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Rapid varieties classification of crop seeds is significant for breeders to screen out seeds
with specific traits and market regulators to detect seed purity. However, collecting
high-quality, large-scale samples takes high costs in some cases, making it difficult
to build an accurate classification model. This study aimed to explore a rapid and
accurate method for varieties classification of different crop seeds under the sample-
limited condition based on hyperspectral imaging (HSI) and deep transfer learning. Three
deep neural networks with typical structures were designed based on a sample-rich
Pea dataset. Obtained the highest accuracy of 99.57%, VGG-MODEL was transferred
to classify four target datasets (rice, oat, wheat, and cotton) with limited samples.
Accuracies of the deep transferred model achieved 95, 99, 80.8, and 83.86% on the
four datasets, respectively. Using training sets with different sizes, the deep transferred
model could always obtain higher performance than other traditional methods. The
visualization of the deep features and classification results confirmed the portability of the
shared features of seed spectra, providing an interpreted method for rapid and accurate
varieties classification of crop seeds. The overall results showed great superiority of HSI
combined with deep transfer learning for seed detection under sample-limited condition.
This study provided a new idea for facilitating a crop germplasm screening process
under the scenario of sample scarcity and the detection of other qualities of crop seeds
under sample-limited condition based on HSI.

Keywords: crop seeds, hyperspectral imaging, classification model, spectroscopic analysis, deep learning

INTRODUCTION

High-quality seeds are conducive to continue excellent species and guarantee crop yield and quality.
Due to the significant differences in climate, soil, and water resources in different regions, breeders
have pointedly developed many crop varieties to adapt to the local planting environment. Growth
rules, stress resistance, and biochemical characteristics of different varieties of crops vary greatly
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(Du et al., 2017; Zhang et al., 2020). For varieties that are still
in the breeding stage, screening a variety with specific traits
often needs to observe the phenotypic traits of the offspring
plants, which is time-consuming and labor-intensive. As a seed
carries all the genetic genes that develop into a plant, seed
classification can be an alternative for screening variety with
specific traits. For varieties that have been promoted widely,
different varieties of seeds frequently circulate in the market,
tending to be easily mixed, making the seed purity unable to
be guaranteed. Conventionally, the manual vision inspection
method based on the external phenotypic traits of seeds, like
color, texture, and shape, is subjective and boring (Rashid and
Singh, 2000). The more accurate methods based on the internal
biochemical properties of seeds, such as DNA molecular markers
(Ye et al., 2013) and protein electrophoresis techniques (Shuaib
et al., 2007), rely on chemical agents and complex operation.
Accordingly, it is necessary to develop a rapid and accurate
method for the varieties classification of crop seeds.

As hyperspectral imaging (HSI) can obtain spectral and spatial
location information simultaneously during one scan, it has
the capability of probing the internal and external phenotypic
traits of samples rapidly (Sendin et al., 2018). HSI has gained
tremendous and continuous attention in breed screening (Feng
et al., 2017), plant phenotyping (Qiu R. et al., 2018; Sun et al.,
2019), and environment monitoring (Stuart et al., 2019). In
seed-related tasks like determination of seed quality (Shrestha
et al., 2016), diagnosis of seed diseases (Wu et al., 2020) and
detection of seed components (Caporaso et al., 2018), HSI
has been utilized as a rapid and accurate alternative. Since
hyperspectral image contains a large amount of redundant
collinear information, diverse linear and non-linear machine
learning approaches, such as partial least squares discriminant
analysis (PLS-DA), extreme learning machine (ELM), and least
square support vector machines (LSSVM), were introduced to
couple the relationship between seed spectra and a category label
or component content (Caporaso et al., 2018; Kong et al., 2018;
Weng et al., 2018).

In recent years, with the attention from academia and industry
increasing, deep learning as the new state-of-the-art machine
learning approach has also been applied in the spectral analysis
field gradually (Jin et al., 2018; Wei et al., 2018; Yu et al., 2018).
Compared with traditional approaches, deep learning can extract
various low-level and high-level features automatically through
a multilayered stack network structure (LeCun et al., 2015).
This advantage can reduce the requirement of prior knowledge
from specific tasks and human effort in feature engineering,
which is very beneficial for analyzing redundant and high-
dimensional spectral data.

However, typical deep learning models, such as deep
networks, generally have serious big data dependencies.
A high-performance deep network requires enough samples
to adequately learn the feature patterns hidden in the massive
and redundant spectral data. Unfortunately, in some tasks
like seeds screening with specific traits during the breeding
process or quality detection of precious agricultural products,
it is challenging to establish a large-scale, high-quality dataset
because of the high cost of obtaining and labeling samples

(Lee et al., 2016; Xu et al., 2017; Sun et al., 2019). Besides, the
precious data acquired at great expense is straightforward to
be outdated and difficult to be reused in new tasks, which
dramatically limits the rapid application of well-performing
methods like the deep network in spectral analysis. Another
problem is that the deep networks developed for different tasks
are generally based on a common assumption, that is, training
and testing data lie in the same feature space and have the same
distribution (Weiss et al., 2016). Therefore, even for similar tasks,
the tiny differences in the distribution of different datasets will
make the network not reusable.

The emergence of transfer learning brings hope for solving
the above two problems. The transfer learning method allows
the training and testing data to lie in different feature spaces. It
mainly investigates how to transfer useful knowledge from the
relevant source domain to the target domain (Pan and Yang,
2010). This property not only relieves the demand for a large
number of samples in the target task but makes reusing the
shared knowledge like model structure and feature representation
in the source domain possible. The target task can be expected
completed, using limited samples and computation overhead.
Deep transfer learning is the product of the combination of deep
learning and transfer learning. It aims to study how to use the
deep neural network to transfer knowledge and has been widely
used in the computer vision field (Mohanty et al., 2016; Ghazi
et al., 2017; Tan et al., 2018).

However, the deep transfer learning technique has not
received much attention in the field of spectral analysis. Most
studies perform task analysis at a pixel level based on remote
sensing images, such as poverty mapping (Xie et al., 2016), image
superresolution processing (Yuan et al., 2017), and crop yield
prediction (Wang et al., 2018). For ground spectral images, Liu
et al. (2018) showed the effectiveness of deep transfer learning
in predicting soil clay content in different soils. For seeds of
different crops, there are also certain similarities, for example, the
structure of the seeds. Most seeds contain a seed coat, an embryo,
and endosperm. These parts contain some common chemical
components, like starch, fat, and enzymes, which are necessary
for a seed to develop into a seedling (Beníteza et al., 2013; Zhao
et al., 2018). This commonality may lead to the similarities among
the spectral characteristics of different crop seeds. Therefore,
when constructing a deep model for seed varieties classification
of a specific crop based on HSI, the knowledge in the model is
possible to be transferred to the classification tasks of other crop
seeds. In this study, we aimed to investigate the feasibility of the
deep transfer learning technique for the varieties classification of
different crop seeds based on HSI.

The specific objectives were: (1) to develop a deep network
model with excellent performance based on a sample-rich
dataset; (2) to transfer common knowledge to the varieties
classification of other crop seeds with sample-limited datasets
through the deep network; (3) to evaluate the impact of training
set size on the performance of transfer learning; and (4) to
visualize the transferring process of deep network and the
classification results. We hope to provide a common framework
for rapid and accurate varieties classification of crop seeds under
sample-limited condition through this study.
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MATERIALS AND METHODS

Sample Collection and Dataset
Description
This study investigated five kinds of crop seeds, including pea,
rice, oat, wheat, and cotton. All images were obtained by the
same line-scanning near-infrared HSI system, covering a spectral
range from 874.41 to 1,733.91 nm with a resolution of 5 nm (Wu
et al., 2018). An ImSpector N17E imaging spectrograph (Spectral
Imaging Ltd., Oulu, Finland) and a Xeva 922 CCD camera
(Xenics Infrared Solutions, Leuven, Belgium), configured with
an OLES22 lens (Spectral Imaging Ltd., Oulu, Finland), were the
critical components of this system. In addition, the illumination
was provided by two 150 W tungsten halogen lamps (3900e
Lightsource; Illumination Technologies Inc.; West Elbridge, NY,
United States) set symmetrically under the camera. Multiple seed
samples placed on a dark plate flowed a miniature conveyer belt
to achieve batch detection. A hyperspectral image, containing 256
spectral channels, could be obtained through each scan by this
system and then calibrated using the following formula.

Ic =
Ir − Id

Iw − Id

where Ir and Ic represented the raw hyperspectral image and
the corrected image, Iw and Id represented the white and dark
reference image. Each seed in the hyperspectral image was
regarded as a region of interest (ROI). To get the mask of
all the ROIs, simple threshold segmentation and morphological
operation were performed on the channel image with the
strongest contrast between the background and the seeds. Then
the spectral vectors of all pixels within each ROI were extracted,
and the bands in head and end ranges were removed to avoid
noise introduced by the instability of the system. The reserved
spectra with a range of 975–1,646 nm were further processed
by wavelet transform (WT). The spectrum vector, representing a
seed sample, was finally obtained by averaging all the transformed
pixel spectra in one ROI.

Five spectra datasets with similar but different distributions
were established in this study. Their detailed collection
parameters and description information were summarized in
Table 1. It should be noted that different parameters were set
for imaging different crop seeds clearly since different seeds have
different external phenotypes, such as size, height, and color.
The most abundant dataset, the Pea dataset, contained a total
of 10,420 samples from four varieties named Baiyan (2697),

TABLE 1 | Description of the source and target datasets.

Datasets Parameters1 #Variety #Total #Training #Validation #Testing

Source Pea (15.5, 3, 12) 4 10,420 6,252 2,084 2,084

Target Rice (9, 3, 11) 3 750 150 300 300

Oat (15.2, 3, 11.5) 4 1,000 200 400 400

Wheat (15, 3, 13) 5 1,250 250 500 500

Cotton (14, 3, 11.5) 7 1,750 350 700 700

Parameters1 represents parameters of the hyperspectral imaging system, including
the distance between the camera and the seed plate (cm), the exposure time of the
camera (ms), and the speed along the x-axis of seeds movement (mm.s−1).

Heiyan (2,848), Changshouren (2,849), and Zhewan 1 (2,026),
which were widely cultivated in southern China. Peas of the first
two varieties generally need to be roasted before eating, while
the latter two can be directly eaten due to the high water and
sugar content. All the seeds were purchased from the Lvfeng seed
company in Hangzhou, Zhejiang, China, in 2018. The dataset
corresponding to each variety was randomly divided into a
training set, a validation set, and a testing set at a ratio of 3:1:1.
Then those independent subsets with the same category were
merged and shuffled. Because of its large volume of data, the Pea
dataset was selected as the source dataset.

The other four sample-limited datasets were used as the target
datasets designed to contain different numbers of seed varieties
for investigating their impact on the transferring effect. Each
variety in these datasets contained 250 samples and was further
divided into three subsets at a ratio of 1:2:2 to reflect sample-
limited condition.

The first target dataset consisted of 750 spectral samples of
three varieties of rice seeds, including Yongyou 9, Nuoyou 6211,
and Zhongbaiyouhuazhan. These varieties are all hybrid rice with
indica property and belong to hybrid indica-japonica, hybrid
indica-glutinous, and hybrid indica rice, respectively. All seeds
were collected by the College of Agriculture and Biotechnology,
Zhejiang University in 2019.

The second dataset was the Oat dataset with the same number
of varieties as the source dataset. It contained 1,000 samples
from four varieties named Bayan 6, Dingyan 2, Muwang, and
Jizhangyan 4, which were widely planted in the grasslands
of northern China. The seeds harvested in 2017 were kindly
provided by the Academy of Agricultural and Animal Sciences,
Inner Mongolia, China.

A total of 1,250 samples from five varieties of wheat seeds,
including Zhenmai 9, Annong 1,124, Longpingmian 6, Shannong
102, and Weilong 169, formed the Wheat dataset. These five
varieties were extensively cultivated in the winter wheat regions
of southern China. The seed samples were friendly provided
by Anhui longping high-tech seed industry Co., Ltd., in Hefei,
Anhui, China, in 2018.

The fourth dataset, the Cotton dataset, was consisted of 1,750
samples of seven varieties of cotton seeds. They were Jinxin 5,
Jinxin 7, Shennongmian 1, Xinjiangzaomian 1, Xinluzaomian 29,
Xinluzhong 52, and Xinluzhong 42. These varieties were mainly
grown in Xinjiang Uyghur Autonomous Region, the largest
cotton-producing region in China. And the cotton seeds were
collected by Shihezi University in 2016.

In this study, multiple deep neural networks with different
structures were first developed, using the source dataset. Then the
optimal deep model was selected as the model to be transferred
by comparing the classification accuracies. The transfer learning
technique was investigated to transfer useful knowledge from the
optimal deep model to the analysis of four target datasets. The
training set of each target dataset was further transformed into 10
datasets to analyze the impact of sample size on transfer learning
by randomly selected 10–100% samples from the original
training set. Four commonly used multivariate analysis methods,
including two linear methods: linear discriminant analysis (LDA)
and PLS-DA, and two non-linear methods: multilayer perceptron
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(MLP) and support vector machines (SVM), were introduced
as the benchmarks.

Deep Classification Models Development
In the computer vision field, the huge image library, ImageNet,
has spawned many excellent deep learning models like VggNet,
InceptionNet, and ResNet (Krizhevsky et al., 2012). The
specialness of VggNet is using small convolution kernels.
The designers believed that using multiple convolution layers
equipped with a 3 × 3 kernel to replace a convolution layer with
a 5× 5 kernel could reduce the network parameters and increase
non-linear mapping, thereby increasing the representation
capability (Simonyan and Zisserman, 2015). ResNet is also
an outstanding network with many variations. What makes it
unique is the introduction of residual learning. The residual
module directly bypasses the input of a particular layer to the
output, which makes ResNet only need to learn the residual
between the input and the output (He et al., 2016). This
manner solves the problem of performance degradation when
the network depth increases. InceptionNet was born in the
ILSVRC2014 competition. The most significant innovation of
this network is introducing a module called “Inception” to
replace the typical structure of the convolution layer, cascading
the pooling layer (Szegedy et al., 2015). This Inception module
contains four branches with different receptive fields to perceive
the input patterns. By utilizing this module, InceptionNet can
increase its width and learn more local features of different scales.

Inspired by these network structures, three one-dimensional
deep neural networks were developed for the source dataset in
this study, as shown in Figure 1.

The first one was VGG-MODEL. Two V blocks (Figure 2),
containing two convolution layers equipped with a 1 × 3 kernel
were designed to extract the feature patterns hidden in the
spectral vectors. A batch normalization (BN) and an activation
function, exponential linear unit (ELU), were inserted after each
convolution to reduce the overfitting risk and speed up the
convergence process. The number of convolution filters was set
to 16 for the first V block and 32 for the second V block. A max-
pooling layer was placed behind each V block to reduce the
feature dimension. A flatten layer was set after the last max-
pooling layer to convert its output feature into a one-dimensional
vector form. Layer Fc1 and Fc2, consisting of 64 and 4 neurons,
were used to perform the classification task like traditional
neural networks. BN and ELU were also used behind Fc1. VGG-
MODEL finally output the probability of the input spectral vector
belonging to each category through a softmax function.

The second one was RES-MODEL. The first part of this
network was similar to half of the V block, which contained a
convolutional layer followed by BN, ELU, and a max-pooling
layer. The difference was that the convolutional layer used 32
kernels, with a size of 1 × 7. The second part consisted of four
cascaded residual modules, R block. This module was similar
to the V block but added a transmission channel from input to
output (Figure 2). The number of convolutional filters in the first
R block was 32 and was doubled as the blocks going deeper. An
average pooling layer was placed after the last R block to average
the features in the spectral dimension. This layer could decrease

the parameters in fully connected layers, thereby reducing the
overfitting risk. The last part of RES-MODELDE was similar to
that of VGG-MODEL but was equipped with one fully connected
layer, Fc1, with four neurons.

The third one was INCEPTION-MODEL. Having the same
structure as that of RES-MODEL, the first part of this network
utilized 16 convolution filters, with a size of 1 × 3. It was
followed by four I blocks (Figure 2), each of which cascaded a
max-pooling layer except the last one. The number of filters in
the first I block was 16 and was doubled as the blocks going
deeper. As shown in Figure 2, the I block transmitted its input
to four parallel branches. Three of them were convolution layers
with 1 × 1, 1 × 3, and 1 × 5 kernels, respectively. They were
employed to extract local spectral features at different scales.
A 1 × 1 convolution was placed before 1 × 3 and 1 × 5
convolution to reduce the number of input channels. The last
branch performed the max-pooling operation. The end of the
INCEPTION-MODEL was similar to that of RES-MODEL.

To fairly compare the performance, these three deep networks
employed cross-entropy as the objective function and used
stochastic gradient descent (SGD) optimization algorithm. The
learning rate and momentum were all set to 0.001 and 0.9,
respectively. After debugging many times, the number of samples
input into the network at one time, batch_size, was set to 128,
and the number of training iterations, epoch, was set to 400. All
networks were trained, using the training set of the source dataset.
The model for each network that obtained the highest accuracy
on the validation set was saved. The effectiveness of the model
was evaluated on the testing set. The detailed parameters of these
three networks were shown in Supplementary Table 1.

Transfer Learning Strategy
As an emerging tool in machine learning, transfer learning
was proposed to remit the requirement of models for sufficient
training data by transferring available knowledge from the
relevant source domain to the target domain (Pan and Yang,
2010). The typical process of transfer learning was shown in
Figure 3A. We defined a domain D = {X , P(X )} where X
represented a feature space and P(X ) represented its probability
distribution, and a task T = {y, f (.)}where y represented a label
space and f represented a transformed function. When the task
T was performed in the domain D, f modeled P(y| x), where y ∈
Y , x ∈ X . In the transfer learning field, there are two domains:
source domain DS with task TS and target domain DT with
task TT . The main goal of transfer learning is to improve the
performance of the transformed function in the target domain
fT(.), using the knowledge learned in DS and TS, where DS (or
TS) and DT (or TT) are different but relevant.

For deep transfer learning, f (.) is various deep models
designed for specific tasks. These deep models contain rich
knowledge. Some knowledge is closely related to the specific task,
while others can be shared between different tasks or objects.
Deep transfer learning aims to transfer the common knowledge
into the current target task to avoid learning this knowledge
repeatedly, thus achieving rapid modeling. The structure of
the model and the weight of the network are two important
types of knowledge contained in deep models. In this study,
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FIGURE 1 | The structures of three developed deep neural networks. The orange, brown, and red cubes represented the V block, R block, and I block in Figure 2,
respectively. The dark green and light green cubes represented the max-pooling layer and the average pooling layer, respectively. The yellow and blue cubes
represented a one-dimensional convolutional layer, BN cascade activation function ELU, respectively. The striped bars represent flattened layers, and the light blue
bars represented fully connected layers. The length, width, and height of the cubes and the bars in the Figure were drawn according to the dimensional size of data
in each layer for a more intuitive display.

FIGURE 2 | The inner structures of three typical blocks.

the structure of the optimal deep model based on the source
dataset was reused to simplify and shorten the modeling process.
Since the number of seed varieties varies with different crops,

the number of neurons in the output layer of the model was
modified correspondingly. As the initial weights greatly influence
the convergence speed and the final performance of the model,
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FIGURE 3 | Transfer learning strategy. (A) The typical process of transfer learning. (B) The deep transfer learning strategy in this study. The yellow cubes of different
sizes represented multiple cascaded convolution layers. The striped bars and blue bars still represented the flattened layer and the fully connected layer.

this study transferred the weights of the optimal deep model
based on the source dataset to the models based on the target
datasets according to the network structure. Since the number of
output neurons in the deep models based on the Rice, Wheat,
and Cotton dataset differed from that in the source model, the
weights of the last fully connected layer in these models needed
to be randomly initialized.

During the transferring process, the weights of the layers
before the flatten layer were frozen, and the target datasets
were used to fine-tune the subsequent fully connected layers
(Figure 3B). The first reason was that the target dataset was
too small to retrain the entire network. The second reason was
that the convolutional layers before the flatten layer might have
extracted important feature patterns of the seed spectra, which
could be reused in the target tasks. According to the size of the
target datasets, the batch_size of the transferred network was
set to 3, and the learning rate was set to 0.0001. The other
configurations were the same as the source model.

Comparison Methods
In this study, the deep neural networks based on the source
dataset and four target datasets were compared with conventional
linear and non-linear multivariate analysis methods to confirm
their validities in spectra analysis from both data-rich and data-
poor sides.

LDA aims to find an optimal projected direction for raw
variables. In the projected feature space, samples between classes
hold maximal dispersion, while samples within classes hold
minimal dispersion (Gerhardt et al., 2019). This projection

manner facilitates transforming the samples into a linear
separable state. The number of variables in the projected space,
n_lda, is the only parameter that needs to be adjusted. We set
n_lda to 1–20 and selected the optimal n_lda according to the
classification performance of LDA.

The core principle of PLS-DA is also to conduct a linear
transformation. Unlike LDA, the transformed latent variables
(LVs) can carry the primary information hidden in the raw
variables and maximize the correlation between the independent
and the dependent variables (Kandpal et al., 2016). In spectral
analysis, the number of LVs, n_pls-da, that minimize the sum
of predicted residual error was usually selected. The range of
n_pls-da was also set to 1∼20 in this study.

SVM can enable raw linear inseparable variables to transform
into a linear separable space through a non-linear kernel function
(Gerhardt et al., 2019). Radial basis function (RBF) kernel was
often used with SVM in many spectral analysis tasks because
of its ability to cluster samples with the same categories closely
and make them linearly separable. In this study, SVM equipped
with RBF kernel was introduced as a non-linear benchmark. Two
parameters, penalty coefficient c and kernel parameter g, were
set to {10, 100, 1,000, and 10,000} and {0.1, 0.01, 0.001, and
0.0001}, respectively.

MLP is a fully connected artificial neural network with one
or more hidden layers (Taud and Mas, 2017). To obtain the
optimal performance, a total of 32 structures were attempted to
process the source dataset, which contained one to four hidden
layers, and each was equipped with eight configurations for nodes
in hidden layers. The number of nodes in hidden layers of the
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structure with four hidden layers was set to [(200-100-50-25),
(180-90-45-23), (160-80-40-20), (140-70-35-18), (120-60-30-15),
(100-50-25-13), (80-40-20-10), (60-30-15-8)], and was simplified
as the number of the hidden layer decreases. For the target
datasets, 24 same structures with one to three hidden layers were
tried to get the optimal classifier.

In addition, to further verify the role of the shared features
for effective transfer learning, a hyperspectral dataset in the
remote sensing field, Indian-Pines1 was introduced. It is a
145 × 145 × 224 cube, containing 10,249 effective pixels of 16
categories, whose size was similar to that of the Pea dataset. These
pixels were also randomly divided into a training set, a validation
set, and a testing set at a ratio of 3:1:1. The number of the bands
for analysis was reduced to 200 by removing the bands absorbed
by water. To eliminate the influence of factors, such as the deep
model, the structure of the optimal deep model based on the
source Pea dataset was used to train the Indian-Pines dataset and
was recorded as Model 0. Then, Model 0 was transferred to the
other four target datasets.

The parameters of all models in this study were adjusted
toward the optimal states, using the corresponding validation
set. All models were coded, using python language in Spyder
3.2.6 environment (Anaconda, Austin, TX, United States). The
famous machine learning library, Sklearn2, was introduced to
implement the conventional models, and the popular deep
learning framework, Keras, was employed to program deep
models. A Win10 64-bit operating system with Inter (R)
Core (TM) i5-8500 CPU and 8 GB RAM constituted the
primary platform.

Model Visualization
Model visualization is significant for intuitively understanding
the decision-making mechanism and clearly showing the
computational result. In this study, visualization techniques
were investigated from the perspective of the training process
of the deep model and the classification results of the crop
seeds. The raw seed spectra of different datasets and the feature
representation of different layers in the optimal deep models
based on the source Pea dataset and the deep model based on
the Indian-Pines dataset were extracted. Their distributions were
then expressed by t-distribution stochastic neighbor embedding
(t-SNE). As an effective method for high-dimensional data
visualization, t-SNE converts the similarity between sample
points in high-dimensional space into Gaussian joint probability
form and constructs a similar probability distribution in low-
dimensional space (van der Maaten and Hinton, 2008). The
ability to maintain the local structure of data is conducive to
observing data patterns in low-dimensional space. Moreover, the
advantage of HSI to obtain both spatial and spectral information
was fully exploited in this study. The label of the sample predicted
by the deep model was projected into the corresponding
spatial position and represented by different colors to establish
classification maps of crop seeds.

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_
Scenes
2https://scikit-learn.org/stable/

RESULTS AND DISCUSSION

Spectroscopic Analysis
The average spectra with the standard deviation of different
varieties of seeds in five datasets were shown in Figure 4.
Obviously, these spectral curves possessed similar fluctuation
patterns and locations of peaks and valleys. The absorption bands
at approximately 1,119.45 and 1,206.92 nm were caused by the
second overtone of carbohydrates (C–H stretch) (Wu et al.,
2019). The peak near 1,307.97 nm (in the range of 1,254 –
1,348 nm) was reported to be associated with the combinations of
the first overtone of amide B (N–H stretch) and the fundamental
vibrations of amide II and III (C–N stretch and N–H in-plane
bend) (Daszykowski et al., 2008). The band at 1,469.95 nm (in
the region of 1,410–1,502 nm) could be attributed to the first
overtone of Amide A (N–H stretch), which might be the critical
band for protein detection (Daszykowski et al., 2008; Ribeiro
et al., 2011). The similar chemical components in different
crop seeds led to the similarities between the spectral curves.
This meant that certain shared features might be hidden in the
spectral information of different crop seeds, which provided the
possibility for effective transfer learning.

However, for different varieties of seeds of the same crop, some
heterogeneities also existed between their spectral curves due to
the content difference of chemical components. For example,
the spectral curves of four varieties of pea seeds were naturally
divided into two groups. Baiyan and Heiyan formed one group,
while Changshouren and Zhewan 1 formed the other one. This
trend was consistent with the classification results according to
the edible manner resulted from the content difference of sugar
and water. In addition, for the Rice dataset, it was because of
the introduction of the japonica characteristic that the reflectance
of variety Yongyou 9 was quite different from the other two
varieties. Qiu Z. et al. (2018) also confirmed spectra differences
existed between different varieties of rice seeds. Nie et al. (2019)
found the optical characteristics of different varieties of hybrid
okra and luffa seeds were very different. The metabolic analysis
results showed that the content of components of different seeds
varied greatly. The heterogeneity of the spectral features between
different varieties laid the basis for using HSI to classify different
varieties of crop seeds.

Classification Results on Source Dataset
The accuracies and the optimal parameters of all models on
the training set and the testing set of the source dataset were
summarized in Table 2. The overfitting phenomenon for all
models was not serious due to the large-scale training set that
might contain the spectral patterns in the testing set.

The accuracies of three deep models on the testing set
were all above 99%, which was higher than most conventional
methods. Owing to the convolution operation, the deep models
could extract much discriminative information hidden in the
raw redundant spectral data. Their performance superiorities
were predictable. VGG-MODEL, with an accuracy of 99.57%
on the testing set, was slightly conspicuous than the other
two models. Generally speaking, the difficulty of improving
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FIGURE 4 | The average spectra with the standard deviation of five crop seeds.

performance increases with the performance of the model being
better. For example, in the 2014 ILSVRC competition, a 22-layer
InceptionNet won the championship with a top-five error rate of
6.7% that was only 0.6% lower than the runner-up, VGGNet, with
a 19-layer structure (Szegedy et al., 2015). In addition, the high
version of Inception, Inception-v4, achieved a top-five error rate
of 3.08% that was only 0.42% lower than the previous version,
Inception V3 (Szegedy et al., 2016).

Since the structures of the three deep models were
continuously adjusted to the optimal states according to the
source dataset, they possessed different depths. In this study,
INCEPTION-MODEL and RES-MODEL had a deeper structure
than VGG-MODEL. In general, the deeper the model is, the
richer the extracted features are. But this was based on an
enough big dataset like ImageNet, and it should be guaranteed
that the gradient would not disappear during model training.
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TABLE 2 | The classification accuracies and optimal parameters of all the models
on the source dataset.

Methods Parameters2 Training (%) Testing (%)

VGG-MODEL (16, 32, 128, 201) 99.98 99.57

RES-MODEL (32, 32, 64, 64, 128, 194) 99.76 99.14

INCEPTION-MODEL (16, 32, 64, 128, 256, 349) 100 99.09

LDA (1) 99.39 98.90

PLS-DA (20) 87.14 86.90

SVM (104, 10−3) 99.70 99.28

MLP (200, 100, 50, 25) 93.81 93.52

Parameters2 represents (number of major convolution filters, best epoch) for deep
models, (n_lda) for LDA, (n_pls-da) for PLS-DA, (c, g) for SVM, (number of nodes
in hidden layers) for MLP.

Zhang et al. (2019) developed a network with an inception
structure that showed better performance than a comparison
network, Model 3, with a similar structure to VGG-MODEL.
However, the authors also pointed out that the superiority of
the deep model was not in processing small datasets. In their
study, Model 3 could not learn enough effective patterns from
a few samples. The authors also indicated that the performance
of Model 3 improved significantly when the size of the dataset
increased slightly. The source dataset in this study was much
larger than all the datasets in their study and was enough
for VGG-MODEL training. For structures like ResNet, Zhu
et al. (2019) compared the performance of a developed ResNet
with a general deep convolutional neural network on a cotton
dataset. Also, they found that ResNet was not as effective
as the latter one.

The structure of the optimal model for a specific dataset
was the result of a constant tradeoff and adjustment. It was
closely related to the size and distribution of the sample
set. A complex deep network could not always obtain higher
performance than a simple one. In this study, for the source
dataset, VGG-MODEL with the simplest structure and the
shallowest depth won a small victory when faced with the
relatively complex INCEPTION-MODEL and RES-MODEL. For
conventional models, the accuracies of different methods on
the testing set varied greatly. SVM performed best, followed by
LDA. Thus, if we use traditional multivariate analysis methods,
many models need to be tried and compared to determine the
optimal one (Liu et al., 2017; Bao et al., 2019; Nie et al., 2019).
Conversely, deep models will generally achieve satisfactory results
if the training data are sufficient and the structure is designed
reasonably. In the field of spectral analysis, deep learning is a very
competitive and potential tool.

Classification Results on Target Datasets
Although the deep network might not perform well on a
small dataset, its advantages would carry forward again after
combining with transfer learning. To verify the effect of deep
transfer learning, the slightly better-performing VGG-MODEL
was used as the source model to be transferred in this study.
Ten training sets with different sizes were built based on the
original training sets to investigate the influence of training set
size on the transferring effect. The classification results of the

deep transferred model and the comparison methods were shown
in Figure 5.

It could be seen that the deep transferred model was the only
model that consistently performed well on the four datasets. For
the 100% training set that was still very small compared with
the training set of the source dataset, the deep model achieved
accuracies of 95, 99, 80.8, and 83.86% on the testing sets of Rice,
Oat, Wheat, and Cotton datasets, respectively. It was because of
combination with transfer learning that the deep learning model
could also obtain satisfactory results on these datasets. Transfer
learning enabled deep learning to take advantage of itself and
avoided the requirement for a mass of samples (Tan et al., 2018).
As similar patterns existed among the spectra vectors of different
crop seeds, varieties classification of different crop seeds belonged
to different but similar tasks in the same domain. Thus, transfer
learning was very suitable for varieties classification of different
crop seeds in this study.

However, if the difference between the target dataset and the
original dataset was too large, it might cause a negative transfer.
In this study, Model 0, the deep model based on the Indian-
Pines dataset, achieved accuracies of 98.31 and 90.05% on the
training set and the testing set, respectively. But its performance
was worse than the deep transferred model based on the source
Pea dataset and most conventional multivariate analysis methods
when transferred to the four target datasets (shown in Figure 5).
This poor performance could be expected since the Indian-Pines
dataset and the seed datasets in this study were quite different
in sampling scenarios, spectral resolution, and spectral modes.
This result illustrated the importance of the similarity between
the features of the source dataset and the target dataset for
effective transfer learning in this study. When there is a vast
difference between these two datasets, the direct transfer may lead
to undesirable results. More effective transfer learning methods
need to be studied in the future.

For other conventional models, although they could also
achieve good performance on some datasets, they could not
always perform well on all. For example, for the 100% training
set, LDA achieved an accuracy of 87.71% on the Cotton dataset,
which was even higher than that achieved by the deep transferred
model. However, it just obtained accuracies of 93.33, 94.5, and
71.2% on the Rice, Oat, and Wheat datasets. SVM performed
relatively stable, just like previous research (Qiu Z. et al., 2018;
Bao et al., 2019; Nie et al., 2019). It achieved accuracies of 90,
96.75, 76.6, and 75.86% on the four datasets when using the
100% training sets. As expected, MLP performed much worse
than the deep neural network. For the Wheat dataset, it only got
an accuracy of 32.4% on the testing set, which was just a little
better than random guessing. The shallow neural network could
not extract valuable discriminative information from redundant
spectral data, which led to unsatisfactory results (Chen et al.,
2014). PLS-DA, commonly used in spectral analysis, was also
very unstable. Although it could obtain an accuracy of 92.25% on
the Oat dataset, it performed rather severely on the Wheat and
Cotton datasets, which contained more varieties. Its performance
was consistent with the results of Nie et al. (2019). With the
increase of the number of seed varieties, the possibility of samples
being linearly separable became smaller, and the difficulty of
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FIGURE 5 | The classification accuracies of all the models on the four target datasets.

distinguishing different varieties became greater. In a word,
for traditional multivariate analysis methods, different datasets
might correspond to different optimal models. Conversely, the
deep transferred models based on the source Pea dataset could
generally achieve satisfactory results.

In addition, it was worth mentioning that the deep transferred
model based on the source dataset could also achieve good results
when fine-tuned, using tiny datasets. For example, when using
the 10% training set, which only contained five samples for each
variety, it could achieve accuracies of 86.67, 88.74, and 70.14% on
the Rice, Oat, and Co tton datasets. And the accuracy rose rapidly
with the increase of training set size. Even on the Wheat dataset,
where all models failed, the deep transferred model outperformed
all the conventional methods. Deep transfer learning brings hope
for scenarios with very limited samples. On the contrary, the
accuracies of most conventional methods were very low when
trained, using such a small dataset. The result that LDA got a high
classification accuracy of 93% on the Oat dataset was unexpected.
The reason might be that this small training set just fitted the
classification rule of LDA because its accuracy dropped to 80%
soon for the 30% training set and then slowly increased.

Moreover, it could be observed that almost all the models
showed high accuracies on the Rice and Oat datasets but

performed poorly on the Wheat and Cotton datasets. The
sample distribution of a dataset with few categories was generally
simple. Contrarily, the distribution of a dataset with more
categories was relatively complicated, which was not conducive
to classification. Thus, the dataset was an essential factor affecting
the performance of models (Özdemir et al., 2019; Zhang et al.,
2019). In addition, it could be seen that the deep transferred
model based on the source Pea dataset got the best performance
on the Oat dataset. Using the 20% training set, it obtained an
accuracy of 97.25% on the testing set. Since the Oat dataset
had the same number of varieties as the source dataset, all the
weight parameters in the source model, including the weights
in the last fully connected layers, could be transferred. This
specialness allowed the maximum transferring of features in
the source model.

Model Visualization
Visualizing the feature distribution at each layer of the deep
network was an important channel to understand the training
process of the deep model (Lin and Maji, 2016; Zintgraf et al.,
2017; Zhang and Zhu, 2018). In this study, the t-SNE technique
was used to visualize the original high-dimensional spectra and
the features output by the flatten, Fc1, and Fc2 layers of the deep
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model in a two-dimensional space, as shown in Figure 6 and
Supplementary Figures 1–8. For the Pea dataset, the raw spectral
samples were aggregated into two categories, consistent with
the average spectral analysis. After passing the flatten layer, the
spectra with easily confused categories like Baiyan and Heiyan, or
Changshouren and Zhewan 1, gradually became distinguishable.
As the layers deepened, the samples within a category were
clustered closely, while those between different categories became
discrete. The samples were clearly gathered into four categories
after output by the Fc2 layer. It could be seen that the deep model
gradually transformed the samples from a cluttered state to a
distinguishable state. It was why the deep model could obtain
better performance than the traditional methods.

For the four target datasets, the raw spectra in the Rice and
Oat datasets, especially in the Rice dataset, were slightly more
regular than those in the Wheat and Cotton datasets. The variety
Yongyou9 was strongly distinguishable from the other two
varieties. This phenomenon was also consistent with previous
spectral analysis. Thus, most traditional methods performed

better on the Rice and Oat datasets than on the other two
datasets. Since all the weights before the flatten layer were
transferred from the deep model based on the source Pea dataset
or the Indian-Pines dataset directly, the features output by the
flatten layer of the deep transferred model contained the spectral
patterns learned from these two datasets. From Supplementary
Figures 1–4, it could be seen that, for the Rice, Oat, and Cotton
datasets, the features output by the flatten layer presented a more
aggregated distribution pattern than the raw spectral samples. In
Supplementary Figures 5–8, however, the distribution patterns
of the features output by the flatten layer were not significantly
improved compared with the raw spectral samples. These results
intuitively illustrated the critical role of the shared features for
transfer learning. Effective transfer learning was conductive to
the classification of different varieties of seeds in this study. The
spectral features learned from the source Pea dataset were reused
through transferring, facilitating the classification of small target
datasets. The Wheat dataset might be too cluttered so that the
output of the flatten layer did not show distinguishability. The

FIGURE 6 | Feature visualization of VGG-MODEL on the Pea dataset, using t-SNE.
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FIGURE 7 | The classification visual maps of pea seeds.

target datasets began to work from the Fc1 layer. The samples
gradually showed strong separability with the layers deepened.
After output by the final Fc2 layer, the rice and oat samples
had been divided into three and four categories, respectively.
Thus, the deep transferred model achieved two high accuracies
of 95 and 99%. However, the wheat and the cotton samples still
had some overlapping phenomenon, which led to relatively low
accuracies of the deep transferred model. Since there were no
effective features transferred, the features output by the Fc1 and
Fc2 layer in Supplementary Figures 5–8 showed a more discrete
distribution pattern than those in Supplementary Figures 1–4.
This was why the classification performance of the transfer model
based on the Indian-Pines dataset was worse than that based on
the source Pea dataset.

The classification visualization of crop seeds was helpful for
breeders to select varieties that meet requirements and for market
supervision authorities to check seed purity. In this study, the
categories of pea seeds classified by the optimal model, VGG-
MODEL, were visualized in a map. As shown in Figure 7,
Baiyan and Heiyan showed similar smooth texture features in
the original hyperspectral images. In contrast, Changshouren and
Zhewan 1 showed rough texture due to water loss during the
drying process. According to human vision, these four varieties
were naturally divided into two categories, consistent with the
visualization analysis of the distribution of the samples. Among
the predicted 180 seeds, only two seeds of the variety Heiyan
were misclassified into the similar Baiyan category. This accuracy
was sufficient for variety selection during the breeding process

or purity detection in actual production. The characteristics
of batch detection of HSI combined with the capabilities of
rapid analysis of deep transfer learning may provide a brand-
new solution for identifying crop varieties under sample-limited
condition. It is expected to help accelerate the process of crop
variety screening.

CONCLUSION

This study attempted to use HSI and deep transfer learning
to achieve accurate and rapid varieties classification of crop
seeds under sample-limited condition. The VGG-MODEL based
on the sample-rich dataset stood out from three deep neural
networks with typical structures and was utilized as the deep
source model to be transferred. The transfer results on the four
small target datasets showed that the deep transferred model
could fully use the shared spectral features of crop seeds extracted
by the source deep model. The deep transferred model could
achieve better performance than traditional multivariate analysis
methods under sample-limited condition, especially when using
tiny samples. Giving a glimpse into the process of deep transfer
learning, the visualization of the feature distribution at each layer
of the deep network further confirmed the portability of shared
spectral features. It revealed why the deep network achieved
high accuracy. The visualization of classification results provided
an intuitive and convenient manner for varieties classification
of crop seeds. In conclusion, HSI combined with deep transfer
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learning, was a great potential tool for the classification of seed
varieties with limited samples, which will significantly accelerate
the seed screening process in fields with scarce samples. This
study also provided a new idea for detecting other qualities of
crop seeds based on HSI under sample-limited condition.
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