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Understanding transcriptome complexity is crucial for understanding human biology and disease. Technologies such as

Synthetic long-read RNA sequencing (SLR-RNA-seq) delivered 5 million isoforms and allowed assessing splicing coordina-

tion. Pacific Biosciences and Oxford Nanopore increase throughput also but require high input amounts or amplification.

Our new droplet-based method, sparse isoform sequencing (spISO-seq), sequences 100k–200k partitions of 10–200 mol-

ecules at a time, enabling analysis of 10–100 million RNA molecules. SpISO-seq requires less than 1 ng of input cDNA, lim-

iting or removing the need for prior amplification with its associated biases. Adjusting the number of reads devoted to each

molecule reduces sequencing lanes and cost, with little loss in detection power. The increased number of molecules expands

our understanding of isoform complexity. In addition to confirming our previously published cases of splicing coordination

(e.g., BIN1), the greater depth reveals many new cases, such asMAPT. Coordination of internal exons is found to be extensive

among protein coding genes: 23.5%–59.3% (95% confidence interval) of highly expressed genes with distant alternative

exons exhibit coordination, showcasing the need for long-read transcriptomics. However, coordination is less frequent

for noncoding sequences, suggesting a larger role of splicing coordination in shaping proteins. Groups of genes with coor-

dination are involved in protein–protein interactions with each other, raising the possibility that coordination facilitates

complex formation and/or function. We also find new splicing coordination types, involving initial and terminal exons.

Our results provide a more comprehensive understanding of the human transcriptome and a general, cost-effective method

to analyze it.

[Supplemental material is available for this article.]

RNAmolecules carry information from the genome to produce the
cell’s functionalmachines, proteins, or act directly, for example, as
long-noncoding RNAs. The complexity of the expressed transcrip-
tome occurs, in part as a function of variability in transcription
start sites (TSSs), exon inclusion, poly(A)-sites, and RNAmodifica-
tions. All of these have been monitored with great success inde-
pendently (Harrow et al. 2006; Kodzius et al. 2006; Pan et al.
2008; Sandberg et al. 2008; Wang et al. 2008; Mayr and Bartel
2009; Saletore et al. 2012; Batut et al. 2013). Transcript reconstruc-
tion with short reads is, however, difficult (Steijger et al. 2013;
Tilgner et al. 2013), although there have been important advances
(Behr et al. 2013).

A single gene can contain multiple alternative processing
events, and such exon pairs can be separated by constitutive areas
of the RNA molecule (MacLeod et al. 1985; Helfman et al. 1986;
Fededa et al. 2005). If two alternative RNA processing events in
the same gene are independent of one another, the probability of
observing both in amolecule is simply the product of the probabil-
ities of observing each of them. If this is not the case, we consider
the two alternative RNA processing events to be coordinated. In
this latter case, short-read sequencingdoesnot informon the status
of both events within a single molecule—but isoform sequencing
does. Nonrandom combination patterns of an internal exon and

a 3′ exon were observed in the tropomyosin 1 gene (TPM1)
(Helfman et al. 1986), andnonrandomcombinations of alternative
exons have been described in the fibronectin gene (Fededa et al.
2005). Recent targeted work has established the connectivity of al-
ternative exons in four Drosophila genes (Bolisetty et al. 2015),
mouse Fn1, andDrosophila Dscam (Roy et al. 2015) as well as mam-
malian neurexins (Schreiner et al. 2014; Treutlein et al. 2014). In
neurexins, distant alternative exons were mostly independent.
Earlier genome-wide work showed correlated inclusion patterns
across tissues (Fagnani et al. 2007), but distinct isoform arrange-
ments can underlie this observation. Yet, despite very important
insights (Helfman et al. 1986; Cramer et al. 1997; Fededa et al.
2005; Fagnani et al. 2007; Tilgner et al. 2015), the understanding
of exonic variability in full-length molecules is far from complete,
because of the experimental difficulties of monitoring multiple
variable sites in a single longmolecule. Long-read RNA sequencing
allowed the interrogation of splice sites en masse along the mole-
cule (Tilgner et al. 2014, 2015). We previously analyzed ∼400- to
700-bp reads (Tilgner et al. 2013), revealing many long intergenic
noncoding RNA (lincRNA) isoforms, but rarely described full-
length isoforms. We and others (Au et al. 2013; Sharon et al.
2013; Tilgner et al. 2014) were able to obtain full-length isoforms
using Pacific Biosciences sequencing technology (PacBio) (Eid
et al. 2009). This revealed a variety of previously unappreciated iso-
forms, thus expanding our understanding. However, more quanti-
tative aspects, such as isoform quantification and splicing4These authors contributed equally to this work.
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coordination, remained difficult to address due to the lack of mol-
ecules analyzed. To increase sequenced molecule numbers and
reduce length biases, we introduced synthetic long-read sequenc-
ing (SLR-RNA-seq), providing∼5million reads of genomeassembly
quality averaging 1.9 kb in length. Using SLR-RNA-seq, we demon-
strated coordination of distant splicing events in the human brain
(Tilgner et al. 2015). OxfordNanopore has also been applied to iso-
form sequencing (Oikonomopoulos et al. 2016), and combining
different data types for comprehensive analysis is promising
(Sahraeian et al. 2017). Nevertheless, presently it appears unlikely
that these methods could provide a full-length description of 10–
100million cellular RNAmolecules—which is common in current
short-read RNA-seq experiments. Here, we use the 10x Genomics
system (Zheng et al. 2016) to generate linked short reads that tile
across eachmolecule for 17–25million RNAmolecules, and an ex-
tension to∼100millionmolecules is straightforward.Wehaveused
these long-read technologies to search genome-wide for distant but
dependent inclusion events of internal exons (Tilgner et al. 2015).
Here, we aimed at analyzing whether distant coordinated exon
pairs primarily affect coding regions and whether a large fraction
of the human transcriptome is affected by coordinated exon usage.

Results

Outline of spISO-seq procedure

The sparse isoform sequencing (spISO-seq) technology is currently
implemented on the 10x Genomics GemCode platform (hereafter
referred to as “GemCode”) but can, in principle, be implemented
on othermicrofluidic devices. Droplet (or well)-based long-read se-
quencing relies on the statistical observation that a small sample of
random cDNA molecules (10–1000 molecules) from a genome-
wide experiment will contain, at most, one molecule for most
genes. The spISO-seq approach exploits this by using the
200,000 droplets of the GemCode system to encapsulate 10–200
cDNA molecules in each droplet, while SLR-RNA-seq employed
384-well plates with 1000–2000 cDNA molecules per well. Both
approaches amplify these molecules in a droplet (spISO-seq) or
well (SLR-RNA-seq) separately and employ barcodes that assign
the amplified molecules to the droplet or well of origin—and
therefore to the original cDNA molecule with few exceptions.
These barcodes are then observed in short-read RNA sequencing
and serve to attribute tens to hundreds of short reads to one orig-
inal RNA molecule. Advantages of spISO-seq with respect to SLR-
RNA-seq include the higher number of total molecules, the re-
duced hands-on time during the experiment, and the smaller
numbers of molecules per droplet. A clear disadvantage is the low-
er number of short reads for each original molecule, which renders
direct genome-independent assembly of the total molecule diffi-
cult.We therefore aligned the spISO-seq short reads to the genome
using STAR (Dobin et al. 2013) and analyzed sets of short reads
from one droplet mapping to the same gene as a read cloud that
describes the total isoform (Fig. 1). The overall spISO-seq logic
can, in principle, be applied using microfluidic devices other
than the 10x Genomics GemCode system we employed here.
However, the exact parameters, such as input amount,may require
adjustment on any non-GemCode system.

Determining the concentration of input cDNA

We explored performing comprehensive transcriptome analysis
using GemCode technology, which analyzes a small number of
molecules separated into droplets. This technology performs mul-

tiple priming events on each single cDNAmolecule, each contain-
ing the same barcode in a single droplet. One advantage of this
technology is that it employs ∼1 ng of input cDNA, which corre-
sponds to 1012 bp or 500 millionmolecules (assuming cDNAmol-
ecules of 2 kb). One Illumina lane of 200millionmappable paired-
end 125-bp reads would give 0.05× coverage of these 1012 bp and
PCR duplicates and unmappable reads would reduce coverage.We
aimed at using lower input amounts to achieve higher coverage of
molecules. To understand the behavior of the GemCode system,
we employed 1 ng, and 500, 250, 125, 64, and 32 pg of dscDNA
(Fig. 2A) from a previously used sample (Tilgner et al. 2015).We se-
quenced the resulting fragments using a MiSeq, observing fewer
uniquely mappable reads for lower inputs. Approximately eighty
percent of reads mapped uniquely for 125 pg or more, whereas
for 64 and 32 pg, the percentages of reads that mapped uniquely
was lower (Fig. 2B). We hypothesize that, with lower inputs,
more primer-dimer-typemolecules are created during linear ampli-
fication and that the resulting reads cannot be mapped to the ge-
nome. This differential behavior raises the issue as to whether
the resulting mappings are genuine. Independently of input
amount, we observed the same fraction ofmapped base pairs in ex-
onic regions (Fig. 2C), suggesting that uniquely mapped reads are
genuine across input amounts. Likewise, the fraction of spliced
read mappings that described annotated introns (GENCODE v24
annotation) (Harrow et al. 2006, 2012) was similar across inputs
(Fig. 2D). The MiSeq data yielded fewer reads than there are mole-
cules, and eachmolecule is thus mostly represented by one or zero
read-pairs, just as in regular RNA-seq experiments.

We investigated if short-read gene expression measurements
are consistent across input amounts using popular RNA-seq

Figure 1. Comparative outline of the spISO-seq and the previously pub-
lished SLR-RNA-seq approach. (1) Both approaches rely on the principle of
compartmentalization. The fewer cDNA molecules are separated into one
compartment, the lower the probability of having two nonidentical mole-
cules from the same gene. SLR-RNA-seq employs 1000–2000 molecules
per well on 384-well plates, while spISO-seq employs 50–200 molecules
per droplet for a total of ∼200,000 droplets. (2) SLR-RNA-seq performs a
full-length PCR that is exponentially amplifying all molecules in a well,
while spISO-seq performs a linear randomly primed amplification. (3) In
both approaches, the amplified product is short-read-sequenced using
barcodes that identify the compartment (well or droplet of origin) and
(based on that, most of the time only one molecule per gene is observed
per compartment) the molecule of origin. (4) All short reads originating
from the same molecule of origin are then collectively analyzed to retrieve
long-range information within molecules.
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programs (Trapnell et al. 2010; Dobin et al. 2013) made for short-
read RNA-seq experiments (Mortazavi et al. 2008; Nagalakshmi
et al. 2008; Pan et al. 2008; Wang et al. 2008; Djebali et al.
2012). Correlation analysis showed that the 125-pg sample did
not lead to disadvantages in quantificationwith respect to the oth-
er samples (Fig. 2E,F). For fragments per kilobase per million reads
(FPKMs) of 2.31 to 4.62 (green region, Supplemental Fig. S1A), all
inputs except the 32-pgwere close to indistinguishable in a density
plot, and for FPKMs of 4.62 or greater (white region, Supplemental
Fig. S1A), we observed very high comparability. For FPKMs≤ 2.31
(log(FPKM+1)≤ 0.52) (gray/yellow region, Supplemental Fig. S1A),
differences in the density plots were observable, presumably
because low abundance genes are missed more frequently with
lower inputs (Supplemental Fig. S1A). Heat map analysis tracks
such disagreements to specific genes across all ranges of expression
(Supplemental Fig. S1B). It is therefore possible to produce high
quality RNA-seq data with inputs as low as 125 pg using the
GemCode system.

Gene detection using deep isoform sequencing

We generated 2.01 billion paired-end 151-bp read-pairs (seven
Illumina HiSeq lanes) from the 125-pg human brain dscDNA sam-
ple. We counted reads and intron-containing genes (referred to as
“spliced genes” fromhere on) per barcode, with a spliced gene con-
sidered identified when one or more of its annotated introns was
supported by a spliced junction read for this barcode. We detected
a bimodal read count distribution per barcode, withmost barcodes
receiving 10–1000 reads and a population of barcodes receiving
∼10,000 reads. Barcodes with low (e.g., <1000) or very low (e.g.,
1–100) read numbers are likely to be enriched in false barcode

identifications. If droplets with 1000
(100 resp.) or less reads are considered
false-positive barcode identifications,
the barcode misidentification rate would
be 1.8% (0.4% resp.) (Fig. 3A, left top).
Most barcodes received 10–100 spliced
genes but some barcodes noticeably few-
er (Fig. 3A, left bottom). The latter bar-
code group may be erroneously
identified barcodes. Barcodes with a
higher number of spliced molecules also
receive higher numbers of reads (Fig.
3A, right). The spISO-seq approach gives
long-range isoform information for all
genes in a droplet, for which only a single
cDNAmolecule is present in the droplet.
When multiple isoforms of a gene are
present in the same droplet, we refer to
this situation as a “collision”—a situa-
tion that would lead to conflicting read
mappings within a droplet. For example,
if a given exon is both observed as includ-
ed in a droplet but also as skipped, one
possible explanation is a collision.
However, a mismapped read giving a
false-positive junction for a droplet can
also lead to a false-positive collision. It
is expected that, for highly expressed
genes, it is more likely to have two mole-
cules in a droplet (see Tilgner et al. 2015
for calculations). In our spISO-seq data,

most spliced genes were detected in no more than 2000 (out
of >200,000) droplets (Fig. 3B), making collisions unlikely.
Nevertheless, we searched for conflicting splicedmappings within
the same droplet (given by the barcode) to estimate collisions and
calculated for each gene the fraction of barcodes with a collision
(the “collision fraction”). For ∼20,000 spliced genes, this fraction
is low (Fig. 3C). Genes with a slightly elevated collision fraction
were observed with higher barcode numbers. This is consistent
with more highly expressed genes having a higher collision prob-
ability (Tilgner et al. 2015). A few genes, however, had a very high
collision fraction, even though they had lower expression (Fig.
3C), an observation that is not consistent with the theoretical col-
lision calculations (Tilgner et al. 2015). A possible explanation for
these cases is that false-positive mappings of some, but not all,
reads in a droplet lead to false-positive conflicting splicing patterns
within this droplet. Many barcodes (each representing a droplet)
exhibited almost no collisions (including wrongly identified barc-
odes), and barcodes with collisions had more molecules
(Supplemental Fig. S2A,B). To estimate the number of detected
spliced molecules, we mapped short reads against the genome
and splice junctions from the GENCODE annotation (Harrow
et al. 2006; Derrien et al. 2012) and our previous SLR-RNA-seq
data (Tilgner et al. 2015). Using multiple cutoffs (i.e., 1, 2, 3, …,
100), we considered amolecule of a gene identified for a given bar-
codewhen at least thatmany spliced reads of a barcode spanned an
intron of the gene (Methods). With one or more spliced short
reads, we detect ∼16.7 million spliced molecules, with two or
more, 14.6 million, and with three or more, 11.6 million spliced
molecules; 16.7 million match surprisingly well with theoretical
expectations (Methods), although it likely includes some false-pos-
itive identifications (Methods; Fig. 3D). We previously estimated

Figure 2. Exploration of low input capacities using shallow sequencing of aMiSeq. (A) Number of mol-
ecules and bases for different input amounts. (B) Percentage of reads that were uniquely mappable for all
input amounts. (C) Percentage of mapped bases that fall onto annotated GENCODE exons for all input
amounts. (D) Percentage of annotated introns among all splicedmappings for all input amounts. (E) Heat
map of pairwise Spearman correlations of FPKMs for all input amounts. (F) Heat map of pairwise Pearson
correlations of FPKMs for all input amounts.
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(Sharon et al. 2013) that about two-thirds of all molecules in long-
read data sets are spliced. Adding unspliced molecules onto the
above estimations, we arrive at 17.4 million (from 11.6 million
spliced molecules) to 25 million (from 16.7 million spliced mole-
cules) total molecules. Supplemental Table S1 shows, for each in-
tron in the genome, the barcodes that span it and allows
reconstruction of isoforms. Most identified genes were protein-
coding genes, consistent with their higher average expression
(Derrien et al. 2012). However, >1000 lncRNA-, antisense-RNA,
and spliced pseudogenes were also detected, allowing better inter-
rogation of lncRNAs, which remain of high interest (Mele et al.
2017). For pseudogenes, we advise caution, because gene identifi-
cation is based on short-read mapping, which for pseudogenes is
error-prone (Fig. 3E).

Characteristics of detected genes

We calculated gene expression values (molecules per million
[MPM]) (Methods) for each gene in our spISO-seq data and com-
pared them to FPKMs, deduced from regular short-read RNA se-
quencing (Li et al. 2014) using STAR (Dobin et al. 2013) and
Cufflinks (Trapnell et al. 2010). We found high correlation (Fig.
4A, left) for all short-read data replicates (Fig. 4A, right). Note that
weuse gene expression values because they can be easily calculated
from short reads; however, the real value of spISO-seq is on the iso-
form level. Comparing the genes detected by spISO-seq and those
detected in the SLR-RNA-seq data (Tilgner et al. 2015) from the
same sample, we found 17,368 spliced genes in both data sets;
680 genes detected only using SLR-RNA-seq and 5142 genes found

only with spISO-seq (Fig. 4B). Important-
ly, spISO-seq expression and SLR-RNA-
seq expression showed a strong Spear-
man correlation of 0.842 (Fig. 4C). Genes
detected only by spISO-seq were shorter
than those detected by both approaches,
presumably due to a bias against very
short molecules (Tilgner et al. 2015) in
SLR-RNA-seq (Fig. 4D, left). Genes detect-
ed only by spISO-seq were also enriched
in lncRNA, antisense, and pseudogenes
(Fig. 4D, right). These two enrichments
(shorter length and enrichment in
lncRNA, antisense, and pseudogenes) ap-
pear linked because lncRNA, antisense,
and pseudogenes as groups are shorter
thanprotein-codinggenes (Fig. 4E;Meth-
ods). Note that, for pseudogenes, SLR-
RNA-seq identifications (Tilgner et al.
2015) are more trustworthy because
they are not based on short-read map-
ping. Percent spliced-in values of alterna-
tive exons from short-read sequencing in
human brain (Li et al. 2014) and in our
spISO-seq were concordant with a Spear-
man correlation of 0.93 (Fig. 4F) and a
Pearson correlation of 0.96.

Coordination of alternative

internal exons

In the GENCODE (version 24) annota-
tion, 24.8% of protein-coding genes con-

tain two pure exon-skipping events that are separated by
constitutive exons. We define a “pure exon-skipping event” as
an exon that is either included or skipped in all overlapping tran-
scripts, without the interference of annotated alternative splice
sites, poly(A)-sites, transcription start sites, or intron retention.
However, 60.5% of protein-coding genes contain two nonconstit-
utive exons that are separated by one or more constitutive exons.
The question of coordination of multiple distant alternative sites
is therefore relevant formany genes.We recently revealed a limited
number of exon pairs that are distant in mRNAs but show coordi-
nated inclusion patterns in brain (Tilgner et al. 2015). Here, we im-
proved the detection algorithm and devised a similar procedure for
spISO-seq data (Methods). For splicing coordination, we use very
stringent mapping parameters (Methods) and correct for multiple
testing using the Benjamini-Yekutieli method (Benjamini and
Yekutieli 2001). We found 125 genes with at least one coordinated
pair at a false discovery rate (FDR) of 0.05 (Supplemental Fig. S3A;
Supplemental Table S2) and 110 genes using the SLR-RNA-seq data
(Methods; Supplemental Table S3). The neurexin genes withmost-
ly independent alternative exon pairs (Schreiner et al. 2014;
Treutlein et al. 2014) serve as a negative control: Indeed, despite
testing 24 alternative exon pairs for dependence, none of these
neurexin exon pairs was found to be coordinated. Removing
spISO-seq barcodes with <1000 short reads (which contain false-
positive molecule identifications), exon pairs of seven (PPFIBP1,
KIAA1217, RECK, PPA2, PPFIA2, TPM1, and CCDC25) of the 125
genes showed increased corrected P-values (from <0.05 to 0.05–
0.16). These are either cases of false-positive coordination events
(due to false-positive molecule identification events) or real

Figure 3. Molecule and gene identification using deep sequencing. (A) Histogram of read counts for all
barcodes (top left), histogram of splice gene count for all barcodes (bottom left), and dotplot of spliced
genes and short reads per barcode. (B) Histogram of barcodes per gene. (C ) Percentage of barcodes
with a collision for each gene; genes are ordered by collision fraction (top). Gene expression as measured
by barcode number for many genes without collisions (gray), many genes with few collisions (yellow),
and for very few genes with many collisions (green—not observable in top plot because of very low
gene number). (D) Number of spliced molecules identified depending on howmany spliced short reads
identify an intron of the molecule’s gene. (E) Numbers of genes identified in four gene classes (protein-
coding genes, lincRNA genes, antisense genes, and pseudogenes).
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coordination events for which the “≥1000 reads” cutoff removed
real molecules and increased P-values.

Sixty-six percent of the 110 genes with coordination (FDR =
0.05) according to SLR-RNA-seq were among the 125 genes with
coordination using spISO-seq (FDR = 0.05). The confirmation
rate gradually rose to 86% for SLR-RNA-seq FDRs of 0.01 and
0.001. Removing exon pairs with complex events (i.e., intron re-
tention and/or alternative splice sites are observed in addition to
the exon-inclusion and exon-skipping isoform) from the SLR-
RNA-seq list led to higher confirmation rates. Finally, removing
exon pairs with a junction that could only be mapped using
SLRs, but not with short reads, increased the confirmation rate
to 96% and 100% (FDRs = 0.01 and 0.001) (Fig. 5A). Presumably,
nonunique junctions limit the ability of the linked read ap-
proach—or differences between GMAP (Wu and Watanabe
2005) and STAR (Dobin et al. 2013) cause the nonperfect overlap
in the entire set. Overall, there is agreement between both tech-
nologies, although complex splicing events and differences in
short- and long-read mappability introduce some disagreement.
Differences in bioinformatic implementations that are tuned to
take advantage of each method may also contribute to this dis-
crepancy (Fig. 5A; Methods). Log-odds-ratios—a measure of coor-
dination extent—correlated highly for exon pairs that were
coordinated with both technologies (Spearman correlation of
0.96) (Fig. 5B), as well as for those, albeit less, that were only sig-
nificant in the spISO-seq approach (Spearman correlation of
0.90) (Supplemental Fig. S3B). Pairs that were only coordinated
in spISO-seq show higher molecule numbers in spISO-seq,

illustrating statistical advantages with deeper sequencing (Supple-
mental Fig. S3C).

For genes with exactly one alternative exon pair that is entire-
ly coding, in 67% (34 out of 51) of the cases both exons had
lengths divisible by three, thus keeping the reading frame. In the
remaining 33% of the cases, nonsense-mediated decay (NMD)
may have contributed to the observation of coordination, by de-
grading RNA molecules carrying specific exon combinations.
Coordinated exon pairs showed a relatively wide distribution of
bases in their intermediate exons according to the GENCODE an-
notation—at least in comparison to customary Illumina sequenc-
ing fragment length. A considerable number of coordinated exon
pairs are separated by more than 1000 bp on RNA molecules
(Supplementary Fig. S3D). Only two coordinated exon pairs could
be observed in four lanes of Illumina sequencing (Li et al. 2014) af-
ter PCR duplicate removal. However, deeper, 150-bp paired-end se-
quencing is expected to yield more coordinated exon pairs for a
subset of distances covered by the fragment length.

Tested exon pairs that included noncoding sequencewere co-
ordinated less often than those that were entirely coding, suggest-
ing that coordination acts predominantly on proteins (Fig. 5C). Of
note, the majority of pairs with noncoding sequence come from
protein-coding genes, because of lower lincRNA expression, in
the literature (Derrien et al. 2012) and in our data set. To control
for informative read number, we selected a distribution of purely
coding exon pairs and a second distribution involving noncoding
sequence with matched read numbers. We found the former
to have twofold higher frequency of coordination (two-sided

Figure 4. Gene quantification. (A) Dotplot of gene expression from published short-read data (Li et al. 2014) and molecules per million of spISO-seq. (B)
Overlap of genes identified by spISO-seq’s linked reads and SLR-RNA-seq’s SLRs. (C) Dotplot of gene expression from published synthetic long-read data
(Tilgner et al. 2015) and molecules per million of spISO-seq. (D) Gene length and gene type enrichments for genes found only with spISO-seq and those
foundwith spISO-seq and SLR-RNA-seq (Tilgner et al. 2015). (E) Length formature RNAs for four different gene classes. (F ) Dotplot ofΨ-values of short-read
RNA sequencing (x-axis) and of spISO-seq (y-axis).
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Fisher’s exact test, P < 0.007) (Methods; Supplemental Fig. S3E). A
gene our previous approach had not identified, and an example of
coordination between coding exons, is MAPT, which forms the
basis of all tauopathies (Rademakers et al. 2004; Wang and
Mandelkow 2016). We now have a much larger number of identi-
fied molecules—especially for the second alternative exon (Fig.
5D). Among the many SLR-RNA-seq coordinated genes (Tilgner
et al. 2015) that we can confirm are EXOC7 (Supplemental Fig.
S4) and BIN1,the secondmost Alzheimer’s disease (AD)-associated
gene (Supplemental Fig. S5; Lambert et al. 2013). In both genes, we
observe rare but existing intron retention events, which have at-
tracted considerable interest in recent times (Braunschweig et al.
2014; Jacob and Smith 2017). The increased coordination between
entirely protein-coding exons prompted us to investigate the in-
volvedproteins.Geneswith coordination appear to harbor clusters
of known protein–protein interactions (Szklarczyk et al. 2017).
One such cluster appears to be linked to AD (with MAPT, BIN1,
PICALM). Another cluster contains a number of cell adhesionmol-
ecule genes (NRCAM, NFASC), and yet another cluster—a group of
actin-cytoskeleton remodeling genes (TPM1, TPM2) (Fig. 5E). This
suggests that, in addition to known influences of alternative splic-

ing on protein–protein interactions (Yang et al. 2016), these
protein–protein interactions may be governed by complex non-
random exon-pairing.

Effects of lower coverage of molecules

We assessed the impact of devoting less sequencing depth to the
same number of molecules, by limiting our analyses to two of the
seven lanes of Illumina data. This 71% decrease in sequencing
depth led to 37.5% of molecules and 34% of splicing events
not having coverage (Supplemental Fig. S6A). Some of these loss-
es may represent false-positive identifications with few reads
only. However, when it comes to the utility of this approach to
detect coordination events, this 71% decrease in resources still re-
covered 99 genes with coordinated splicing—of the original 125
(Supplemental Fig. S6B). Quantitative coordination extent, mea-
sured by log-odds-ratios, correlated highly between the two-lane
and the seven-lane approach (Supplemental Fig. S6C). In the
case of EXOC7, we observed that most, but not all, positions of
molecules were still supported, albeit by fewer reads (Supplemen-
tal Fig. S6D).

Figure 5. Coordinated exon pairs and influences on protein–protein interactions. (A) Percentage of genes with coordination events found by SLR-RNA-
seq at three different FDRs that are also found with spISO-seq at FDR of 0.05. Blue bars: all SLR-RNA-seq coordination genes; orange bars: only SLR-RNA-seq
genes, in which most molecules (Methods) show only exon inclusion and exon exclusion; brown bar: only SLR-RNA-seq genes, in which most molecules
(Methods) show only exon inclusion and exon exclusion and where skipping events are mappable using short reads and STAR (Dobin et al. 2013). (B)
Dotplot for extent of coordination according to SLR-RNA-seq and spISO-seq for cases in which both technologies indicate coordination. (C)
Percentage of genes in which coordinated exons contain noncoding sequence for genes with coordination (FDR < 0.05) and without. (D) Single gene
view for the MAPT gene, the center of all tauopathies. Bottom, black track: GENCODE annotation. Middle, colored track: spISO-seq data, with each line
representing one molecule. Top, red-brown track: SLR-RNA-seq data with each line representing one molecule. Blue boxes highlight the inclusion of
two alternative exons, whose inclusion is anticorrelated. (E) Protein–protein interaction network for genes with splicing coordination.
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Coordination of first alternative donors and last alternative

acceptors

Our previous research (Tilgner et al. 2015) focused on internal
exon coordination, in the absence of complex events (e.g., intron
retention events, alternative acceptor and donors). Given spISO-
seq advantages for long molecules, we focused on long-distance
coordination. We considered genes that had at least one alterna-
tive donor that was located upstream in the gene of an alternative
acceptor. We assessed the number of genes in which these two al-
ternative splicing events were separated by one or more constitu-
tive exons. For protein-coding genes, this was the case in 69% of
all genes, and for lncRNAs, in about half of all cases (Fig. 6A).
This reduced presence of constitutive exons in lncRNAs is consis-
tent with increased isoform diversity through skipping of exons
previously considered constitutive (Sharon et al. 2013; Tilgner
et al. 2013, 2014, 2015) and universal alternative splicing
(Deveson et al. 2017) in lincRNAs. This procedure performs one
test per gene, and we correct for multiple testing using the
Benjamini-Hochberg method (Benjamini and Hochberg 1995).
Despite testing the most upstream alternative donor and the
most downstream alternative acceptor, an absolute majority of
significantly coordinated pairs were splice sites of internal exons.
Only once did we observe a first donor being coordinated with a
last acceptor, while internal splice sites were frequently paired to
a first or last splice site (Fig. 6B). Pairs of first donors and last accep-

tors were thus underrepresented among the coordinated pairs
(two-sided Fisher’s exact test, P < 0.01) (Fig. 6C), while pairs of in-
ternal donors and last acceptors were slightly overrepresented
(two-sided Fisher’s exact test, P < 0.04). Given that last alternative
acceptors can also occur as part of distant 3′ exons, this observa-
tion is consistent with previously observed coordination of 3′ ex-
ons and internal exons (Helfman et al. 1986) and our previous
model: that alternative poly(A)-site choice can influence internal
splice site selection by changing the rate of cotranscriptional splic-
ing (Tilgner et al. 2012). Pairs of alternative first donors and inter-
nal acceptors, as well as pairs of two internal splice sites, showed
no enrichment among the coordinated pairs. An alternative first
donor linked to the choice of an internal exon is shown in
Figure 6D. The two splice sites are separated by nine constitutive
exons. First alternative donor choice is perfectly correlated with
TSS choice, so that the driving force may in fact be TSS and pro-
moter choice—this is consistent with work linking promoters
and splicing patterns (Cramer et al. 1997; Fededa et al. 2005)
and DNA loops between TSS and internal exons (Mercer et al.
2013; Curado et al. 2015). In this example, including the third-
from-last exon is never observed when the gene is transcribed
from the upstream TSS.We advise caution with such cases of alter-
native TSSs (and poly(A)-sites) because these can affect molecule
length drastically, but cases (such as CALD1) observed with two
technologies (i.e., spISO-seq and SLR-RNA-seq) are less likely to
be artifacts.

Figure 6. Coordination between first alternative donors and last alternative acceptors. (A) Percent of exon pairs that are always separated by at least one
intermediate exon for lincRNAs and for protein-coding genes. (B) Frequency among all coordinated pairs of pairs of internal splice sites (“Internal-internal”),
pairs of an internal and a last splice site (“Internal-last”), pairs of a first splice site and an internal exon (“First-internal”), and pairs of a first and a last splice site
(“First-last”). (C) Percentage of pairs of a first and a last splice site among coordinated (FDR < 0.05) and noncoordinated pairs. (D) Bottom, black track:
GENCODE annotation. Middle, colored track: spISO-seq data, with each line representing one molecule. Top, red-brown track: SLR-RNA-seq data with
each line representing one molecule. Blue boxes highlight first exon and TSS choice (left blue boxes) and internal exon inclusion (right blue boxes).
Inclusion of the alternative internal exon occurs only when the downstream first exon/TSS is chosen.
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Estimation of coordination extent

Increased sample size yields increased power to reveal statistical
significance. Since for nonrandom exon pairing small read num-
bers (i.e., 0–100) for an exon pair limit detection in lowly expressed
genes, we aimed at estimating the percentage of genes (that have
multiple separate variable exons) with coordination. We consid-
ered, for multiple cutoffs, the exon pairs having at least this
many reads. At a cutoff of 25, 5.6% (95%CI: [4.4%–6.8%]) of genes
contained at least one exon pair with a Fisher’s exact test P-value
≤5 × 10−7 and an absolute value log2-odds-ratio≥ 0.5. This per-
centage rose gradually to 41.4% (95% CI: [23.5%–59.3%]) for
exon pairs with ≥1000 reads (Fig. 7A). Genes can contain multiple
such exon pairs, which introduces data structure. Using only one
exon pair per gene (Methods) and repeating the estimation pro-
cess, we recovered the same trend, albeit with lower percentages,
because the retained exon pair is not necessarily a coordinated
one (Fig. 7B). These trends (Fig. 7A,B) suggest two nonmutually ex-
clusive hypotheses: Highly expressed genes could contain more
coordinated exon pairs than lowly expressed genes—or given
≥1000 reads per gene, we would observe 23.5%–59.3% of tested
genes with coordination. To distinguish between these scenarios,
we performed down-sampling experiments (Methods), in which
we sampled≥25 reads fromexonpairswith≥500 reads. This result-
ed in a down-sampled list of exon pairs with reads drawn from the
“≥500 informative reads” exon pair list that had an identical distri-
bution of total informative reads as the original “≥25 reads” exon
pair list. We repeated this 50 times and recorded the fraction of
genes with coordination in each repetition. These down-sampled
exon pairs (of ≥25 reads) behaved similarly to the real exon pairs
of ≥25 reads and dissimilarly to the real exon pairs of ≥500 reads
(Fig. 7C). This shows that, with ≥1000 reads per exon pair, we ex-
pect to observe 23.5%–59.3% of tested genes with coordination.

Discussion

Isoform sequencing is influenced by five parameters: throughput,
sequence quality, read-length, faithful quantification, and input
requirements. We have used PacBio (Sharon et al. 2013; Tilgner
et al. 2014) and SLR-RNA-seq (Tilgner et al. 2015), and Oxford
Nanopore has recently been employed (Oikonomopoulos et al.

2016). SLR-RNA-seq provided 5 million ∼1.9-kb average reads
and statistics on a gene-by-gene basis. SpISO-seq provides an al-
most full-length description of 17–25 million molecules (estimat-
ed from 11.6–16.7 million spliced molecules) and can be scaled to
50–100 million molecules with more input cDNA. Sequence qual-
ity is determined by Illumina sequencing and could be raised by
combining multiple overlapping short reads into an assembly.
Full-length PCR is not employed but only linear amplification,
which initiates at multiple positions on the molecule. Each ampli-
fication event provides useful data, evenwhen it fails to extend the
entire molecule. This leads to high correlation of spISO-seq and
short-read expression and is likely to limit bias against longer mol-
ecules, due to the necessity to complete full-length PCR cycles in
the SLR-RNA-seq approach (Tilgner et al. 2015) or due to preferen-
tial sequencing of smaller molecules with PacBio (Eid et al. 2009).
In summary, with more assessed molecules, spISO-seq has advan-
tages for statistics and biological discovery. However, with sparser
sequencing of all molecules, a full-length single sequence of the
molecule is not (yet) provided—rather mapping is performed us-
ing unassembled short reads, which may be problematic for pseu-
dogenes and repetitive regions.

Input requirements for spISO-seq (and SLR-RNA-seq) of 100
pg–1ng of cDNAmake prior amplificationunnecessary inmost sit-
uations and limit bias. SpISO-seq revealsmoremolecules of impor-
tant gene classes such as lincRNAs and antisense genes (Mercer
et al. 2009)—but for pseudogenes, mappings are error-prone, and
long SLRs (Tilgner et al. 2015) or PacBio reads (Eid et al. 2009; Au
et al. 2012; Koren et al. 2012; Sharon et al. 2013) offer advantages.

We confirm SLR-RNA-seq-based splicing coordination obser-
vations (Tilgner et al. 2015), although some disagreement exists:
(1) complex splicing events (where, in addition to exon inclusion
and exclusion, we observe intron retention or alternative splice
sites), and (2) when a splicing event cannot be mapped by short
reads. For the AD-associated gene BIN1, we confirm coordinated
splicing (Tilgner et al. 2015), and we can now appreciate coordina-
tion in MAPT—a gene central to tauopathies (Rademakers et al.
2004; Wang and Mandelkow 2016).

Using the GENCODE version 24 annotation, we have found
that ∼60% of all protein-coding genes contain two (or more) alter-
native events of exon usage that are separated by constitutive ex-
ons. Here, we have focused on pure pairs of exon-skipping

events and genes, for which our previ-
ously published SLRs indicate two pure
alternative exon-skipping events and
for which we have at least 25 molecules
in our spISO-seq data. Thus, we test
4624 exon pairs in 1354 genes and find
322 exon pairs in 125 genes to be coordi-
nated. This is certainly only the tip of the
iceberg, as there are thousands of genes—
for which we do not possess 25 or more
full-length molecules—and because 25
molecules allow detection of only close-
to-perfect coordination.

Outstanding questions concerned
the consequences and extent of coordi-
nation: We observe coordination events
mostly in coding regions—and to a lesser
extent in UTRs. The reasons for this ob-
servation are unclear for the moment,
but it is possible that NMD is responsible
for ∼33% of the observed coordinated

Figure 7. Estimation of genes with coordination genome-wide. (A) Percent of genes (among genes
with one tested exon pair at a given cutoff) that show at least one coordinated exon pair with P < 5 ×
10−7 and absolute value log-odds-ratio of 0.5 or above. Vertical bars indicate 95% confidence intervals.
(B) Same figure as A, considering only one exon pair per gene: the one with the highest number of infor-
mative reads. Vertical bars indicate 95% confidence intervals. (C) Orange arrow indicates percentage of
genes with ≥25 informative reads that have a coordination event. Red arrow indicates the same percent-
age for genes with 500 informative reads. Blue distribution shows 50 lists of exon pairs, down-sampled
from the “≥500 informative read” data to the “≥25 informative read data.”
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cases in coding regions by degrading transcripts with a frame shift
(see above). NMD would affect exon pairs with noncoding
sequence comparatively less and contribute to increased coordina-
tion in coding regions. Alternatively (and not mutually exclusive-
ly), a lower evolutionary pressure to maintain coordination can be
envisioned for UTRs and lincRNA genes—which would mean that
coordination is, above all, contributing to control protein-coding
sequences. The observation of lower coordination in noncoding
sequence is supported by analysis of first and last alternative splice
sites. We tested the first alternative donor and the last alternative
acceptor of each gene for coordination. Despite the design to
find dependencies involving the first and last splice site, amajority
of coordination cases involved only splice sites of internal exons.
However, dependencies between a first or last splice site and an in-
ternal splice site were also observed. The first donor and the last ac-
ceptor may be linked to alternative poly(A)-sites and TSS choice
(e.g., Fig. 6D). Thus, the functional association may in fact be be-
tween the TSS and internal exon choice as previously shown
(Cramer et al. 1997; Fededa et al. 2005) or between the internal
exon and poly(A)-site, as previously hypothesized (Tilgner et al.
2012). Such situations we had previously not dealt with because
we feared bias due to considerable length differences (Tilgner
et al. 2015). Interestingly and consistent with universal alternative
splicing in lincRNAs (Deveson et al. 2017), we do not observe co-
ordination in lincRNAs, but deeper isoform data may reveal
lincRNA coordination also. With infinite sequencing depth, we
would expect a larger number of genes to display splicing coordi-
nation, unless lowly expressed genes follow a different paradigm
than highly expressed genes. Down-sampling experiments sug-
gest, however, that lowly expressed genes behave similarly to
down-sampled cases of highly expressed genes. Thus, with deeper
sequencing wewill find considerably larger numbers of coordinat-
ed events (23.5%–59.3% of tested genes with ≥1000 reads).

Multiple distinct models can underlie non-NMD-mediated
coordination events. First, it is well established that the same splic-
ing factor can cause exon inclusion or exclusion depending on
whether it is binding upstream, downstream, or within the exon
(Ule et al. 2006; Llorian et al. 2010). Thus, a splicing factor binding
site located upstream of the first alternative exon and downstream
from the second alternative exon would lead to a mutually exclu-
sive and thus coordinated pattern of both alternative exons.
Similarly, concordant positioning of splicing factor binding sites
could cause both exons to be included in the same molecules.
Second, splicing outcome at one of the exonsmay leavemolecular
cues that influence splicing of the second alternative exon. One in-
stance of this has already been established in the fibronectin gene
(Fededa et al. 2005), inwhich inclusionof the upstreamexon influ-
ences the downstream exon and in which promoter and transcrip-
tion elongation rate influence coordination. Other molecular
communication types, such as RNA structures linking alternative
exonpairs, could potentially also play a role. Third, since our obser-
vations are based on bulk tissue isoformprofiling, it is possible that
some isoform abundances are determined by the abundances of
distinct cell types and that these abundances lead to the observa-
tion of coordination. Last but not least, co-expression patterns of
the splicing factors controlling the two exons of an exonpair could
also play a role in shaping isoforms and coordination.

Methods

Note that all experiments describedhere have been performedon a
10x Genomics GemCode instrument, but we also describe in the

Methods experiences with the Chromium instrument (see
Supplemental Methods).

cDNA generation

cDNA was generated in a similar fashion as previously reported. A
detailed protocol is found in the Supplemental Methods.

GemCode whole transcriptome library preparation and

sequencing

Sample indexing and partitioning, thermal cycling, final library
generation, and quantification were done by following the 10x
Genomics GemCode platform protocol (10x Genomics). Briefly,
GemCode Gel-Bead Strip, GemCode Reagent mix, Primer Release
Agent, and Surrogate Fluid were brought to room temperature.
Freshly prepared GemCode creationmaster mix containing nucle-
ase-free water, GemCode Reagent Mix, Primer Release Agent, and
GemCode Polymerase was added into five individual PCR 8-tubes.
Onemicroliter of the 1000-, 500-, 250-, 125-, and 62.5-pg/µL of the
purified dscDNA samples was loaded into each PCR tube and
mixed well by slow pipetting on ice, spun quickly, and placed
back on ice. GemCode Gel-Bead Strips were vortexed at full speed
for 25 sec and collected in the bottom of the tubes and checked
carefully for bubbles. Sixty microliters of sample mix were loaded
into the sample wells in the GemCode Chip, followed by loading
85 µL of the GemCode Gel-Beads suspension into the designated
row in the GemCode Chip. At least 150 µL of the partitioning oil
was also loaded into the GemCode Chip. The GemCode Chip
was covered with the GemCode Chip Gasket and inserted into
the GemCode Instrument for massively partitioning into molecu-
lar reactors to extend the DNA and introduce specific 14-bp parti-
tion barcodes. One hundred fifteen microliters of GEM reactions
were transferred into a 96-well PCR plate and sealed using Bio-
Rad PX1 Plate Sealer to 185°C for 6 sec. The sealed PCR plate con-
taining the GEM reaction was placed into a Bio-Rad C1000 Touch
Thermalcycler with a 96- deep well reaction module, which was
kept at a 4°C hold stage and amplified by incubating at 95°C for
5 min; 18 cycles of 4°C for 30 sec, 45°C for 1 sec, 70°C for 20 sec,
and 98°C for 30 sec; then held at 4°C and purified using
DynaBeads MyOne SILANE and SPRIselect Reagent (0.6× volume)
following the GemCode protocol, and final purified partitioned,
indexed, and amplified libraries were eluted in 52.5 µL of Elution
Solution II.

In the following steps of the library construction, the P7
adapter containing the sample index was added to the GemCode
Libraries. Briefly, the purified GemCode Libraries were sheared to
500 bp (E220 Focused-ultrasonicators) using Intensity: 5; duty fac-
tor: 5.0%; cycles per burst: 200; treatment time; 35 (sec), tempera-
ture: 7.0°C; sample volume: 50 µL. The sheared libraries went
through end repair, 3′ ends tail adenylation, universal adapter
ligation, post-ligation 0.8× SPRI cleanup, sample indexing PCR,
and post-sample index PCR 1× SPRI Cleanup according to the
manufacturer’s instruction, and were eluted in 30.5 µL of Elution
Solution III. Final libraries were quantified by a Agilent High
Sensitivity DNA kit (#5067-4626) and also KAPA Illumina
Library Quantification Kit-Universal (#KK4824).

The final GemCode Illumina-ready sequencing libraries were
run individually on seven lanes of the Illumina HiSeq 4000 with
paired-end 2 × 98-bp, 14-bp I5, and 8-bp I7 reads.

Mapping and primary spliced molecule number estimation

of microfluidic molecules

Barcoded short reads were aligned to the genome using STAR
(Dobin et al. 2013). Short reads carrying the same barcode and
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being aligned to the same gene were considered to have originated
from the samemolecule. Gene-barcode pairs for which conflicting
spliced reads were found were labeled as “collisions” and removed
from the analysis. The total number ofmolecules was estimated by
counting the number of gene-barcode pairs, for which at least one
(resp. 2,3,4,…100) spliced read(s) was available for the gene (resp.
barcode). Further details are available in the Supplemental
Methods.

Calculation of molecules per million

For each spliced gene, we counted the barcodes that identified this
gene (as defined by a splice read identifying a GENCODE intron of
this gene) and divided this count by the total number of detected
molecules, in millions.

Length estimations of gene classes

Based on the GENCODE version 24 annotation (5, 6), we chose for
each gene’s length the length of its longest transcript (excluding
introns).

High-confidence identification of splicing events in individual

molecules

We mapped the linked short reads to the GRCh38 version of the
human genome and annotated GENCODE v24 spliced junctions,
requiring at least mapped 6 bp on either side of the junction to
decrease possible false-positive mappings.

Coordination of alternative internal exons

For each exon pair, we determined the number of barcodes that (1)
included both exons, (2) included the first but not the second
exon, (3) included the second but not the first exon, and (4)
skipped both exons. These numbers were used to construct a 2×2
table. A Fisher’s exact test was performed, and correction for mul-
tiple testing was performed with the Benjamini-Yekutieli method
(Benjamini and Yekutieli 2001). For the same exon pairs, we con-
structed a 2×2 table, followed by statistical testing and correction
for multiple testing using spISO-seq data. More detail is available
in the Supplemental Methods.

Coordination between first alternative donors and last alternative

acceptors

For each gene we determined all alternative acceptors and all do-
nors within the gene. If the alternative donor was located up-
stream of the alternative acceptor and in all molecules there
was at least one intermediate exon in between the two splice
sites, we retained the splice site pair, thus focusing on events in
which the two alternative splice sites are defined by distinct splic-
ing reactions. For the same exon pairs, we constructed a 2×2
table, followed by statistical testing and correction for multiple
testing using spISO-seq data. More detail is available in the
Supplemental Methods.

Down-sampling experiments

Each exon pair is represented by a 2×2 table with the numbers a
and d on the descending diagonal and b and c on the ascending di-
agonal; a is defined as the number of reads including both exons, d
as the number of reads skipping both exons, b as the number of
reads including only exon 1 (and skipping exons 2), and c as the
number of reads including only exon 2 (and skipping exon 1).

For each 2×2 table t, we defined nt = at + bt + ct + dt as the infor-
mative reads for this table t. In order to avoid biases caused by

genes with many significant tables (like BIN1), here, for each
gene we only use the table (or exon pairs) for which nt is highest
among all tables (or exon pairs) for the gene in question.

From the real data, we defined two lists of tables: L (for low)
being the list of tables t for which nt≥ 25, and H being the list of
tables t for which nt≥ 500. Trivially, each element of L is also an el-
ement of H. For H and for L separately, we computed the percent-
age of genes that have a P-value of≤5 × 10−7 and abs[log2((a+0.5) ×
(d+0.5)/(((b+0.5) × (c+0.5)))]≥ 0.5. We use a pseudocount of 0.5 to
be able to calculate the log-odds-ratio even when a zero appears in
the table. These two percentages are shown as arrows in Figure
6C. The cutoff of 5 × 10−7 was chosen because, with this cutoff,
one would be able to implement a Bonferroni correction for
100,000 tests. The number of 100,000 tests is a reasonable upper
bound estimate on the number of alternative exon pairs (that are
separated by constitutive exons), given 20,000 protein-coding
genes.

We then defined a down-sampled list as follows:
For each table l in L, we chose one table randomly among the

tables h in H that verified nh≥ nl. From this table we chose nl reads
randomly and thus obtained a table ds that has nl total counts and
that is down-sampled from h. The list of down-sampled tables ds
defines a list of tables (DS) that has the identical distribution of in-
formative reads as L (but, by construction, not necessarily similar
distributions of the a, b, c, and d values). For this list DS, we com-
puted the percentage of genes that have a P-value of 5 × 10−7 or
less and abs[log2((a+0.5) × (d+0.5)/(((b+0.5) × (c+0.5)))]≥ 0.5.

We repeated this process 50 times to define 50 representa-
tions of down-sampled lists and their associated percentages.
This distribution is shown in Figure 6C in blue.

Data access

The sequence data from this study have been submitted to
the NCBI BioProject database (http://www.ncbi.nlm.nih.gov/
bioproject/) under accession number PRJNA267017 (SRA acces-
sion numbers SRX3207157–SRX3207163).
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