants provided written informed consent, physical measurements, and completed
a questionnaire. The study details and design have been published previously [22–24].
The Ethics Committee of Peking University Health Science Center approved the study
(IRB00001052-13027; Beijing, China (22 July 2013)).

The participants were followed up mainly by telephone and the community health reg-
istration system, death registration system, and medical insurance claims system. Follow-
up variables included height, weight, blood pressure and fasting blood glucose, as well as
behavioral factors, such as smoking, alcohol consumption, and exercise. Until 2021, the
current median follow-up time was 6.4 years.

In this study participants were excluded if they were diagnosed with T2DM
at < 40 years old (n = 882), had prior medical histories of serious mental disease or
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type 1 diabetes (n = 36), were stated to have T2DM (n = 2559) based only on glucose
testing at baseline or were self-reported, or had missing biological data (n = 2546).
Thus, 2300 participants were analyzed in the present study. See Figure S1 for the
details of study population selection. Our analysis used baseline genotypes and lipid
profiles of these participants, as well as the incidence of diabetes during follow-up.

2.2. Definition of Phenotypes and Indicators

In the baseline survey, biochemical measurements were conducted using samples of
fasting venous blood, and lipid profiles (APO-B, APO-A, HDL-C, LDL-C, TG, and TC)
were collected. Qualified technicians at the Laboratory of Molecular Epidemiology in
the Department of Epidemiology at Peking University measured the biochemical indexes,
including lipid profiles and fasting blood glucose (FBG). The questionnaire (administered
by trained staff) was used to collect basic participant characteristics such as age, sex,
smoking and alcohol use (smoking and non-smoking; drinkers and non-drinkers), medical
history (coronary heart disease, hypertension, diabetes, and type of diabetes), and history
of medication. The physical examination measured height and weight, from which the
body mass index (BMI) was calculated (weight/height2 (kg/m2)). At the follow-up stage,
participants were asked to fast for at least 8 h prior to the collection of venous blood. We
defined diabetes as one of the following: (I) Fasting plasma glucose (FPG) ≥ 126 mg/dL;
(ii) hemoglobin (HbA1c) > 6.5%; or (iii) continued use of antidiabetic medication.

2.3. Genotyping

An Amplicon ThermoEx 500 PCR instrument (Amplicon, Brighton, UK) was used to
amplify a genomic fragment of the ABCB1 gene. High-throughput, rapid, and accurate
genotyping of the PCR fragment was then carried out using matrix-supported laser re-
lease/ionization time-of-flight mass spectrometry (MALDI-TOF MS, San Diego, CA, USA).
The analysis included a negative (blank) control and positive controls (standard reference
G:G, A:G, and A:A genotypes at rs4148727). 100% reproducibility of the 5% random sample
and a call rate > 95% validated the genotyping procedure.

2.4. Statistical Analysis

The mean ± standard deviation was used to express the continuous variables, which
were compared using a paired T test. Proportions were used to describe classification
variables, and groups were compared using McNemar’s chi-squared tests. Chi-squared
statistics were also used to test the Hardy-Weinberg equilibrium (HWE). The HWE for
rs4148727 had a p value of 0.156, showing no deviations for rs4148727. Then, rs4148727 was
assumed to follow an additive inheritance model, and the genotypic values were encoded
as the count of the G risk allele. The relationship between the number of risk alleles and
disease risk was demonstrated as linear using an additivity model.

We used a generalized estimating equations (GEE) model to estimate the correlation
between rs4148727 and lipid parameters. Multilevel Cox regressions accommodating a
family-based design were used to calculate the hazard ratio (HR) and 95% confidence
interval (CI) for the association between genotype categories and the incidence of diabetes
(dichotomous outcome). Potential confounders, such as coronary heart disease, hyperten-
sion, BMI, drinking status, smoking status, sex, and age, were used to adjust all models.
The results were shown as percentage change (PC) and 95% CIs per G allele of rs4148727,
associated with an increased risk of T2DM and the lipid concentration, or per 1 mmol/L
lipid concentration and increased risk of T2DM. Subgroup analyses were performed for
smokers and non-smokers, drinkers and non-drinkers, and participants with a BMI ≥ 24
and BMI < 24, respectively (the results are shown in the supplementary data).

To evaluate whether ABCB1 affects T2DM pathogenesis via lipid-mediated path-
ways, we used counterfactual-based mediation analysis. The mediation comprised two
regressions. First, T2DN, as the binary outcome (T2DM), was regressed on the exposure
(rs4148727), the proposed mediator (lipid parameters), and other relevant covariates. The
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second regression was for the lipid parameters (mediator), which were regressed on the
exposure and the same covariates. The two regressions could reveal the effects mediated
by lipids (indirect effect) and by pathways other than those involving the mediators (direct
effect). The mediated proportion mediated was calculated using:

HRd × (HRd − 1)/(HRd × HRi − 1),

in which HRd represents the direct effect odds ratio and HRi represents the indirect effect
odds ratio. The statistical tests were all two-tailed, and statistical significance was indicated
by a p value < 0.05. The R Programming Language (R Foundation for Statistical Computing,
Vienna, Austria) was used to carry out all the statistical analyses.

3. Results
3.1. Population Characteristics

Table 1 summarizes the basic demographic characteristics of the study population.
A total of 2300 adults were assessed. After a mean follow-up of 6.4 years, 344 patients
were newly diagnosed with T2DM. Compared with people without T2DM, patients with
T2DM (n = 344) tended to be male and older, with higher TG and BMI, but lower HDL-C
concentrations. Patients with T2DM were more likely to have coronary heart disease, while
there were more smokers and drinkers among the controls.

Table 1. Baseline characteristics of newly diagnosed patients with type 2 diabetes (T2DM).

Characteristics Total Participants T2DM Cases Non-T2DM p Value

number 2300 344 1956
Age, mean (SD), years 58.41 ± 8.94 59.09 ± 9.02 58.29 ± 8.92 0.137

Female sex, n (%) 1185 (51.5) 118 (34.3) 927 (47.4) 0.014
BMI, mean (SD), kg/m2 26.02 ± 3.75 26.86 ± 3.88 25.87 ± 3.71 <0.001

TC (mmol/L) 3.00 ± 0.95 3.02 ± 1.03 3.00 ± 0.93 0.684
TG (mmol/L) 1.39 ± 1.32 1.68 ± 1.88 1.34 ± 1.19 <0.001

LDL-C (mmol/L) 2.04 ± 0.75 2.06 ± 0.79 2.04 ± 0.75 0.601
HDL-C (mmol/L) 0.90 ± 0.32 0.86 ± 0.30 0.91 ± 0.32 0.009
Apo-A (mmol/L) 1.09 ± 0.32 1.09 ± 0.33 1.09 ± 0.32 0.940
Apo-B (mmol/L) 0.71 ± 0.24 0.71 ± 0.26 0.70 ± 0.24 0.506

Smoker, n (%) 1183 (47.7) 140 (40.7) 943 (48.2) 0.013
Alcohol consumer, n (%) 985 (43.5) 130 (37.8) 885 (45.2) 0.043

Hypertension (%) 443 (19.5) 65 (18.9) 378 (19.3) 0.503
Coronary heart disease (%) 224 (9.7) 64 (18.6) 160 (8.2) <0.001
No. of rs4148727 G alleles

(%)
0 1720 (74.8) 237 (68.9) 1483 (75.8) 0.004
1 558 (24.3) 106 (30.8) 452 (23.1)
2 22 (1.0) 1 (0.2) 21 (1.1)

BMI: body mass index; TC: total cholesterol; TG: triglyceride; LDL-C: low-density lipoprotein cholesterol; HDL-C:
high-density lipoprotein cholesterol; Apo-A: apolipoprotein A; Apo-B: apolipoprotein B. Notes: The mean± standard
deviation was used to report continuous variables. McNemar’s chi-squared test and a paired t-test were used to
analyze the differences between controls and cases.

3.2. Baseline Lipid Parameters and the Risk of T2DM

The risk of T2DM was associated significantly with baseline lipid parameters Apo-B,
HDL-C, and TG. Increased TG and Apo-B by 1mmol /L increased the risk of T2DM by 12%
(3–20%, p = 0.003) and 6% (5–8%, p = 0.008), respectively. In contrast, an increase of HDL-C
of 1 mmol/L decreased the risk of T2DM by 38% ( −58% to 7%, p = 0.020) (Table S1).

3.3. Pleiotropic Effects of ABCB1 rs4148727 on T23DM and Lipid Parameters

Table 2 shows the risk of different lipid parameters and T2DM associated with
rs4148727. Under the adjusted additive model, baseline Apo-A, TG, and TC were signifi-
cantly and positively associated with rs4148727. Per allele-G of rs4148727 was associated
with higher levels of TC, TG, and Apo-A (10% (1–20%, p = 0.029), 17% (3–32%, p = 0.015),
and 4% (1–7%, p = 0.015, respectively).
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Table 2. The association of ABCB1 rs4148727 with baseline incident T2DM and lipid parameters.

Variables β (SE) PC (%) (95% CI) p Value

Lipid parameters
TC 0.097 (0.045) 10.19 (0.88–20.35) 0.029
TG 0.154 (0.063) 16.65 (3.10–31.98) 0.015

LDL-C 0.053 (0.035) 5.44 (−1.55–12.93) 0.133
HDL-C 0.015 (0.015) 1.51 (−1.43–4.54) 0.313
Apo-A 0.037 (0.015) 3.77 (0.76–6.87) 0.015
Apo-B 0.007 (0.011) 0.70 (−1.45–2.90) 0.542

T2DM
model1 0.274 (0.112) 31.52 (5.60–63.81) 0.015
model2 0.276 (0.114) 31.79 (5.40–64.78) 0.015

β: estimate; SE: standard error; PC: percentage change; CI: confidence interval; TC: total cholesterol; TG:
triglyceride; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; Apo-
A: apolipoprotein A; Apo-B: apolipoprotein B; T2DM: type 2 diabetes mellitus. Notes: Adjustments for body
mass index, coronary heart disease, hypertension, drinking status, smoking, sex, and age and the lipid parameter
model. Adjustments for HDL-C. LDL-C, TG, TC, body mass index, coronary heart disease, hypertension, drinking
status, smoking, sex, and age were made for T2DM model 2.

After adjustment for the covariates, the additive model showed that per allele-G was
associated significantly with an increased risk of T2DM (by 32% (6–64%, p = 0.015). After
adding the lipid parameters as covariates, rs4148727 remained positively correlated with
T2DM (32%, 5–65%, p = 0.015).

To further explore the pleiotropic effects of rs4148727on lipid and T2DM, we performed
subgroup analysis for the effects of drinking status, smoking, and BMI. The results showed
that the associations between rs4148727 and certain lipid parameters disappeared. Per
allele-G of rs4148727 was associated with A 37% (8–76%, p = 0.011) increase in the risk of
T2DM in the BMI ≥ 24 subgroup was associated with the per allele-G of rs4148727. A 46%
(1–111%, p = 0.046) increase in the risk of T2DM in the smoker subgroup was associated
with the per allele-G of rs4148727 (Table S2).

To determine whether ABCB1 is involved directly in T2DM pathogenesis or through
lipid pathways, mediation analysis was carried out. In the mediation analysis, we combined
the models for T2DM and lipid parameters to determine the indirect effect explained by
lipid parameters and the direct effect exerted by other pathways. The results showed
that the indirect was negligible, but there was evidence of a direct effect. TG and Apo-
B showed small but significant effects, mediating 6.9% and 4.0% of the total effects B,
respectively (Table 3).

Table 3. Mediation analysis of the association between the ABCB1 rs4148727 and T2DM risk mediated
by lipid parameters.

Variables Direct Effect
HR (95%CI)

Indirect Effect
HR (95%CI)

Total Effect HR
(95%CI) PM (%)

TC 1.40 (1.13–1.67) 0.99 (0.84–1.07) 1.40 (1.13–1.67) 0
TG 1.30 (1.04–1.66) 1.09 (1.04–1.15) 1.40 (1.13–1.68) 6.9

LDL-C 1.35 (1.09–1.71) 1.05 (0.99–1.10) 1.40 (1.13–1.67) 0
HDL-C 1.36 (1.10–1.72) 1.04 (0.98–1.09) 1.40 (1.13–1.67) 0
Apo-A 1.40 (1.14–1.76) 1.00 (0.98–1.02) 1.40 (1.13–1.67) 0
Apo-B 1.34 (1.08–1.70) 1.06 (1.03–1.09) 1.40 (1.13–1.68) 4.0

OR: odds ratio; CI: confidence interval; PM: proportion mediated; T2DM: type 2 diabetes mellitus; TC: total
cholesterol; TG: triglyceride; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein
cholesterol; Apo-A: apolipoprotein A; Apo-B: apolipoprotein B. Notes: all models were adjusted for age, sex,
smoking and drinking status, hypertension, coronary heart disease, and body mass index. Lipid parameters with
significant indirect effects are shown in bold.
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4. Discussion

In this study, we found that ABCB1 rs4148727 was significantly associated with the
lipid profile and the risk of T2DM, suggesting that rs4148727 has pleiotropic effects on
lipid profile and T2DM in a Chinese population. We observed that lipid metabolism plays
a mediating role in the association between rs4148727 and T2DM, complementing the
evidence for a relationship between diabetes mellitus and lipid profiles.

The common genetic components of lipid profiles and T2DM have not been fully
explored [16]. In this study, rs4148727 was found to increase the risk of elevated TC, TG,
and APO-A levels, and was associated with an increased risk of T2DM. A study based
on two large cohorts in the Netherlands (the Life Lines cohort and the PREVEND cohort)
found that 15 lipid loci showed a pleiotropic association with glucose traits at the SNP
level, suggesting complex genetic regulation and metabolic interplay between lipids and
glucose [16]. A prospective study of 3474 people without diabetes found that during 5 years
of follow-up, a larger increase in fasting serum TG levels in nondiabetic individuals was
associated with a higher genetic risk load and increased insulin resistance enhanced this
effect [25]. A study in India found that lipids and blood sugar traits were related; however,
the results based on genetic variants found that only TG caused a 1.15% variation in the
homeostatic model assessment for insulin resistance (HOMA-IR), 1.53% in the homeostasis
model assessment of β-cell function (HOMA-β), and 1.18% in fasting insulin [26]. However,
there is also inconsistent evidence. Another study based on the Danish Inter99 cohort found
that individuals with alleles associated with elevated TG indeed had elevated TG levels but
no increased risk of developing T2DM during a five-year follow-up [27]. More evidence is
needed to determine the shared genetic mechanism between lipid profiles and T2DMs.

Although the underlying mechanism of the association between rs4148727, lipid pro-
files, and T2DM has not been reported, indirect evidence has been found in previous
studies. P-glycoprotein (P-gp, encoded by ABCB1) is an efflux pump expressed by renal
tubular cells, hepatocytes, and intestinal epithelial cells. Using mice, P-gp was suggested to
be involved in the reabsorption of cholesterol from the intestines [19]. Moreover, choles-
terol biosynthesis was blocked in cell lines with inhibited P-gp activity [28]. In addition,
plasma lipid levels are associated with polymorphisms in human ABCB1 in both men
and women [29–32]. ABCB1 contains four SNPs (rs4148727, rs3213619, rs1128503, rs3842),
among which rs3842 has been suggested by genome-wide association study analysis to
be a susceptibility gene locus for T2DM. In a 2012 Korean study of 121 patients with is-
chemic stroke and 291 controls, ABCB1 polymorphisms were associated with dyslipidemia
(rs1128503, p < 0.05), diabetes mellitus (rs3842, p < 0.05), and ischemic stroke (rs4148727,
p < 0.05) [33]. To the best of our knowledge, the present study was the first to find the
association between rs4148727 and T2DM. Many genomic regions exert pleiotropic effects
onT2DM and lipids; therefore, more research is required to determine the clusters of genes,
variants, pathways, and actionable targets.

The correlation betweenrs4148727 and lipid parameters was found to be different in
different subgroups. In BMI < 24 individuals, the correlation between rs4148727 and lipid
parameters disappeared, which might have resulted from an insufficient sample size and
lower statistical power. However, in participants with BMI ≥ 24, rs4148727’s associations
with TG, TC, and T2DM remained stable. Previous studies have suggested that the function
of ABCB1 might be affected by obesity, suggesting a future direction for the exploration of
ABCB1 function [34]. The correlation between rs4148727 and lipid parameters was higher in
non-smokers and alcohol non-consumers than in smokers and alcohol consumers. Probably
because of the publicity and popularization of community health knowledge, smoking and
drinking, as recognized risk factors for cancer and cardiovascular disease, are considered
as bad lifestyle habits by community residents. These subjects actively avoided smoking
and drinking during follow-up, increasing health monitoring, and as a result, smokers and
drinkers had lower blood lipid levels. The underlying mechanism remains to be explored.
In addition, the association between rs4148727 and T2DM remained stable in patients with
BMI ≥ 24 and smokers. Clinical studies have shown that tobacco smoke and the existence
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of polymorphisms in the ABCB1 gene can be risk factors conferring susceptibility to certain
chronic diseases [35]. Therefore, findings might be clinically useful for disease prevention,
and suggest that people with the risk allele should control their weight and stop smoking.

The family-based design was the main strength of this study, which attenuated pop-
ulation stratification by offering similar environmental exposure. At the same time the
family-based design can better integrate the results of the linkage and association analyses.
The family-based design may also cause some problems, such as difficulty in recruiting
subjects, especially for late-onset diseases. In addition, the similar genetic backgrounds
of affected and unaffected members of a family may lead to overmatching, increasing the
sample size.

However, the study had limitations. First, the population of this study is mainly repre-
sentative of rural areas in northern China. A larger and more representative population is
needed to further verify the results of this study. Second, the confounding factors suggested
by previous research were adjusted in the data analysis of the study; however, there might
still be unknown confounding factors causing bias. Third, considering that it is difficult to
collect subjects in the family lineage study, the sample size of this study is limited, and more
samples need to be collected in the future to reinforce the statistical robustness of this study.
In addition, due to the lack of previous relevant studies, our exploration of the biological
mechanism of pleiotropy is limited, further studies on disease mechanisms are needed to
provide evidence for potential molecular and biological pathways of gene pleiotropy.

5. Conclusions

In summary, we found that varying lipid profiles and T2DM risk effects were related
to the pleiotropic effects of ABCB1 SNP rs4148727, and smokers and individuals with a
BMI ≥ 24 are more vulnerable to the effects. The results provided evidence of genetic
predispositions to T2DM and varying lipid profiles.
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390/metabo12090875/s1, Figure S1: The flow chart of the study population selection. Table S1: Baseline
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