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Abstract
Growing global viral infections have been a serious public health problem in recent years. This current situation emphasizes 
the importance of developing more therapeutic antiviral compounds. Hepatitis C virus (HCV) and dengue virus (DENV) 
belong to the Flaviviridae family and are an increasing global health threat. Our previous study reported that the crude venom 
of Scorpio maurus palmatus possessed anti-HCV and anti-DENV activities in vitro. We report here the characterization of a 
natural antiviral peptide (scorpion-like peptide Smp76) that prevents HCV and DENV infection. Smp76 was purified from 
S. m. palmatus venom and contains 76 amino acids with six residues of cysteine. Smp76 antiviral activity was evaluated 
using a cell culture technique utilizing Huh7it-1, Vero/SLAM, HCV (JFH1, genotype 2a) and DENV (Trinidad 1751, type 
2). A potential antiviral activity of Smp76 was detected in culture cells with an approximate  IC50 of 0.01 μg/ml. Moreover, 
Smp76 prevents HCV infection and suppresses secondary infection, by inactivating extra-cellular infectious particles without 
affecting viral replication. Interestingly, Smp76 is neither toxic nor hemolytic in vitro at a concentration 1000-fold higher 
than that required for antiviral activity. Conclusively, this report highlights novel anti-HCV and anti-DENV activities of 
Smp76, which may lay the foundation for developing a new therapeutic intervention against these flaviviruses.
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Introduction

Hepatitis C virus (HCV) is a single-stranded RNA viruses 
that belongs to family Flaviviridae (Mohammed et  al. 
2013; Supanee et al. 2014). Around 150 million people 
worldwide are chronically infected with HCV and the 
annual mortality from HCV-related liver diseases reach 
up to 700,000 individual (Ministry of Health and 2015; 
World Health Organization 2016; Jefferies et al. 2018). 
In the past decade, interferon-based therapy was the gold 
standard for HCV treatment with a sustained virological 
response (SVR) rate hovering around 50%. The recent 
approval of oral direct-acting antivirals (DAAs), like 
HCV NS3 protease inhibitors, NS5A inhibitors and NS5B 
RNA-dependent RNA polymerase inhibitors, for clinical 
use improved the SVR rates to more than 90% (Pawlot-
sky 2016; Falade-Nwulia et al. 2017). Nevertheless, cir-
rhosis patients remain at risk for severe complications. In 
addition, treatment with DAAs is not affordable for many 
patients and they are still not readily available around the 
globe. Therefore, uncovering novel HCV inhibitors is still 
a clinical priority.

Dengue virus (DENV) is another single-stranded RNA 
Flaviviridae virus that is transmitted by mosquitoes caus-
ing dengue fever (Rodenhuis-Zybert et al. 2010). DENV 
is currently endemic in more than 100 countries with the 
highest prevalence in South-East Asia, Africa and the 
Americas (Mackenzie et al. 2004; Malavige et al. 2004; 
Deen et  al. 2006; Bhatt et  al. 2013). Each year, there 
are around 390 million DENV infections are recorded 
worldwide and among them 50 to 100 million patients 
are presented with the clinical manifestations of dengue 
fever (Bhatt et al. 2013). Dengue fever leads to 20,000 
annual deaths, mainly in young children (Rui-feng et al. 
2008). To date, four DENV serotypes, DENV-1, DENV-2, 
DENV-3 and DENV-4, have been identified and infections 
with one serotype does not offer protection from infection 
with the remaining three serotypes (Weaver and Vasilakis 
2009; Messina et al. 2014; Mustafa et al. 2015). A major 
impediment to the development of vaccines is that vac-
cines should have a tetravalent effect, i.e. sufficient protec-
tive immune responses against all four DENV serotypes. 
Owing to the absence of specific treatments against DENV 
and the limitations of the available vaccine (Dengvaxia® 
or CYD-TDV), the global burden of DENV infection is 
becoming enormous (Behnam et al. 2016). Therefore, the 
development of new antiviral compounds against DENV 
infections is urgently needed.

Scorpion venom is a rich source for drug discovery and 
prototyping (Ortiz et al. 2015; Ghosh et al. 2019). Scor-
pion venoms are highly complex mixture of nucleotides, 
enzymes, mucoproteins, biogenic amines, nucleotides, 

salts, as well as peptides and proteins (Omran 2003; Rod-
riguez de la Vega and Possani 2005; Ozkan et al. 2006a, 
b, c; Feng et al. 2008; Kanoo and Deshpande 2008; Ortiz 
et  al. 2015). Antimicrobial peptides (AMPs), isolated 
from several venomous animals, exhibit a wide range of 
antibacterial and antiviral activity with direct or indirect 
microbicide activity (Hv et al. 2006; Ortiz et al. 2015). 
Several studies demonstrated an antiviral effect for certain 
scorpion venom peptides (Carballar-Lejarazu et al. 2008; 
El-Bitar et al. 2015; Ortiz et al. 2015). In this study, we 
report the molecular and functional characterization of a 
new antiviral peptide (Smp76), a scorpion-like peptide 
derived from an Egyptian scorpion’s venom, S. m. palma-
tus. Our findings will broaden the currently known antivi-
ral peptides and open a new avenue for the development 
of novel HCV and DENV therapies.

Materials and Methods

Collection of Scorpions and Venom Preparation

Adult S. m. palmatus scorpions were collected from the 
Western Coastal Mediterranean Desert (Alexandria Gover-
norate, Egypt) and were housed individually in clear plas-
tic containers. Scorpions were fed small insects and were 
given water. Crude venom was extracted using electrical 
stimulation (20 V) and the milked venom was collected and 
centrifuged for 20 min at 13,000 rpm/4 °C as detailed previ-
ously (Abdel-Rahman et al. 2013). Clear supernatants were 
pooled, freeze-dried and stored at − 20 °C until use. Venom 
samples were dissolved in bi-distilled water and the total 
protein concentration was determined by BCA Protein Assay 
Kit (Pierce Biotechnology, Rockford, IL, USA) according to 
the standard protocols.

Cell Culture and Virus Production

The human hepatoma-derived cell line, Huh7it-1, was cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM; 
Wako, Osaka, Japan) supplemented with non-essential 
amino acids (Invitrogen, Carlsbad, CA, USA), fetal bovine 
serum (Biowest, Nuaille, France), streptomycin (100 μg/ml) 
and penicillin (100 IU/ml) (Invitrogen) in a 5%  CO2 incuba-
tor at 37 °C (Aoki et al. 2014). Huh7it-1 cells were infected 
with cell culture-adapted HCV (JFH1 strain of genotype 
2a) and supernatants were collected at day 3 post-infection 
(Wakita et al. 2005; Yu et al. 2010). Next, supernatants were, 
concentrated by 100 K Amicon centrifugal filters and used 
for antiviral screening.

DENV type 2 (Trinidad 1751 strain) (Hotta et al. 1983; 
Hotta and Homma 1994) was infected into Vero/SLAM cells 
(Ono et al. 2001). Following an hour of virus adsorption, the 
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virus-infected cells were cultured with DMEM medium con-
taining 10% fetal bovine serum at 37 °C in 5%  CO2. Super-
natants were collected at 3 to 5 days post-infection and 
stored at − 80 °C. Measles virus (K52 strain) was inoculated 
to Vero/SLAM cells and the culture supernatants was col-
lected from the virus-infected cells as described previously 
(Otaki et al. 2006).

Cytotoxicity Assay

The cytotoxicity of Smp76 was estimated using WST-1 
assay as described previously with a some modification 
(Deng et al. 2008). Briefly, Huh7it-1 cells seeded in 96-well 
plate (2.5 × 104 cells/well) were treated with serial dilutions 
of Smp76 (0.1 to 10 µg/ml) or medium (control) for 48 h at 
37 °C in 5%  CO2. Then, supernatants were discarded and 
replaced with fresh DMEM medium containing 10 μl of 
WST-1 reagent (Roche, Mannheim, Germany) and incubated 
for 4 h. The number of viable cells was quantified by using 
a microplate reader at 450 and 630 nm. For each dilution, 
the percentage of viable cells were compared to the control 
sample and used to calculate the 50% cytotoxic concentra-
tions  (CC50) values according to the following formula:

Hemolysis Assay

Hemolytic activity of Smp76 was performed as previously 
described (Evans et al. 2013). Briefly, a total of 10 μl of 
Smp76 peptide was mixed with 190 μl of diluted human red 
blood cells (RBCs) to achieve a final dilution 1/20 of the 
original venom peptide per well. Alternatively, the RBCs 
were incubated with 200 μl of 0.5% Triton X-100 or PBS 
to serve as both positive and negative controls, respectively. 
After an hour incubation period at 37 °C, the plate was cen-
trifuged for 5 min at 500×g and 100 μl of supernatant was 
transferred to a clear 96-well plate. The released hemoglobin 
was measured on a microplate reader at 400:541 nm. The 
percentage of hemolysis was calculated relative to the posi-
tive control (0.5% Triton X100). The hemolysis concentra-
tion  (HC50) value was defined as the peptide concentration 
that can lyse 50% of the RBCs.

Antiviral Activities of the Venom Fractions

Huh7it-1 cells were grown on coverslips (13-mm in diam-
eter; 1.9 × 105 Cells/well) 1 day before viral infection. Differ-
ent concentrations of the venom fractions were mixed with 
HCV at multiplicity of infection (MOI: 1) for 2 h at 37 °C. 
Then, the virus/venom fraction mixture was inoculated in 
Huh7it-1 cells for 2 h at 37 °C. Medium-treated virus and 
cells were used as controls. The percentage of inhibition for 

Absorbance of sample/Absorbance of control × 100.

virus infectivity was compared to the control samples and 
the 50% inhibitory concentrations  (IC50) were calculated.

Virus Titration (Immunofluorescence Staining)

HCV infectivity was determined as described previously 
(Deng et al. 2008). In brief, Huh7it-1 cells, grown on glass 
coverslips, were incubated with tenfold serially diluted 
virus samples for 2 h; then, the cells were washed with free 
medium and cultured for another 24 h. Following fixation 
and permeabilization, Huh7it-1 cells were incubated for 
1 h with the serum of HCV-infected patients, followed by 
FITC-conjugated goat anti-human IgG (Medical & Biologi-
cal Laboratories Co., Ltd., Nagoya, Japan). Finally, the cells 
were counterstained by Hoechst 33342 (Molecular Probes, 
Eugene, OR, USA) and mounted using Vectashield H-1000 
reagent (Vector Laboratories, Inc. Burlingame, CA, USA). 
HCV antigen positive cells were counted under a fluores-
cence microscope (BZ-9000, Keyence, Osaka, Japan).

For dengue virus infectivity, serially diluted venom frac-
tions and Smp76 were mixed with fixed amount of DENV 
and incubated for 2 h at 37 °C. The virus/venom fractions 
mixture was inoculated for 2 h at 37 °C on Vero/SLAM cells. 
The cells were washed twice after the virus inoculation and 
incubated with a fresh medium for 24 h. The infected cells 
were incubated with mouse monoclonal antibody against 
dengue virus followed\Alexa Fluor A488 goat anti-mouse 
IgG (Life Technologies).

To determine the infectivity of measles virus, serially 
diluted Smp76 was mixed separately with fixed amount of 
measles virus and incubated for 2 h at 37 °C. Virus/venom 
fraction mixture was inoculated to Vero/SLAM cells for 2 h 
at 37 °C and the cells were washed twice then, incubated 
with fresh medium for 24 h. The plaques (virus-induced syn-
cytia) forming on the infected monolayer cells were counted.

Virocidal Activity Assay

The Smp76 venom peptide was mixed with a fixed amount 
of HCV JFH1 for 2 h at 37 °C. Next, the virus/Smp76 mix-
ture was inoculated to Huh7it-1 cells and incubated for 
2 h at 37 °C. The cells were washed and cultured without 
Smp76 for 24 h. Finally, the cells were subjected to an indi-
rect immunofluorescence assay as previously described (El-
Bitar et al. 2015).

Immunoblot Analysis

Huh7it-1 cells were lysed in SDS sample buffer and equal 
amounts of protein were separated on a SDS–polyacrylamide 
gel electrophoresis and transferred onto a polyvinylidene 
difluoride membrane (PVDF) (Millipore, Bedford, MA, 
USA). The PVDF membrane was blocked by 5% skim milk 
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and probed with anti-HCV NS3 antibody and anti-GAPDH 
antibody (Millipore). Followed by horseradish peroxidase-
conjugated goat anti-mouse immunoglobulin (Invitrogen) 
as a secondary antibody and visualized using the enhanced 
chemiluminescence detection system (ECL; GE Healthcare, 
Buckinghamshire, UK).

Real‑Time Quantitative RT‑PCR

The amounts of HCV RNA in the infected cells were deter-
mines as described previously (El-Bitar et al. 2015). RNA was 
extracted by RNA cell miniprep system ReliaPrep (Promega, 
Madison, WI, USA). The cDNA was transcribed from one 
µg total RNA using a GoScript Reverse Transcription system 
(Promega) with oligo(dT) primers. Quantitative real-time PCR 
was performed using SYBR Premix Ex Taq (Takara, Kyoto, 
Japan) in a MicroAmp 96-well reaction plate. PCR was con-
ducted on a ABI PRISM 7500 fast system (Applied Biosys-
tems, Foster City, CA, USA) with specific primers used to 
amplify the NS5A region of the HCV genome 5′-AGA CGT 
ATT GAG GTC CAT GC-3′ (sense) and 5′-CCG CAG CGA 
CGG TGC TGA TAG-3′ (antisense). the expression of GAPDH 
mRNA was also measured as a housekeeping gene using the 
5′- GCC ATC AAT GAC CCC TTC ATT-3′ (sense) and 5′ TCT 
CGC TCC TGG AAG ATG G-3′primers.

RP‑HPLC Fractionation of S. m. palmatus Venom

Chromatographic separation of S. m. palmatus venom was 
conducted using reverse phase high performance liquid chro-
matography (RP-HPLC; Waters, Milford, Massachusetts, 
United States) (Abdel-Rahman et al. 2013).A total of 4 mg 
scorpion venom was reconstituted in 200 ml 0.05% trifluoro-
acetic acid (TFA) and fractionated by a C18 RP-HPLC column 
(250 × 10 mm, 5 µm; Vydac, California, United States). A gra-
dient of buffer A (0.12% TFA in MilliQ water) and sixty per-
cent buffer B (0.10% TFA in acetonitrile) were used to separate 
scorpion venom in 1 h (1 ml/min flow rate). Individual venom 
fractions were collected manually according to the peak’s 
absorbance (at 230 nm). All collected fractions were dried 
using a rotary evaporator (Savant Speed Vac SC210A, Min-
nesota, United States). The active fraction eluted at retention 
time 36.4 min was further characterized using mass spectrom-
etry and amino acids sequencing. In addition, recombinant and 
synthetic Smp76 derivatives (N-terminal 32 aa and C-terminal 
44 aa) were prepared as described below.

Determination of Molecular Mass and N‑Terminal 
Sequencing of Native and Recombinant Smp76 
Peptides

The average molecular mass of native Smp76 pep-
tide (8398  Da), the recombinant fusion protein 

Thioredoxine-Smp76 (22123 Da) and a recombinant C-ter-
minal of Smp76 (4775.57  Da) were determined using 
ESI–MS, ESI LCQ FLEET spectrometer (Thermo Scientific, 
CA, USA). The sequence of native Smp76 (approximately 
250 pmol) was determined using Edman degradation (Pro-
tein Sequencer PPSQ-31A, Shimadzu Scientific Biotech, 
Maryland, United States). Synthetic N, C-terminal and full-
length Smp76 peptides were manufactured by GenScript 
Japan Inc.

Construction of Recombinant Smp76C‑Terminal 
Peptide (44 aa)

Six oligonucleotides were designed to cover the C-terminal 
region of Smp76 (44 aa) (Supplementary Table 1). The 
oligonucleotides BHEK-Dir1 and scSMP-LW5 included 
the BamHI and XhoI restriction sites, respectively. Subse-
quently, this enabled the cloning into the pET22b-Thio-EK 
expression vector as detailed previously (Jiménez-Vargas 
et al. 2017; Vargas-Jaimes et al. 2017). PCR assembly of 
the C-terminal peptides was carried out using Vent DNA 
Polymerase (New England Biolabs, MA, United States). 
The final concentration of external primers BHEK-Dir1 
and scSMP-LW5 was 0.2 pmol/μl while the concentration 
of internal oligonucleotides was 0.02 pmol/μl.

Expression and Purification of Recombinant 
C‑Terminal (44 aa) Peptide of Smp76

In order to express the fusion protein Thioredoxine-C-ter-
minal, pET22b-Thio-C-terminal plasmid was transformed 
into E. coli BL21 (DE3) using electroporation. The pellet 
was harvested and the fusion protein was purified using the 
Ni–NTA agarose resin columns (QIAGEN) as previously 
described (Vargas-Jaimes et al. 2017). HPLC purification 
was further performed using a C18 RP-HPLC column 
(250 × 10 mm, 5 µm; Vydac, California, United States). 
The purified fusion protein Thioredoxine-C-terminal was 
digested with enterokinase (New England Biolabs) in 
200 mM Tris HCl (pH 8.0), 500 mM NaCl, 20 mM  CaCl2 
for 16 h at 25 °C. Then, the pure recombinant C-terminal 
of Smp76 was finally isolated and purified by HPLC as 
described above.

Statistical Analysis

Data are presented as mean ± standard error of mean (SEM). 
The difference between data sets was determined by Stu-
dent’s two-tailed t test. A P value of < 0.05 was considered 
to be statistically significant.
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Results

Fractionation of Crude Venom Extract of S. m. 
palmatus

Since a whole S. m. palmatus soluble venom strongly 
inhibited HCV infectivity in vitro and displayed anti-HCV 

activity in cell culture (El-Bitar et al. 2015), the crude 
venom was fractionated to identify active molecule(s) 
with anti-HCV activity. Accordingly, 74 fractions from 
four milligrams of the venom were separated by HPLC 
analytical method (Fig. 1a; Table 1).

Table 1  Anti-HCV and anti-DENV activities  (IC50) of selected fractions from the venom of the scorpion S. m. palmatus 

ND not detected, NT not tested
a Venom fraction containing Smp76

No. RT (min) Protein conc. 
(mg/ml)

HCV  IC50 (µg/ml) DENV  IC50 
(µg/ml)

No. RT (min) Protein 
conc. mg/ml

HCV  IC50 (µg/ml) DENV 
 IC50 (µg/
ml)

1 3.3 0.496 >10.0 >10.0 38 23.2 ND NT NT
2 3.9 ND NT NT 39 24.1 1.819 >10.0 >10.0
3 4.5 ND NT NT 40 24.9 ND NT NT
4 5.2 ND NT NT 41 26.9 0.683 >10.0 >10.0
5 5.7 ND NT NT 42 27.1 1.886 >10.0 >10.0
6 6.9 ND NT NT 43 28.0 ND NT NT
7 8.4 1.037 >10.0 >10.0 44 28.4 1.926 >10.0 >10.0
8 9.0 ND NT NT 45 29.0 4.491 >10.0 >10.0
9 9.2 ND NT NT 46 29.8 ND NT NT
10 9.5 ND NT NT 47 30.7 0.804 >10.0 >10.0
11 9.7 ND NT NT 48 31.4 0.891 >10.0 >10.0
12 10.5 ND NT NT 49 31.6 0.533 >10.0 >10.0
13 11.4 ND NT NT 50 32.1 0.554 >10.0 >10.0
14 11.7 ND NT NT 51 32.2 ND NT NT
15 12.3 ND NT NT 52 33.0 ND NT NT
16 12.5 ND NT NT 53 33.5 ND NT NT
17 13.0 ND NT NT 54 33.7 ND NT NT
18 13.2 1.273 >10.0 >10.0 55 35.5 0.797 0.10 ≤10
19 13.4 ND NT NT 56 36.2 3.773 0.05 NT
20 13.7 ND NT NT 57a 36.4 4.462 0.01 0.01
21 13.9 ND NT NT 58 37.9 0.619 0.10 NT
22 14.7 ND NT NT 59 38.7 0.971 1.0 1.0
23 15.0 ND NT NT 60 39.2 1.214 1.0 1.0
24 15.5 ND NT NT 61 40.8 0.648 1.0 1.0
25 15.7 4.446 >10.0 >10.0 62 41.2 ND NT NT
26 17.0 5.034 >10.0 >10.0 63 41.6 ND NT NT
27 17.4 2.132 >10.0 >10.0 64 42.2 0.226 1.0 3.0
28 18.0 3.209 >10.0 >10.0 65 42.9 ND NT NT
29 18.9 2.371 >10.0 >10.0 66 43.8 2.279 6.0 >10.0
30 19.5 ND NT NT 67 45.5 ND NT NT
31 20.0 ND NT NT 68 46.1 0.099 NT NT
32 20.2 0.209 >10.0 >10.0 69 46.7 ND NT NT
33 20.5 1.692 >10.0 >10.0 70 48.2 ND NT NT
34 21.1 ND NT NT 71 48.7 0.501 NT NT
35 21.5 ND NT NT 72 50.9 0.126 NT NT
36 21.9 0.687 >10.0 >10.0 73 56.6 0.082 NT NT
38 22.6 1.821 >10.0 >10.0 74 59.9 0.001 NT NT
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Anti‑HCV Activities of S. m. palmatus Venom 
Fractions

Subsequently, the anti-HCV activity of fractions obtained 
from the venom of S. m. palmatus were tested against JFH1 
strain of genotype 2a. Based on protein concentrations, 30 
fractions were tested for anti-HCV activity. The other frac-
tions showed very low protein concentrations and, therefore, 
it was not possible to check their antiviral activity (Table 1). 
Each fraction was incubated separately with fixed amount 
of HCV for 2 h at 37 °C. Then, Huh7it-1 cells were infected 
with the virus/venom-fraction mixture (Fig. 2a) and virus 
infectivity was measured by infectious center assay. The 
anti-HCV activity started to appear from the retention 
time (RT) 35.5 until 43.8 min. The fraction at RT 36.4 min 
showed the most potent anti-HCV activity with  IC50 being 
0.01 μg/ml (Fig. 2b; Table 1).

Identification of Smp76 From the Active Fraction RT 
36.4 min

In order to identify the bioactive compound(s) present in RT 
36.4, LC–MS–ESI analysis was performed. Interestingly, the 

data of mass spectrometry showed that the active fraction 
contains a unique peptide with molecular mass of 8398 Da 
(Fig. 1b). To go further into the characterization of the 
active peptide, the amino acid sequence was determined 
(Fig. 1c). The sequence of this peptide contains 76 amino 
acids (GWINEKKMQQKIDEKIGKNIIGGMAKAVIHK-
MAKNEFQCVANVDTLGNCKKHCAKTTGEKGYCH-
GTKCKCGIELSY). The obtained sequence belongs to the 
scorpion venom antimicrobial peptides and matched with 
the scorpine-like peptide Smp76, which was identified in 
the scorpion venom gland of S. m. palmatus using transcrip-
tomic analysis (Abdel-Rahman et al. 2013). The amino acid 
sequence of Smp76 was confirmed until the amino acid 
number 40 by Edman degradation method and the molecu-
lar mass was confirmed by mass spectrometry resulting in 
8398 Da (see “Materials and Methods”).

Cytotoxicity, Hemolytic Activity and Selectivity 
Index of Smp76

The cytotoxic activity of Smp76 against Huh7it-1 cells was 
tested using the WST-1 assay, and hemolytic activity was 
examined on human red blood cells. The  CC50 and the  HC50 

Fig. 1  Scorpion venom separation and characterization of Smp76. a 
Purification of Smp76 from the venom of S. m. palmatus using RP-
HPLC. 4.0 mg crude venom was separated in a C18 analytical col-
umn with a gradient from buffer A (0.12% TFA) and 60% buffer B 
(ACN in 0.10% TFA) for an hour (Abdel-Rahman et al. 2013)74 frac-
tions have been obtained and only the fraction eluted at RT 36.4 min 

(*) revealed strong antiviral activity against both HCV and DENV 
 (IC50 0.01 µg/ml). b Determination of the molecular mass of Smp76 
(8398.0 Da) using LC–MS–ESI. c Automatic amino acids sequencing 
of Smp76 determined by Automated Edman Degradation. Cysteine 
residues are marked red and underlined (Color figure online)
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were calculated. As shown in Table 2,  CC50 of Smp76 against 
Huh7it-1 cells and  HC50 were > 10 μg/ml. These results indi-
cate that this peptide has no cytotoxic or hemolytic effects up 
to 10 μg/ml with selectivity index (SI) > 1000.

Smp76 did not Inhibit the HCV Replication 
in Culture Cells

Since Smp76 displayed a significant inhibitory effect at the 
early stage of HCV infection, we examined whether the Smp76 
peptide can also inhibit HCV NS3 protein production and 
HCV RNA replication in the cells. Virus at multiplicity of 
infection of 2 pfu/cell was inoculated to the Huh7it-1 cells for 
3 ~ 4 h at 37 °C. After virus adsorption, the cells were cultured 
with media supplemented with 0.1 μg/ml of Smp76 for 44 h 
at 37 °C (Fig. 3a). The cells were harvested and subjected to 
immunoblot and RT-qPCR analyses. The results showed that 
the post-treatment of HCV RNA replication was not signifi-
cantly inhibited (Fig. 3b) or HCV NS3 protein synthesis in 

the cells (Fig. 3c). The above results suggest that the Smp76 
directly affects HCV particles and/or host cells in the culture 
medium to inhibit the viral infection and does not have an 
antiviral effect in the cells.

Anti‑DENV Activity of Smp76

We previously showed that the crude venom of S. m. pal-
matus inhibits DENV (El-Bitar et al. 2015). Therefore, anti-
DENV activity of the selected 30-fractions obtained from 
the crude venom of S. m. palmatus was tested. Each fraction 
was incubated separately with fixed amount of DENV for 
2 h at 37 °C. After that, the virus/venom fractions mixtures 
were used to infect Vero/SLAM cells and virus infectivity 
was measured by infectious center assay. Interestingly, the 
results were consistent with the data of anti-HCV activity 
obtained in this study (Table 1). Also, the fraction identi-
fied at 36.4 min which contains Smp76 showed the potent 
anti-DENV activity with  IC50 being 0.01 μg/ml (Table 1 and 
Fig. 4b).

Specificity of Antiviral Activity of Smp76

To determine whether the antiviral activity of Smp76 pep-
tide (previously described) was specific to HCV and DENV, 

Fig. 2  Screening of anti-HCV activities of the venom fractions of S. 
m. palmatus. HCV (JFH1a strain) was treated with decreasing con-
centrations of the crude venom of S. m. palmatus and collected frac-
tions (10, 1.0, 0.1 and 0.01 μg/ml) for 2 h or left untreated as a con-
trol (−) and then inoculated to Huh7it-1 cells and cultivated for 24 h. 
a Schematic of infection assay. b Amounts of HCV infectious par-
ticles. The data represents Mean ± SEM of two independent experi-
ments. §Below the detection limit; ‡≤ 0.07%; #< 0.5%

Table 2  Cytotoxicity  (CC50), hemolytic activity  (HC50) and selectiv-
ity index (SI) of Smp76

Venom peptide CC50 (μg/ml) HC50 (μg/ml) SI

Smp76 >10 >10 >1000

Fig. 3  Analysis of HCV RNA expression and NS3 protein accumula-
tion. Huh7it-1 cells were infected with HCV and treated with Smp76 
(0.1  μg/ml) to check its post-treatment effect or left untreated as a 
control (−) and both groups were incubated for 44 h post-infection. 
a Schematic of infection assay. b Amounts of HCV RNA in the cells. 
HCV RNA amounts were normalized to GAPDH mRNA expression. 
c HCV NS3 protein accumulation in the cells. GAPDH used as an 
internal control to verify equal amounts of sample loading. Data rep-
resents Mean ± SEM of two independent experiments
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we tested its possible effects on another enveloped virus such 
as measles virus (Otaki et al. 2006). In this investigation, the 
virus was incubated with Smp76 (10–0.01 μg/ml) for 2 h. 
Then, Vero/SLAM cells were infected with the virus/Smp76 
mixture (Fig. 4a) and virus infectivity was measured using 
an infectious center or plaque assay. The results revealed that 
while Smp76 peptide showed strong activity against DENV 
with  IC50 10 ng/ml, it induced weak inhibition on measles 
virus at 10 μg/ml (Fig. 4B).

Lack of Antiviral Activity of Smp76 Synthetic 
and Recombinant Derivatives (N‑ and C‑Terminals)

In an attempt to identify the active domain of Smp76, the 
antiviral activity (anti-HCV and anti-DENV) of synthetic 
N-terminal (32 aa) and C-terminal (44aa without disulfide 
bonds) were tested. Although, the purified native Smp76 
showed strong antiviral activity with  IC50 of 10 ng/ml, 

there was no antiviral activity for both synthetic termi-
nals (Table 3). Moreover, antiviral activity of recombinant 
C-terminal (44 aa) was examined. Also, no antiviral activ-
ity for recombinant C-terminal was detected (Table 3). 
These results indicate that the full-length of Smp76 may be 
required for its activity against HCV and DENV.

Lack of Antiviral Activity of Full‑length Synthetic 
Smp76 Without Disulfide Bonds

The above mentioned results imply that the full-length of 
Smp76 may be required for its activity against HCV and 
DENV. The full-length Smp76 peptide (76 aa) was synthe-
sized but without disulfide bonds. The antiviral activity of 
the synthesized Smp76 peptide was examined against HCV 
and DENV. These results showed no antiviral activity for the 
synthetic full-length peptide without disulfide bonds against 
HCV and DENV (Table 3).

Fig. 4  Antiviral activity of 
Smp76 against dengue and 
measles viruses. Dengue and 
measles viruses were treated 
with a tenfold serial dilution 
of Smp76 (10, 1.0, 0.1 and 
0.01 μg/ml) for 2 h or left 
untreated as a control (−) and 
then inoculated to Vero/SLAM 
cells. a Schematic of infection 
assay. b Amounts of DENV 
and measles virus infectious 
particles. The data represents 
Mean ± SEM of two independ-
ent experiments. §< 0.01%; 
‡≤ 0.07% of the control

Table 3  Antiviral activity of 
Smp76 and its derivatives

Source Smp76/derivatives IC50 (ng/ml)

Anti-HCV Anti-DENV

Synthetic N-terminal 32 aa > 10,000 > 10,000
C-terminal 44 aa (without disulfide bonds) > 10,000 > 10,000
Full-length 76 aa (without disulfide bonds) > 10,000 > 10,000

Recombinant C-terminal 44 aa > 10,000 > 10,000
Native or purified Smp76 Full-length 76 aa 10 10
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Discussion

Initial fingerprint analysis of the soluble venom of S. m. 
palmatus allowed the identification of at least 65 different 
components with molecular masses ranging between 413 
and 14,009 Da (Abdel-Rahman et al. 2013). Most peptides 
showed a molecular weight ranging from 3 to 5 kDa. In 
the present study 74 fractions were obtained from 4 mg of 
the crude venom of S. m. palmatus. According to HPLC 
fraction peaks profile and the protein concentrations, we 
examined antiviral activity of 30 fractions against HCV 
and DENV to identify the active fraction. The fraction 
eluted at RT 36.4 min showed the most potent anti-HCV 
and anti-DENV activity with  IC50 being ~ 0.01 μg/ml. 
According to the data of mass spectrometry and amino 
acids sequencing, this active fraction contains only one 
peptide with molecular mass of 8398 Da and consists 
of 76 amino acids. The obtained sequence matches with 
scorpine-like peptide Smp76 (Abdel-Rahman et al. 2013).

Scorpine is firstly isolated from the venom of Pandinus 
imperator. The structure of scorpine is a hybrid between 
a cecropin and a defensin. The sequence of scorpine car-
boxyl terminal region is similar to that of β-KTx fam-
ily, with cysteine-stabilized α/β fold, and three disulfide 
bridges. On the other hand, its amino-terminal region is 
identical to the cecropin family peptides (Conde et al. 
2000). Scorpine has also amino acid sequences similar to 
AMPs and  K+ channel blocking peptides (Luna-Ramirez 
et al. 2015). Scorpine homologs were thereafter identified 
from the venom of various scorpions such as Opistoph-
thalmus carinatus (Zhu and Tytgat 2004), Heterometrus 
laoticus (Uawonggul et al. 2007), H. gertschi (Schwartz 
et al. 2007), S. m. palmatus (Abdel-Rahman et al. 2013), 
genus Vaejovis (Quintero-Hernandez et al. 2015) and Uro-
dacus yaschenkoi (Luna-Ramirez et al. 2015). Importantly, 
all these peptides possess anti-malaria as well as antimi-
crobial activities (Conde et al. 2000; Carballar-Lejarazu 
et  al. 2008) and act also as potassium channel block-
ers (Diego-Garcia et al. 2007). The present data clearly 
showed that smp76 inhibits the ability of HCV virus to 
infect the host cells. Indeed, our previous study demon-
strated that the crude venom of S. m. palmatus venom 
prevents HCV infection with direct virocidal activity (El-
Bitar et al. 2015). On the other hand, we cannot rule out 
the possibility that, smp76 peptide might has an independ-
ent effect on the receptor complexes of host cell compo-
nents or interacts with components that inactivate viral 
entry. This possibility will be further investigated by the 
incubation of smp76 with cells in a free-virus condition 
prior to HCV infection. However, it worth to mention that 
the incubation of S. m. palmatus crude venom with cells 
prior to the HCV infection of cells did not impair the viral 

infectivity (El-Bitar et al. 2015). Thus, the possible effect 
of smp76 on the host cell to abrogate HCV infection is 
unlikely. In the present study, Smp76 prevents the early 
stages of life cycle of HCV and DENV most probably 
through interacting with viral particles. The viral particle 
can be neutralized by targeting the envelope of the HCV 
or host factors related to the mature viral particle (Zeisel 
et al. 2013). Notably, it has been reported in various stud-
ies that the structure of biological membranes could be 
altered by AMPs (Zasloff 2002; Harrison et al. 2016).

Currently, the new approach for HCV infection treatment 
probably based on the combination of several drugs (Pereira 
and Jacobson 2009; Sarrazin and Zeuzem 2010; Zeisel et al. 
2011; Qian et al. 2016). Therefore, the use of Smp76 with 
anti-HCV drugs for treatment of HCV infection may have 
synergistic effect. However, further experiments are needed 
to check this possibility.

The present study reported distinctive data on the ability 
of Smp76 peptide to protect cellular systems from attack of 
DENV and neutralize viral infection. Currently dengue virus 
considered as one of the most important arthropod born viral 
disease worldwide (Botta et al. 2018). Despite the global 
efforts, there is no antiviral therapy against DENV infections 
clinically approved and only symptomatic treatment and hos-
pital supportive care setting are available for infected peo-
ple (Behnam et al. 2016). It was shown that recombinantly 
expressed scorpine (RScrp) inhibited DENV-2 replication 
in C6/36 mosquito cells. Also, it was suggested that the 
development of transgenic mosquitoes that overexpress and 
correctly secrete RScrp and could eventually break the den-
gue fever transmission (Carballar-Lejarazu et al. 2008). On 
the other hand, Smp76, as an infection inhibitor, has some 
advantages compared to antiviral drugs that target the viral 
replication stages inside the target cell. Smp76 can inhibit 
DENV infection before viral entry and is, therefore, helpful 
for treatment of DENV viraemia.

The prospective pharmaceutical potential of Smp76 can-
not be neglected, especially considering its potent antiviral 
activity. However, Smp76 isolation from natural sources is 
ineffectual and time-consuming. Synthetic Smp76 without 
disulfide bonds showed no antiviral activities against HCV 
and DENV. One possibility is that the synthetic Smp76 
peptide without disulfide bonds did not have the properly 
folded structure necessary for activity. Recently, recombi-
nant scorpine with antimalarial and antibacterial activities 
was produced by different fusion technology using small 
ubiquitin-related modifier (SUMO) (Zhang et al. 2014) 
and maltose binding protein (MBP) (Zhang et al. 2016). 
These methods have improved efficiency and reduced the 
cost of producing scorpine and can contribute to the future 
production of active recombinant Smp76. Interestingly, 
the recombinant Smp76 was shown to inhibit DENV and 
ZIKV infections in cultured cell lines and primary mouse 
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macrophages. However, rSmp76 did not inactivate the viral 
particles directly but suppressed the established viral infec-
tion by upregulating the expression of IFN-β (Ji et al. 2018). 
This mechanism is significantly different from the virucidal 
effect of native Smp76 peptides. The exact mechanism by 
which Smp76 exerts its antiviral activity against HCV and 
DENV to inhibit infecting their target cells need further 
studies. In vivo studies should also assess the future role of 
Smp76 in managing HCV and DENV infections.
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