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Abstract

The area of the Inner Asian Mountain Corridor (IAMC) follows the foothills and piedmont

zones around the northern limits of Asia’s interior mountains, connecting two important

areas for human evolution: the Fergana valley and the Siberian Altai. Prior research has

suggested the IAMC may have provided an area of connected refugia from harsh climates

during the Pleistocene. To date, this region contains very few secure, dateable Pleistocene

sites, but its widely available carbonate units present an opportunity for discovering cave

sites, which generally preserve longer sequences and organic remains. Here we present

two models for predicting karstic cave and rockshelter features in the Kazakh portion of the

IAMC. The 2018 model used a combination of lithological data and unsupervised landform

classification, while the 2019 model used feature locations from the results of our 2017–

2018 field surveys in a supervised classification using a minimum-distance classifier and

morphometric features derived from the ASTER digital elevation model (DEM). We present

the results of two seasons of survey using two iterations of the karstic cave models (2018

and 2019), and evaluate their performance during survey. In total, we identified 105 cave

and rockshelter features from 2017–2019. We conclude that this model-led approach signifi-

cantly reduces the target area for foot survey.

1. Introduction

Central Asia is one of the emerging hotspots for human evolution research. Recent finds

have suggested that at least three metapopulations, the Neanderthals, modern humans, and
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the newly discovered Denisovans overlapped [1–5] in this part of the world for tens of thou-

sands of years, likely influencing the makeup and structure of contemporary Asian popula-

tions [6]. So far, the most important fossil and archaeological discoveries have come from

western central Asia [7] and the Altai region in Russia [8]. However, a complete under-

standing of Late Pleistocene hominin dispersals is not possible without a thorough investi-

gation of the area connecting these two regions [9–11]. In particular, the piedmont areas

flanked by the high mountain and lowland deserts are considered a likely location for Pleis-

tocene refugia and might have functioned as an ‘Inner Asian Mountain Corridor’ (IAMC,

[12]) for dispersal. Yet, so far, most of the Pleistocene archaeology found in the IAMC con-

sists of undated surface sites and open-air sites with relatively short chronologies [13–15,

see 16 for a review]. Trends in the currently available data suggest that cave and rockshelter

contexts might provide the long sequences needed to begin reconstructing the wider picture

of hominin dispersal in the region [9]. Caves and rockshelters have several advantages in

comparison with open air sites, in that they can function simultaneously as sediment traps

[17] and stable landscape attractors for humans and animals alike. They can provide excep-

tional records of environmental [18] and archaeological material [19], in case good preser-

vation conditions are present. There is also the possibility of speleothems and vertebrate

remains to contribute to palaeoenvironmental reconstruction. Sequences provided by caves

can provide an element of chronological control and environmental information that is

often absent from open air sites [17,20]. Cave sediments have even provided ancient DNA

evidence of human occupation [21].

Around 47% (ca. 211,500km2) of the area of the IAMC is within the modern territory of

Kazakhstan alone, making it a prime study region for research questions relating to hominin

occupation. However, only two cave sites with probable Pleistocene archaeology were pub-

lished before: Peshchera (now submerged) in East Kazakhstan [22] and Ushbas in South

Kazakhstan [23]. Another prominent cave, also in South Kazakhstan, is Qaraungir (Karaun-

gur), but it has only yielded Holocene (Neolithic) archaeology [24]. Moreover, detailed speleo-

logical maps with cave locations are missing for the majority of the karst deposits in

Kazakhstan [25,26]. The paucity of available data means that cave sites would have to be dis-

covered by survey. However, the challenge of surveying such a large region requires us to

reduce the potential survey area to provide a realistic and targeted approach, and to use our

resources most effectively. Moreover, traditional predictive modelling approaches, where a

large sample of existing site data are used to predict the likely location of undiscovered sites

[27] cannot be used, due to the small sample size of sites initially available. Here we present the

results of two predictive models using landform classification, where the results of an initial

unsupervised model are used to structure a foot survey, and the results of this survey are used

to inform a second model based on supervised classification.

2. Study areas

Our four key study regions target the extent of carbonate deposits found in the foothill and

piedmont zones of southern and southeastern Kazakhstan (see Fig 1), an area of the IAMC.

2.1 Qaratau range

The Qaratau mountain range in southern Kazakhstan has developed along the north-west-

ern edge of the Talas-Fergana fault, and is therefore related to the Tien Shan through the

Talas and Fergana ranges. The Qaratau range is sometimes divided into a western ‘greater’

half and an eastern ‘lesser’ range, which are separated by some 25km in Baydibekskiy

Rayon. The range is bordered on either side by the Qyzylkum, Betpaqdala, and Muyunkum
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Fig 1. Location, topographic and geological setting of the study area. (a) Location of the study area, (b) Terrain Elevation from the

ASTER Digital Elevation Model (DEM) and (c) spatial distribution of formations containing carbonate rock [28], and the focus area of

the IAMC. UTM Zone 44N, WGS 1984 ellipsoid (EPSG: 32644). Contains data from ASTER GDEM2 (see section 3.4 for full

information). Administrative boundaries and waterbodies use copyrighted map data from OpenStreetMap contributors [29], available

from openstreetmap.org.

https://doi.org/10.1371/journal.pone.0245170.g001
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deserts. A large number of river valleys wind from the interior of the range out towards the

plains, providing sheltered areas of increased vegetation with both seasonal and perennial

water sources. The topographic expression of the Qaratau range allows it to act as a sedi-

ment trap in an area that is otherwise prone to deflation. This can be seen in the thickness

of the Quaternary deposits in the region, which range in thickness from negligible (deflated)

up to around 110m in some areas. The Qaratau range has a rich structural history with mul-

tiple deformation events and major strike slip faults [30]. The carbonates in the range con-

stitute a platform (c. 4km thick), formed during the Late Devonian and Carboniferous with

a wide variety of distinctive facies ranging from tidal-flat to deep-water deposits [31]. An

increased rate of uplift since the Late Pliocene-Quaternary [32,33] has resulted in the expo-

sure of the carbonate sequence in this area. Due to its proximity to notable Pleistocene cave

sites in Uzbekistan (Obi-Rakhmat [34], Teshik Tash [35], Anghilak [36], Dodekatym [37])

and Kyrgyzstan (Sel’ungur [38]), we extended our study region southwards to include the

area of Sairam-Ugam.

2.2 Ili Alatau

The Ili Alatau is a northern spur of the Tien Shan range. Our study region here includes the Ili

depression, bordered to the north by the Borohoro mountains, and to the south by the Tien

Shan. Substantial loess deposition has taken place against the foothills of this region. Thickness

of the Quaternary deposits in the region is up to 700m in areas with substantial deposition.

Along with the ‘Dzhungar gates’, this area represents one possible route of access for Pleisto-

cene hominins between Kazakhstan and northwestern China.

2.3 Dzhungarian Alatau

The so-called ‘Dzhungar gates’ represent a narrowing of the landscape to the southeast of Lake

Alakol, leading into the Dzhungarian Basin at the modern border of Kazakhstan and China.

The flat, deflated area of the ‘gates’ is predominantly arid and windswept, and is constrained

by the more humid, vegetated foothills and mountainous areas of the Dzhungarian Alatau. It

provides both a mode of egress through the mountain range, as well as a possible ‘bottleneck’

for movement between modern Kazakhstan and China. From this perspective, the area is par-

ticularly pertinent for studying possible hominin movement through this region of Asia during

the Pleistocene.

2.4 Altai-Tarbagatai

The Altai mountains are shared between four countries (Russia, China, Mongolia, Kazakh-

stan), with its southwestern-most extent stretching into the east of Kazakhstan. Our northern-

most study region is constrained by the Kazakh portion of the Altai mountains to the north,

and to the south by the Tarbagatai range, centred around the Zaisan basin, through which the

Irtysh river flows. Due to its higher latitude, it should be expected that climatic conditions in

the Kazakh Altai would have been especially harsh compared with those in our other study

areas. The proximity of this study region to the Russian Altai sites make it particularly interest-

ing, as does the presence of the open-air site of Ushbulaq to the south of the Zaisan Basin [15].

All four regions contain formations with carbonate deposits [28]. From Fig 1B, it can be

seen that the extent of carbonate deposits includes, but is not limited to, mountainous areas

and the areas of adjacent foothills. Where carbonate deposits and karstic systems may become

exposed in areas of complex topography, especially within the area of the IAMC, is a key factor

structuring the PSR project’s approach.
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3. Methods and data

3.1. Predictive modelling

In the present archaeological literature, there are several published predictive models that are

especially relevant to the present study. Beeton et al. [39] and Glantz et al. [40] both look at site

distribution in the area of the IAMC in relation to abiotic ecological variables, from which

they derive some important conclusions for hominin occupation in our study region. The

model produced by Märker & Heydari-Guran [27] is also relevant, as they use a DEM for the

identification of caves through landform classification in Iran, which is similar to our own

goals and the methods developed here.

Beeton et al. [39] used ecological niche modelling to examine the relationship between late

Pleistocene site location and abiotic variables derived from Last Interglacial (LIG) and Last

Glacial Maximum (LGM) climate models. From their analyses, the authors concluded that late

Pleistocene site location appears aggregated in the area of the IAMC during both the LIG and

the LGM. Low temperatures seem to be the chief constraint on the area of hominin occupation

during glacial periods, with the foothills of the IAMC provided an apparent string of refugia.

Glantz et al. [40] followed this study by extending their modelling to include open areas of

steppe and steppe-desert adjacent to the IAMC with an ecological threshold model focused on

four abiotic variables. They concluded that the foothill zones of the IAMC provided a richer

and more attractive environment for hominins during both glacial and interglacial periods,

and that this contrast was most extreme during interglacials. Both of these studies together

suggest that the area of the IAMC is likely to have provided a core area for hominin occupation

in the region throughout the Pleistocene.

Märker & Heydari-Guran [27] used topographic indices derived from a 90m resolution

Shuttle Radar Topography Mission (SRTM) DEM, to examine the relationship of Palaeolithic

site location to local geomorphology in the Zagros mountains (Iran). Their analysis suggests a

relationship between site location and topographic indices such as curvature and slope. They

extended this with a random forest model based (i.e. a non-parametric machine learning

approach) on these indices, producing a predictive surface for Palaeolithic site location across

their study region. This study has provided a very effective proof of concept for using topo-

graphic indices for predictive modelling of Palaeolithic sites, but ground-truthing of the

model, if it has been undertaken, is not currently published. Furthermore, an integration of

predictive modelling and field surveys, with the purpose of validating and extending model

prediction results and data interpretation, has not previously been attempted at these scales of

analysis.

The morphology of karstic landscapes can be quite specific depending upon climate, lithol-

ogy, and structure [41]. Geomorphological studies of karst landforms in semi-arid regions are

limited (for instance, see [42] for an example of arid and semi-arid areas), while scarce infor-

mation is available for the area of East Kazakhstan. However, thick carbonate deposits should

provide potential for cave formation. In this regard, Heydari [43] has observed that the major-

ity of the Palaeolithic occupied caves and rockshelters in Iran come from an area he defines as

the ‘Massive Karstic Mountain System’ zone, a system of uplifted, massive limestone, karstic in

expression and dissected by drainage systems.

Having information on the surface morphology and on the extent and nature of deposits

that could support karstic features, predictive models can be produced that reduce the possible

survey area for a more targeted survey approach. The production of such models is reliant on

two sources of data. Firstly, it requires a spatial extent of carbonate geologies in which karstic

features can form. Secondly, it requires a digital representation of the surface morphology, e.g.

DEM, to characterize the surface morphology, the topographic setting respectively. If an
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unsupervised method of landform classification is used, then it becomes possible to identify

novel areas of potential karstic development, without relying on known location of extant

karstic features in the study region. This has two advantages, in that the model is not limited

by the known record (which may be a small or unrepresentative sample), and it also requires

less data a priori to produce. Both of these advantages make an unsupervised model the best

choice for the first model prior to systematic survey.

When the location of a substantial number of cave and rockshelter features in the study

region is known, supervised kinds of landform classification become more tenable. It is then

possible to build a classification model that takes the known locations of extant karstic features,

and uses their relationship to other spatial datasets (such as features derived from a DEM) to

predict the probability of similar features being present across the study region.

We built two models, one of the former unsupervised type and one of the latter supervised

type, to guide survey during the 2018 and 2019 field seasons respectively (details are provided

in Section “3.5. The 2018 model” and “3.6. The 2019 model”). Because the models relate directly

to the fieldwork goals of the project, our researchers also needed access to the model in the

field for orientation and ground truthing, and some form of satellite navigation system for

ease of navigating in relation to the model. This allowed a new, considerably advanced degree

of model integration into to the field survey strategy and the overall study design.

A common way to characterize the performance of a predictive model, is processing

Kvamme’s Gain index [44,45]. This index summarizes the model performance in a single

value, relating the percentage of the total area covered by the model and the percentage of total

sites within the model area (Eq 1). The output values range from -1 to +1, and higher index

values indicate a better performance.

Kvamme0s Gain ¼ 1 �
percentage of the total are a covered by the model
percentage of total sites with in the model area

� �

ð1Þ

3.2. Spatial dataset of carbonate rock

The spatial dataset of carbonate rock distribution for our study region was produced by

extracting polygons of surface and near-surface features containing carbonates of lithostrati-

graphic units of various ages, based on the ArcGIS platform developed by the Centre for Rus-

sian and Central EurAsian Mineral Studies’ (CERCAMS) ‘Mineral Deposits Database and

Thematic Maps of Central Asia’ [28]. This material represents the first and only digital geologi-

cal map of the Central Asia region that is available in the public domain. CERCAMS is contin-

uously developing this geodatabase based upon own complex geoscientific studies, field tests

and verification of formation ages using biostratigraphic and geochronological data, by updat-

ing its geological map that was initially developed out of the Soviet time 1:1,500,000 scale base

map [46] and utilising the 1:200,000 geological maps and lithostratigraphic sections published

by the Soviet Union Ministry of Geology until the late 1980s.

In using this dataset, we did not distinguish between carbonates of different ages, because

before ground-truthing the model we preferred required not to rule out any carbonate-con-

taining unit that may provide karstic conditions for cave formation. We must also assume

some variation in the extents of the carbonate polygons, primarily because of the way extents

for geologic units are inferred by geologists in the field.

Karstic landscapes produce a variety of distinctive morphologies, especially related to drain-

age patterns both ancient and modern. In our model, we were most interested in identifying

areas where steep changes in topography might facilitate the exposure of carbonates on the

vertical axis, either revealing entrances into pre-existing karstic systems or providing expo-

sures for weathering processes to create negative features.
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3.3. ASTER DEM

The developed models, described in detail in the following subsections (3.5–3.6), relied on the

usage of the DEM of the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER). The ASTER ‘GDEM2’ was generated by using stereo-pair images, and a processed

global DEM, ready for analyses. ASTER GDEM2 is a product of Japan’s Ministry of Economy,

Trade, and Industry (METI) and NASA, and is freely available from NASA’S Land Processes

Distributed Active Archive Center (lpdaac.usgs.gov/products/astgtmv002). The ASTER DEM

offered full coverage of the study areas without seams or borders. Several DEM tiles of version

2.0 of the ASTER DEM were downloaded from the LP DAAC, and mosaiced in order to cover

the combined extent of all study areas (Fig 1). After this operation, the DEM was projected to the

Universal Transverse Mercator (UTM) system in Zone 44 North and using the World Geodetic

System (WGS) 1984 ellipsoid (EPSG: 32644). The mosaic was finally resampled to a geometrical

resolution of 35m by 35m, using the pixel aggregate function in the software ENVI 5.5 (harris-
geospatial.com) and elevation values were stored in floating point accuracy. The final DEM used

in the analyses covered an area of approx. 2000km by 1100km. The ASTER DEM was chosen as

it is of high precision, freely available, and offers higher spatial resolution than other freely avail-

able DEM products like the SRTM or the (free version of the) TanDEM-X DEM. High spatial

resolution in turn provides better opportunity to distinguish appropriate features in the neigh-

bourhood analysis, which provided the basis for both the 2018 and 2019 models.

3.4. Field surveys

Field surveys in the study area were conducted in 2017, 2018, and 2019. The PALAEOSILK-

ROAD project conducted all field research under license No. 15008746 (12.05.2015) of the

National Museum of the Republic of Kazakhstan based on the collaboration protocol between

the Eberhard-Karls University of Tübingen and the National Museum. In 2017, basic explor-

atory survey was conducted in June and August. The majority of the 2017 survey was conducted

in the Altai-Tarbagatai region. The 2017 survey was not guided by a model, but four cave and

rockshelter features were located. The 2018 field survey was more intensive, and focused espe-

cially on the Qaratau range from May-June, followed by the Ili Alatau and Dzhungarian Alatau

in August. The 2018 survey season was led by the first, unsupervised classification model, and

located 73 cave and rockshelter features. This included a number of erosional hollows and fun-

nels that are indicators of karst activity. These 77 features (from 2017 and 2018 combined) were

included in the production of the 2019 supervised classification model. The 2019 survey was

guided by the new, supervised classification model, and took place over May-June and August-

September, and covered the Qaratau, Ili Alatau, and Altai-Tarbagatai areas. During this survey

we identified an additional 28 cave and rockshelter features, for a current total of 105 features.

Prior to fieldwork, we developed a recording schema to complement the Paleo Core data

structure developed by D. Reed (paleocore.org) [47,48], with the ultimate goal of integrating

the results of our survey data into the PaleoCore system. Our goal is that the results of our sur-

vey and modelling will be widely available to our colleagues through open access. We imple-

mented the recording schema through a series of customisable feature class forms in ‘GISpro’

(Garafa, LLC), a commercially available GIS app available for iOS, which were tailored to stan-

dardise input. An iPad Mini (Apple Inc.) was our primary data collection device in the field,

using a Bad Elf GNSS surveyor (Bad Elf, LLC) for increased spatial accuracy in recording.

3.5. The 2018 model

The first model, subsequently referred to as the ‘2018 Model’, was generated by using morpho-

metric features of the ASTER DEM in an unsupervised way (i.e. not using any information on
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the occurrence of rockshelter or cave features). The process of model construction is illustrated

in Fig 2. The approach to classify topographic settings that might be indicative of the presence

of rockshelters or caves was based on the concept of topographic position index (TPI) analyses

[49,50]. While several alternative approaches for unsupervised landform classifications from

DEMs exist (e.g. [51,52]), we chose TPI analysis for several reasons. First, TPI is an analysis

that offers less intensive processing and intuitive interpretation compared to other geomor-

phometric features, such as topographic openness (e.g. [53]). These advantages render it a

highly valuable, scale-related, feature for field interpretation and survey navigation. Processing

complexity is a serious consideration due to the large size of the study area and the high resolu-

tion of the DEM (approx. 57000 pixels by 31000 pixels). Second, TPI quantifies the relative

Fig 2. Schematic workflow on the generation of the two models (the ‘2018 model’ and the ‘2019 model’). The 2018

Model was generated without using any additional information besides the spatial distribution of carbonate rocks

(“Carbonate Layer”), whereas the 2019 Model used in situ records on cave and rockshelter features to run a minimum

distance classification approach.

https://doi.org/10.1371/journal.pone.0245170.g002
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slope position of each pixel of the DEM with respect to a user-defined neighbourhood or scale.

It is therefore an analysis that can be computed for several scales, allowing for multi-scalar

analyses (e.g. [54]). Third, as TPI quantifies the relative slope position, it is appropriate for the

identification of mid-slope positions. These, in turn, are believed to be most promising for the

occurrence of caves and rockshelters [55]. In general, cave and rockshelters are unlikely to be

detected in the present day at the foot-slopes of valley bottoms, due to the accumulation of soil

material and/or scree released by hillslope processes. Furthermore, while locations up-slope

might hold features of interest (especially rockshelters) these might have offered less sheltered

(and therefore less-favoured) conditions for human occupation. Fourth, the successful applica-

tion of TPI analyses in a (geo-)archaeological context has already been demonstrated to some

extent in preliminary work (e.g. [56,57]).

TPI was processed using the ASTER DEM following Eq 1, where xi is the elevation value of

the pixel under observation, MEAN is the arithmetic mean elevation and STDEV the standard

deviation of the elevation values in an estimation window centred over location i. The process-

ing was done using the integral image approach [54], which was realized in the software IDL

8.7 (harrisgeospatial.com).

TPIi ¼
xi � MEAN
STDEV

ð2Þ

TPI is a normalized measure of slope position, where a TPI value of close to zero indicates

that the pixel under observation is situated approx. at the mean elevation of the surrounding

neighbourhood. Consequently, negative TPI values indicate valleys and foot slopes and posi-

tive TPI values indicate ridges and top-slopes [49,50,54]; however, the values depend on the

size of the estimation window. The model was constructed by investigating three different

scales using three different sizes of estimation window, which were 5km, 10km and 50km.

Three TPIs were processed using estimation window sizes of 143 by 143 pixels, 287 by 287 pix-

els and 1429 by 1429 pixels. From Eq 1 it follows that correlation between TPIs of two consecu-

tive scales increases with the size of the estimation window [54]. To balance the goals of the

analysis with processing time and effort, only three scales were selected for the analyses, repre-

senting different slope positions in local (5km), regional (10km) and global (50km) context

(see Table 1A).

Landform classification was performed at these different landscape scales, using the three

different TPIs in the analysis. The identification of potential rockshelter or cave feature loca-

tions was thereby carried out by classifying the mid-slope positions from the TPIs. This was

done by thresholding the TPIs with values ranging between -0.5 and +0.5, where this range is

indicative for the mid-slope position [50]. The results of this operation were three binary clas-

sifications. These were summed up in a final classification system showing class values ranging

from zero to three (0 = “none”, 1 = “low”, 2 = “medium” and 3 = “high”), where, for instance,

a value of two indicated that TPIs of two scales fell within the defined range. This layer was

clipped with the spatial dataset of carbonate rock, and the occurrence of classified pixels was

deduced by converting the classification results to a point shape file and calculating the point

density within in a radius of 10km. The point density was calculated to provide a quick over-

view on the model results at small scale. Both operations were carried out in ArcMap 10.6

(desktop.arcgis.com). The classification and the “heat map” layer served as a first orientation on

the potential occurrence of carbonate rocks in mid-slope positions and was used in the first

model-guided survey in 2018 to indicate most promising regions. The performance of the

2018 Model was evaluated by comparing the predicted class values with the locations where

cave and rockshelter features were actually found in the field surveys in 2017, 2018 and 2019.

Along with this, Kvamme’s Gain was processed.
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3.6. The 2019 model

The second model, subsequently referred as the ‘2019 Model’, was constructed in a supervised

way using results from the 2017–2018 field surveys (i.e. locations of caves and rockshelters that

were documented during field work) and several morphometric features derived from the

ASTER DEM in a supervised minimum distance approach [60]. The goal of the 2019 Model

was twofold; firstly, we aimed to utilise our collected data on cave and rockshelter location to

make predictions, and secondarily we aimed to increase the discrimination of the model to

enable a more robust and focused approach to survey in the field.

The 2019 Model was constructed in the seven steps outlined below and in Fig 2.

1. The locations where caves and rockshelters were found in the 2017–2018 surveys (n = 77)

were added to a common geodatabase in the Geographic Information System (GIS) Arc-

Map (desktop.arcgis.com).

Table 1. Investigated morphometric features: (a) features used in the 2018 Model and 2019 Model and (b) Correlation Matrix of the features (processed over the site loca-

tions (n = 77)). Values display the squared Pearson Correlation Coefficient (r2).

(a) Investigated morphometric features

Feature Description Unit Model

Topographic Position Index (TPI) relative slope position: normalized by the mean and standard

deviation of a defined spatial neighbourhood (see Eq 1), TPIs were

processed with scales of 5km, 10km and 50km

- 2018 & 2019

Elevation terrain surface elevation of ASTER DEM; meter above the WGS

1984 ellipsoid.

[m] 2019

Slope terrain slope in degree [˚] 2019

Valley Depth vertical offset in meter to closest modelled valley bottom [m] 2019

Slope Height height in meter above the closest modelled drainage channels [m] 2019

Normalized Height normalized difference between Slope Height and Valley Depth - 2019

Mid-Slope Position index ranging from 0 to 1 indicating the slope position between

minimum slope (0) and maximum vertical distances to valley

bottom or ridge top (1)

- 2019

(b) Correlation Matrix–Squared Pearson Correlation Coefficient (r2)
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Elevation 1.00

Slope 0.05 1.00

TPI 5km 0.04 0.02 1.00

TPI 10km 0.10 0.02 0.82 1.00

TPI 50km 0.22 0.03 0.31 0.47 1.00

Valley Depth 0.39 0.12 0.03 0.00 0.01 1.00

Slope Height 0.06 0.16 0.22 0.35 0.42 0.00 1.00

Normalized Height 0.04 0.02 0.42 0.28 0.18 0.38 0.34 1.00

Mid-Slope Position 0.13 0.01 0.02 0.00 0.01 0.25 0.01 0.12 1.00

Features were processed using the ASTER DEM (35m by 35m spatial resolution). References for the feature processing and interpretation: [50,54,58,59].

https://doi.org/10.1371/journal.pone.0245170.t001
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2. The point locations of caves and rockshelters were buffered in the GIS using a radius of

200m. This was done to account for potential location inaccuracies and to allow an averag-

ing of DEM features over the locations.

3. The morphometric features from the DEM TPI at the 5km scale, TPI at the 10km scale, and

TPI at the 50km scale were processed in IDL. Additionally, the morphometric features ter-

rain slope, Valley Depth, Slope Height, Normalized Height and Mid-Slope Position were

processed in the software System for Automated Geoscientific Analyses (SAGA) (saga-gis.
org) [61]. A summary of these features and their interpretation is provided in Table 1A and

the assessment on the correlation among the features is presented in Table 1B. It should be

noted that TPI 5km and TPI 10km revealed a strong positive correlation (r2 of 0.82). Never-

theless, we decided to include both TPIs in the 2019 Model for the the sake of consistency

in comparison to the 2018 Model, and as both features might still leave some potential for

discrimination. Further details on the morphometric features are provided by Böhner &

Selige [62], Dietrich and Böhner [58], and Kim et al. [59]. All investigated features have in

common that they numerically describe the absolute or relative topographic setting or slope

position by comparing the pixel value under observation to functional units (e.g. valley/

ridge position, channel location, etc.) or constant spatial neighbourhoods (e.g. by using

moving windows in the processing). While there are many other morphometric features

that can be included in such an analysis, we have chosen the features listed in Table 1 as

they can be processed rather quickly, provide normalized or standardized value ranges of

the topographic setting, account for both functional and spatial units, and have been suc-

cessfully applied in previous terrain and landform analyses (e.g. [58,59,62]).

4. The morphometric features were scaled to a common value range from 0 to 100 using

ENVI 5.5, the “Stretch Data” function, floating point accuracy and a lower threshold of

0.5% and an upper threshold 99.5% for the linear stretch, e.g. a value of 100 then indicates

the feature value at the 99.5% percentile. The “Stretch Data” function allows comparing the

morphometric features on a common value range, which is a perquisite for the following

minimum distance classification.

5. ENVI’s “Minimum Distance” function (see [60]) was applied by using the buffered cave and

rockshelter locations and the stack of all scaled morphometric features (Table 1). The features

were considered equally significant for the identification of caves/rockshelters, as such they

contribute in the same way to the model outputs. The usage of additional threshold was dis-

abled, but the rule image was generated and used in further analyses. The rule image displays

the Euclidean distance from the class mean vector, i.e. low values indicate pixels that share

similar morphometric properties with the feature values of the known cave and rockshelter

locations. The distance is measured in the same unit as the input variables, e.g., a distance of

10 indicates that the mean distance between the feature values of the rockshelter and cave

locations was less than 10% of the value range of the feature, as all features were scaled to val-

ues from 0 to 100 using the 0.5% and 99.5% percentiles. In this way, the rule image predicts

similar topographic situations with higher and lower likelihood of containing similar features.

6. The rule image was classified in four classes (0 = “none”, 1 = “low”, 2 = “medium” and 3 =

“high”), by applying thresholds of> 50% = “none”, 50% to 30% = “low”, 30% to 10% =

“medium” and<10% = “high” to the rule image.

7. The classification result was clipped to the extent of the carbonate layers.

This classification served as an orientation toward potential locations that share topo-

graphic characteristics that are similar to the locations of our already discovered features. It
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was used in the second model-guided field survey in 2019. The performance of the 2019

Model was evaluated by comparing the predicted class values with the locations where cave

and rockshelter features were actually found in the field surveys 2017, 2018 and 2019. This

means that the test shows how good the model is in self-predicting the input features. How-

ever, as mostly the same reference data were used to conduct the minimum distance approach

(77 out of the 105 records were used to construct the model), the evaluation is not fully inde-

pendent. Further, it has to be assumed that the found sites are representative of the actual vari-

ance of caves/rockshelter locations. Nevertheless, such an analysis allows assessment of the

consistency of the reference data, by roughly evaluating the ‘fit’ of the reference to data to the

model produced from it. If the features recorded in situ are located in a similar morphometric

context, they will be characterized by similar values in the rule image and the classification. If

not, this assessment will indicate that a simple minimum distance approach is not applicable

for the problem, at least not from the available samples. Beside this, the model performance is

evaluated by using the Kvamme’s Gain index.

4. Results

4.1. The 2018 model

Fig 3 highlights the results of 2018 Model for the Qaratau mountain range. As indicated, the

model construction relied solely on the classification of three TPIs, processed at scales of 5km

(Fig 3C), 10km (Fig 3D) and 50km (Fig 3E). The TPIs highlighted the configuration of land-

forms at different scales, at the respective varied landform sizes. TPI values at the lowest scale

(5km) indicate local small valleys and smaller landform features within a valley. TPI values

therefore vary largely at short distance and highlight the local landform setting and the varia-

tion of the slope position on a small scale, respectively. The 10km scale TPIs highlight the con-

figuration of landforms on the regional scale. For instance, the TPI indicates the northwest to

southeast oriented ridges in the central part of the Qaratau mountain range, as well as several

valley systems. TPI variations take place less frequently over short distance. The 50km scale

TPI highlights the relative slope positions within the entire Qaratau mountain range and this

feature indicates the overall slope position within the range.

Fig 4 shows the results of the 2019 Model for the example of the Qaratau mountain range.

The model was generated using a minimum distance classification (Section 3.6), the locations

of in situ recorded caves and rockshelters, and the morphometric features listed in Table 1.

Among the morphometric features used in the classification, the figure shows examples of Val-

ley Depth (Fig 4C), Standardized Height (Fig 4D) and Slope Height (Fig 4E). These features

are sensitive to small landform elements, and therefore account primarily for the local and

regional setting, rather than the overall topographic setting of the mountain range. Standard-

ized Height clearly highlights the valley-ridge sequences of the southern flank, whereas the

Valley Depth feature indicates more deeply-incised valleys in the mid-position of the range,

compared to the valleys of the northern part of the range and the southern escarpment outliers.

Similarly, the Slope Height feature is higher for valleys in the mid-position of the range, indi-

cating a steeper gradient and higher vertical offsets of the valley flanks to the valley bottom, in

the drainage channels and erosion lines respectively. Fig 4F shows the rule image of the mini-

mum distance classification that was processed using all of the morphometric features

(Table 1) and the in situ recorded locations of caves and rockshelters.

The lowest distances between the ‘morphometric signature’ of the in situ records and the

morphometric setting of the Qaratau mountain range are found along the southern flank of

the range, in mid-slope positions and along the flanks of the incised valleys in the more central

part of the range. The rule image clearly indicates that valley bottoms have a less similar
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signature (i.e. higher distance in the rule image), which is reasonable as in situ finds were most

frequently located in the mid-slopes and not in the bottoms of the valley systems; a fact that is

captured by the 2019 Model. The lowlands of the outliers and the highlands towards the cen-

tral summits of the range occur with greater distance in the rule image and are therefore

Fig 3. Example of the 2018 model. (a) ASTER DEM of the study area and spatial extent of carbonate rock, (b) ASTER DEM and spatial extent

of carbonate rock of the Qaratau mountain range, (c) Topographic Position Index (TPI) processed at a scale of 5km, (d) TPI processed at a

scale of 10km, (e) TPI processed at a scale of 50km, (f) classification result of the 2018 Model and (g) point density of class occurrence with in a

search radius of 10km. UTM Zone 44N, WGS 1984 ellipsoid (EPSG: 32644) Contains data from ASTER GDEM2 (see section 3.4 for full

information). f shows the classification result of the 2018 Model (i.e. the classification of the TPIs for the value range -0.5 to +0.5 and the

resulting overlay). Particularly, Class 3 shows a clear pattern. The class locations constitute a stretched belt along the southern flank in the mid-

slopes of the Qaratau range (due to TPI values at 50km scale) and at heads and middle courses of the main valleys (due to the TPI values at

10km scale). This is as well highlighted by the point density of class occurrence in g. This layer indicates a high point density for the southern

mid-slopes of the Qaratau range, while point density is lower for the northern part of the range and the southern escarpment outliers that are

situated between the northern uplands and the southern lowlands. Note in this context that point density is sensitive to the masked non-

carbonate locations (i.e. these do not account towards the density).4.2. The 2019 model.

https://doi.org/10.1371/journal.pone.0245170.g003
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indicated to have less similar morphometric settings compared to the in situ record. Similarly,

the northern mountain range is indicated to have a different setting, compared to the morpho-

logical situation that was found for the in situ records. Fig 4G shows the final classification

map that was produced by applying the thresholds indicated in Section 3.6 to the rule image.

The strict constraint for Class 3 (= average deviation from the in situ records in the rule image

less than 10%) results in very few isolated locations that are predominantly found in the mid-

slopes of the southern valleys of the range. These locations are surrounded by locations of

Class 2, which is also the class that most frequently occurs in the southern part of the mountain

Fig 4. Example of the 2019 model. (a) ASTER DEM of the study area and spatial extent of carbonate rock, (b) ASTER DEM and spatial

extent of carbonate rock of the Qaratau mountain range, (c) morphometric feature “Valley Depth”, (d) morphometric feature “Standardized

Height”, (e) morphometric feature “Slope Height”, (f) rule image of the minimum distance approach trained using in situ records on the

occurrence of caves and rockshelters and (g) final classification result of the 2019 Model. UTM Zone 44N, WGS 1984 ellipsoid (EPSG: 32644)

Contains data from ASTER GDEM2 (see section 3.4 for full information).

https://doi.org/10.1371/journal.pone.0245170.g004
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range. Class 1 covers the more northern parts of the range and outliers of the southern

escarpment.

4.3. Model comparison and evaluation

Comparing the two models, the coverage remains the same (clipped to the carbonate layer),

but the discrimination increased between iterations. This can be seen most clearly in the

change in area for the model’s low (Class 1), medium (Class 2), and especially the high (Class

3) predictive values within the focus area of the IAMC (see Table 2). Whereas Class 3 accounts

for around 30% of the 2018 model’s area, this is reduced to 7% of the total in the 2019 model.

The changes between categories are less important than the total change of predictive value

between the models, which can be seen in Table 2.

In practice, the increase in discrimination between the two models allowed us to focus our

survey on areas and landforms that were more likely to yield results. As an area of the IAMC,

the 2019 model represents a narrowing of the focus down to around 5% of the total area of the

IAMC within Kazakhstan, in comparison to 12% in the 2018 model.

Fig 5 shows results of both models for the entire study region and for a selected subset with

more spatial detail. The comparison shows that higher point density and class numbers of

both models are generally found in the four selected key study regions, which means that both

models predict a high chance of cave and rockshelter occurrence for regions with significant

topography and relief energy respectively. This suggests that carbonate rock locations in the

lowlands have a lower chance of cave and rockshelter occurrence.

The 2018 model provides more general information with less spatial detail compared to the

2019 model (compare Fig 5E and 5F). Entire mountain ranges instead of individual locations

are indicated. For example, large parts of the Dzhungarian Alatau are characterized by high

point densities (Fig 5A), which does not allow for singling out specific locations, such as indi-

vidual valleys, for investigation. However, the 2018 model does provide a first orientation in

which model-guided regional field survey might be more efficient and targeted.

The 2019 Model provides higher spatial detail due to the model construction and the mor-

phometric features used. Fig 5C and 5D highlight the model outputs for the Qaratau mountain

range and indicate specific locations that show the best match to the topographic setting of the

discovered locations. As mentioned in the preceding section, locations with the smallest devia-

tion from the in situ record are found in the mid-slope positions of valleys and in the central

part of the mountain range. Fig 6 shows examples of karstic features, including caves and a

rockshelter, which were identified during survey.

The topographic signature provided by the in situ records has been further analysed in

order to better understand and quantify the morphological settings that are indicative of cave

and rockshelter locations. Fig 7 shows descriptive statistics of the in situ records for the mor-

phometric features we utilised (Table 1) in comparison to the statistics of carbonate layer, the

study areas, and the combined extent of the carbonate layer and the study areas. This analysis

therefore accounts for the statistical difference between the sample (caves and rockshelters in

Table 2. Classified areas within the focus area of the IAMC covered by the 2018 and 2019 models in km2, including distribution by Class and change in % between

iterations of the models.

Predictive Value 2018 Model 2019 Model % Difference in Area (from 2018 to 2019)

Class 1 7,066km2 11,595km2 +64.1%

Class 2 6,977km2 4,520km2 -35.2%

Class 3 5,957km2 1,130km2 -81.0%

Total 20,000km2 17,245km2 -13.7%

https://doi.org/10.1371/journal.pone.0245170.t002
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carbonate rock) and the entire population (all locations of carbonate rock, of the study areas,

and the combined extent). This comparison revealed, in descending order of significance indi-

cated by the separation of the boxes of the interquartile ranges (IQR, i.e. the range between the

25% and the 75% percentiles) that cave and rockshelters are situated (i) mostly in steep terrain

(Fig 7B; IQR of the terrain slope ranging between 6˚ to 16˚), (ii) at positions with significantly

higher Valley Depths (Fig 7F; IQR ranging from 40m to 100m) and Slope Heights (Fig 7G;

IQR ranging from 25m to 70m), and (iii) at intermediate Mid-Slope-Positions (Fig 7I; IQR

ranging from 0.30 to 0.55). IQR overlap between the sample and the other populations (C, F, C

Fig 5. Comparison of the 2018 model and the 2019 model. (a-b) the 2018 Model and (c-d) the 2019 Model. Enlargement of the models

focus on the central Qaratau mountain range. In situ records of caves and rockshelters are indicated by pink circles. UTM Zone 44N, WGS

1984 ellipsoid (EPSG: 32644) Contains data derived from ASTER GDEM2 (see section 3.4 for full information). Administrative boundaries

use copyrighted map data from OpenStreetMap contributors [29], available from openstreetmap.org.

https://doi.org/10.1371/journal.pone.0245170.g005
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+F) is rather large for the other morphometric features, and these features are therefore less

indicative for the sample as they share the common characteristics of all carbonate rock loca-

tions in the study areas. Among these features of lesser importance, the TPI features were indi-

cated by negative mean TPI values around -0.4 and IQRs of approx. -0.55 to 0.0, which is an

indicative range for mid-slopes at the transition to the foot-slope and/or for local depressions.

The performance of the 2018 model and the 2019 model is shown in Fig 8 and Table 3. Fig

8A and 8B show the total area that is covered by the individual classes. For the 2018 model

these data underline that the classification is not very specific, but the occurrence of Class 1,

Class 2, and Class 3 is–more or less–distributed equally. The 2019 model demonstrates stricter

constrains for the classification and therefore the total area significantly decreases from Class 1

to Class 2 to Class 3, which narrows done the prospective area for field survey. Fig 8C and 8D

show how the observed cave and rockshelter locations relate to the two classifications. For the

2018 model, it was found that most of the records are classified as Class 3 (= 68), while 20 rec-

ords belonged to Class 2 or Class 1. A total of 17 records fall outside the classification range

(Class 0). For the 2019 model, 45 locations are in Class 3, while 27 locations are in Class 2.

Class 1 shows 12 records, and 21 records fall outside the classification range (Class 0). For the

2019 model, this evaluation indicates the capacity of the model to self-predict the reference

data that were used to construct the model. This means that the evaluation shown in Fig 8 is

not independent; the assessment rather evaluates if the applied minimum distance approach is

Fig 6. Examples caves and rockshelter features. A) Aquiq 1 cave. Inaccessible cave formed along vertical joints. Minor karstic features like the

crevices and hollows that are ubiquitous all over this particular cliff face were not recorded as individual features, but as one collective feature.

B) Qyzkorgan 3 rockshelter. Features wider than deeper like Qyzkorgan 3 were identified as ’rockshelters. C) Aqtasty 3 cave. We identified

caves as features deeper than they are wide.

https://doi.org/10.1371/journal.pone.0245170.g006
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Fig 7. Descriptive statistics of the morphometric features. (a) Elevation, (b) Slope, (c) Topographic Position Index (TPI) processed at a scale of 5km, (d) TPI

processed at a scale of 10km, (e) TPI processed at a scale of 50km, (f) Valley Depth, (g) Slope Height, (h) Normalized Height and (i) Mid-Slope Position. Bars

indicate the inter-quartile-range (IQR) between the 25% and the 75% percentiles. The black marker indicates the position of the median (50% percentile).

Statistics are drawn for; “C” (yellow) = the carbonate layer (approx. 214km2), “F” (blue) = the focus area indicated in Fig 1 (approx. 209km2), “C+F” (green) =

carbonate layer inside the focus area (approx. 32km2), “Sample” (red) = location of in situ records on Caves and Rockshelters. Stats are based on the records

found during the 2017 and 2018 field survey (n = 77).

https://doi.org/10.1371/journal.pone.0245170.g007

PLOS ONE Predictive modelling and survey of karstic caves in the Inner Asian mountain corridor

PLOS ONE | https://doi.org/10.1371/journal.pone.0245170 January 20, 2021 18 / 26

https://doi.org/10.1371/journal.pone.0245170.g007
https://doi.org/10.1371/journal.pone.0245170


reasonable and applicable. It shows that even though the total area of Class 2 and Class 3 is

small (<2000km2), the number of in situ classes that are assigned to these is classes is very high

(= 72 in total).

Finally, Table 3 presents the results of Kvamme’s Gain for the 2018 and the 2019 model.

The values are strongly positive and the assessment allows comparing the performance among

the different models and their classifications. Results support the previous stated findings. The

2019 Model allows significantly reducing the target area, while keeping a high number of site

records.

5. Discussion

The 2018 model was an unsupervised form of classification model, and this allowed us to open

up a wide area for survey, targeting aspects of the physical environment that we reasoned from

the literature and direct observation would have an impact on cave formation. The 2019

Fig 8. Evaluation of the 2018 model and the 2019 model. (a) Total area of the classes in the 2018 Model, (b) Total area of the classes in the 2019 Model, (c)

number of in situ recorded caves and rockshelters per class of the 2018 Model and (d) number of in situ recorded caves and rockshelters per class of the 2019

Model. In (c) and (d) the used sample is indicated: (i) features found in 2019 using the 2019 Model (n = 28), (ii) features found in 2017 and 2018 (n = 77) and

(iii) all features found in the 2017, 2018 and 2019 surveys (n = 105).

https://doi.org/10.1371/journal.pone.0245170.g008
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model, in contrast, relied on a supervised minimum distance approach, and therefore aimed

to understand the geomorphic situation of features we had already found, and to extend this

across the study region for increased discrimination. Having surveyed in all of our study areas

by the time we developed the 2019 model, we had amassed a good and representative sample

of existing cave and rockshelter features from a variety of geomorphic situations. In this way,

we were not limiting our search to an artificial subset of caves and rockshelters. This is sup-

ported by the boxplot statistics in Fig 7, which show rather small IQRs for all of the features,

and therefore demonstrates fairly common characteristics among the found feature locations.

This enabled us to use the 2019 model to reduce the total survey area and focus our survey on

areas likely to provide features that met our search criteria more accurately than in the first

iteration of the model.

While more intensive supervised modelling techniques exist, we consider the use of the

minimum distance approach for the 2019 Model as appropriate, effective, and practical here,

as it showed a good performance indicating potential sites, as well, it allows for a intuitive

interpretation of the results, which is advantageous considering the usage during fieldwork.

This considerably improved the field navigation and survey performance and enabled a better

rate of cave detection, and also increased the quantity and quality of the yielded ground-truth-

data.

Even though it cannot be done fully independently of the data used to produce it, the evalu-

ation of the 2019 Model revealed that the rather simple minimum distance approach is capable

of predicting most of the in situ, validated locations with a high precision. For instance, 72 out

of 105 records were assigned to Class 2 or Class 3, when using all available records (2017, 2018,

and 2019) for the performance evaluation. Further, index values of Kvamme’s Gain were

highly positive (+0.91). This high level of performance can be explained by the indicative and

distinct value ranges provided by some morphometric features for the cave and rockshelter

locations (see Fig 7 in this context). The boxplot statistics revealed that the sample locations of

cave and rockshelter features in carbonate rock is, for some features, considerably different to

the entire population (i.e. all locations possible in carbonate rock areas). This helps to narrow

down the ground survey to target locations that show such indicative morphological settings.

In summary, a rather large topographic gradient (terrain slope of approx. 6˚ to 16˚), a relative

slope position at the transition between the mid- and the foot-slope, as well as, Valley and

Slope Heights between 40m and 100m seem to be promising terrain characteristics that are

indicative features for future surveys. This suggests that future work to identify cave and rock-

shelter features in Kazakhstan should continue to target mountainous terrain, as exemplified

by our four key study areas and the area of the IAMC.

Table 3. Comparison of the models via Kvamme’s Gain for (a) the 2018 Model and (b) the 2019 Model using all available samples from the 2017, 2018 and 2019 surveys

(n = 105). The percentage area is processed relative to the carbonate layer inside the focus area indicated in Fig 1.

a) 2018 Model

Percentage Area [%] Percentage Sites [%] Kvamme’s Gain

Class 3 6.55 64.76 +0.90

Classes (2 & 3) 14.20 73.33 +0.81

Classes (1, 2 & 3) 21.94 83.81 +0.74

b) 2019 Model

Percentage Area [%] Percentage Sites [%] Kvamme’s Gain

Class 3 1.24 42.86 +0.97

Classes (2 & 3) 6.19 68.57 +0.91

Classes (1, 2 & 3) 18.91 80.00 +0.76

https://doi.org/10.1371/journal.pone.0245170.t003
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However, three main limitations of the chosen approach must be noted. Firstly, the quality

of the data inputs have a direct impact on the quality of the model. The data science maxim of

‘Garbage In Garbage Out’ applies just as much to model-building [63], where the model can

only be as good as the lowest quality dataset. Rather than being mitigated in the process of

combination with better datasets, the issues with problem datasets are exacerbated and cascade

through the process of model-building. Where possible, all data used in such models need to

be of a known quality, and ground-truthing field survey is invaluable for providing such feed-

back. Furthermore, the results of models should be evaluated where possible, either through

independent means, or to show that they are at least internally consistent with the data used to

produce them, as we demonstrated with the 2019 model.

Secondly, only one class is targeted and therefore the event occurrence (caves and rockshel-

ters) cannot be compared with non-event occurrence. Furthermore, it is clear that the proba-

bility of the existence of a cave or rockshelter feature is much lower than the probability of its

absence, but this a priori probability cannot be derived from the current in situ samples.

Thirdly, a drawback of the minimum distance approach is that non-linear relationships

might not be detected, as only the Euclidean distance is investigated in such an analysis. We

consider this issue only of minor relevance to the present study, as the main objective of the

model is to guide field survey, and therefore the model aims to indicate where caves and rock-

shelters are generally to be expected, and not to predict single caves or rockshelters for individ-

ual topographic situations or further site characteristics. However, future work will also

consider such non-linear relationships that, for example, might be present due to the different

genesis of the features, or as features are situated in specific rock formations. In turn, the pres-

ence of sub-classes might be uncovered in the statistics of the morphometric once the database

of in situ validated cave and rockshelter locations is increased by further field survey. New

means, to assess sub-classes in upcoming work, will be the use of non-parametric classifiers

(e.g. the Random Forest approach [64], which would also allow investigating the variable

importance), and that have also been applied in related work [27].

6. Conclusion

The PALAEOSILKROAD project has spent two years building and ground-truthing models

for karstic cave prediction in our study regions in the mountainous areas of Kazakhstan. Our

goal was to locate and study new cave and rockshelter features in the region. Over this time

period we have surveyed 105 cave and rockshelter features in the study region, around 30% of

which have some amount of accumulated sediment.

Our first model was built with an unsupervised landform classification derived from an

ASTER DEM of our study region, which was then clipped to the extent of surveyed carbonates

in the region. We used this model to lead survey in the 2018 field season, where we identified

73 cave and rockshelter features. We concluded that the model was correctly identifying large

areas of the landscape that could contain karstic caves and rockshelters, but we also hoped to

increase the discrimination of the model further, and thereby reduce the survey area.

Our second model was built using a supervised minimum distance approach, utilising loca-

tion data of cave and rockshelter features identified in the 2018 survey as well as morphometric

features derived from the ASTER DEM. This model identified areas that were topographically

similar to locations where cave and rockshelter features had been identified during the 2018

survey season. We achieved an increase in discrimination between the two models to allow

more targeted field survey. The 2019 model in particular highlighted the importance of steep

terrain, high valley depth, high slope height, and intermediate mid-slope position as key mor-

phometric features for predicting cave and rockshelter features.
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The simplicity of these models, relying as they do on only the extent of formations contain-

ing carbonate rock and landform classification on freely available DEMs, means that they are

in principle possible to replicate anywhere that such data exists.

Although ground-truthing is often difficult and field survey is beset by logistical and scien-

tific obstacles, we affirm its importance for the continued development of predictive models,

and also the value of model-guided field survey in overcoming these obstacles. In particular,

the use of both unsupervised and supervised classification methods can allow a flexible

approach, the former opens the area for analysis, and the latter can help extend and increase

discrimination to discover similar situations elsewhere, and begin to identify the factors that

determine relevant feature location.

In the future, we plan to investigate the factors that lead to the accumulation of archaeolog-

ical sediments in caves. An additional avenue of research will explore the relationships within

subsets of the cave and rockshelter features, for instance, by age of the parent rock, by morpho-

logical attributes of the features themselves, or in context with geological peculiarities such as

faults or bedding.
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References

1. Slon V, Mafessoni F, Vernot B, de Filippo C, Grote S, Viola B, et al. The genome of the offspring of a

Neanderthal mother and a Denisovan father. Nature. 2018; 561: 113–116. https://doi.org/10.1038/

s41586-018-0455-x PMID: 30135579

2. Douka K, Slon V, Jacobs Z, Ramsey CB, Shunkov MV, Derevianko AP, et al. Age estimates for hominin

fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature. 2019; 565: 640. https://doi.

org/10.1038/s41586-018-0870-z PMID: 30700871

3. Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM, Bondarev AA, et al. Genome sequence of a 45,000-

year-old modern human from western Siberia. Nature. 2014; 514: 445–449. https://doi.org/10.1038/

nature13810 PMID: 25341783

4. Kuzmin YV, Kosintsev PA, Razhev DI, Hodgins GWL. The oldest directly-dated human remains in Sibe-

ria: AMS 14C age of talus bone from the Baigara locality, West Siberian Plain. Journal of Human Evolu-

tion. 2009; 57: 91–95. https://doi.org/10.1016/j.jhevol.2009.04.003 PMID: 19539978

5. Devièse T, Massilani D, Yi S, Comeskey D, Nagel S, Nickel B, et al. Compound-specific radiocarbon

dating and mitochondrial DNA analysis of the Pleistocene hominin from Salkhit Mongolia. Nat Commun.

2019; 10: 1–7. https://doi.org/10.1038/s41467-018-07882-8 PMID: 30602773

6. Gokcumen O. Archaic hominin introgression into modern human genomes. American Journal of Physi-

cal Anthropology. 2019;n/a: 1–14. https://doi.org/10.1002/ajpa.23951 PMID: 31702050

7. Glantz MM. The History of Hominin Occupation of Central Asia in Review. In: Norton CJ, Braun DR, edi-

tors. Asian Paleoanthropology. Dordrecht: Springer Netherlands; 2010. pp. 101–112. Available: http://

www.springerlink.com/index/10.1007/978-90-481-9094-2_8.

8. Buzhilova A, Derevianko A, Shunkov M. The Northern Dispersal Route: Bioarchaeological Data from

the Late Pleistocene of Altai, Siberia. Current Anthropology. 2017; 58: S491–S503. https://doi.org/10.

1086/694232

9. Fitzsimmons KE, Iovita R, Sprafke T, Glantz M, Talamo S, Horton K, et al. A chronological framework

connecting the early Upper Palaeolithic across the Central Asian piedmont. Journal of Human Evolu-

tion. 2017; 113: 107–126. https://doi.org/10.1016/j.jhevol.2017.07.006 PMID: 29054162

10. Li F, Vanwezer N, Boivin N, Gao X, Ott F, Petraglia M, et al. Heading north: Late Pleistocene environ-

ments and human dispersals in central and eastern Asia. PLOS ONE. 2019; 14: e0216433. https://doi.

org/10.1371/journal.pone.0216433 PMID: 31141504

11. Dennell R. Human Colonization of Asia in the Late Pleistocene: The History of an Invasive Species. Cur-

rent Anthropology. 2017; 58: S383–S396. https://doi.org/10.1086/694174

12. Frachetti MD. Multiregional Emergence of Mobile Pastoralism and Nonuniform Institutional Complexity

across Eurasia. Current Anthropology. 2012; 53: 2–38. https://doi.org/10.1086/663692

13. Dzhasybaev EA, Ozherelyev DV, Mamirov TB. Polevye issledovaniya mnogosloinoi stoyanki Rahat v

2018 g. [Field studies of stratified site of Rahat in 2018]. Arkheologiya Kazakhstana. 2018; 1–2: 215–

222.

14. Taimagambetov ZK, Ozherelyev DV. Pozdnepaleoliticheskie pamyatniki Kazakhstana [Late Paleolithic

sites of Kazakhstan]. Almaty: Kazak Un-Ti; 2009.

15. Shunkov M, Anoikin A, Taimagambetov Z, Pavlenok K, Kharevich V, Kozlikin M, et al. Ushbulak-1: new

Initial Upper Palaeolithic evidence from Central Asia. Antiquity. 2017; 91: e1. https://doi.org/10.15184/

aqy.2017.208

16. Iovita R, Varis A, Namen A, Cuthbertson P, Taimagambetov Z, Miller CE. In search of a Paleolithic Silk

Road in Kazakhstan. Quaternary International. 2020; S1040618220300653. https://doi.org/10.1016/j.

quaint.2020.02.023

17. Sherwood SC, Goldberg P. A geoarchaeological framework for the study of karstic cave sites in the

eastern woodlands. Midcontinental Journal of Archaeology. 2001; 26: 145–167. https://doi.org/10.2307/

20708157
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