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Abstract
Inventory classification is a fundamental issue in the development of inventory policy that assigns each inventory item to

several classes with different levels of importance. This classification is the main determinant of a suitable inventory

control policy of inventory classes. Therefore, a great deal of research is done on solving this problem. Usually, the

problem of inventory classification is considered in a multi-criteria and uncertain environment. The proposed method in

this paper inspired by the notion of heterogeneous decision-making problems in which decision-makers deal with different

types of data. To this aim, a mathematical modeling-based approach is proposed considering different types of uncertainty

in classification information. Demand information is considered to be stochastic due to its time-varying nature and cost

information is considered to be fuzzy due to its cognitive ambiguity. A hybrid algorithm based on chance-constrained and

possibilistic programming is proposed to solve the problems. Considering the stochastic nature of demand information,

solving the proposed model using the hybrid algorithm, the classification of items to three classes of extremely important,

class A, moderately important, class B, and relatively unimportant, class C, items are determined along with a minimum

inventory level required to deal with the stochasticity of demands information. The proposed approach is applied to a case

study of classifying 51 inventory items. The obtained results assigned 22%, 39%, and 39% of the items to A, B, and C

classes, respectively.

Keywords Multi-criteria inventory classification � Chance-constrained programming � Possibilistic programming

1 Introduction

Inventory management is a crucial organizational chal-

lenge with a noticeable impact on profitability. Usually,

inventory is accounted for about 30% of a company’s asset

and inventory carrying costs are approximated between 20

and 25% of total inventory value (Lambert and Stock 1993;

Stevenson 1999). This magnitude of financial impacts

made inventory control as an essential module of man-

agerial decision making, both in practice and theory. The

total expenditures of inventories holding are reduced

through managing inventories, and subsequently, the profit

of the company is raised. Inventory management systems

can be considered in a spectrum from the simplest form of

periodic manual control to advanced real-time computer-

ized control. However, besides its importance, inventory

management is a costly and time-consuming activity.

Classic inventory management models are usually devel-

oped considering a single item, while practically; real-

world systems contain several inventory items (Maiti et al.

2006). Therefore, adapting suitable systems for inventory

control of different items is a crucial problem. Organiza-

tions are able to apply a similar exact and advanced

inventory management system for all of the inventory

items. This scenario can assure a similar level of control,

but its costs may not be justifiable for a set of items with

lower impact and importance. Therefore, it seems reason-

able to localize inventory management systems according

to the role and importance of the items.
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The next logical question that arises is which inventory

management system to be used for which items. This issue

can be formulated as a classification problem. For efficient

management of inventories, they must be classified at first

(Rezaei and Salimi 2015). Classification aims to assign

each inventory item into classes with different degrees of

importance. In the field of inventory management, this

problem is called ABC analysis. Inventory managers use

ABC analysis to classify the inventory items into three

categories, i.e., A means extremely important, B means

moderately important, and C means relatively unimportant,

considering several criteria (Liu et al. 2015). The results of

ABC inventory classification are used to develop inventory

control policies, determining cycle counting frequencies,

slot inventory for order picking, and other managerial

activities (Sople 2012).

The importance of ABC inventory classification as a

determinant of inventory management policies is therefore

perceptible. This importance is even intensified during the

Corona virus pandemic. Many companies and supply

chains dealing with stock out and interruption in their

supply chain feel a required necessity to revise their

inventory control policies and a new and more sensitive

classification method beyond their classic classification

roles.

The classic ABC categorization method classifies items

based on a single criterion, i.e., the annual dollar usage.

This method is performed well for a set of justly homo-

geneous items that are differed only in their annual usage

(Ramanathan 2006). However, there may be other criteria

to come into management’s attention. Many pieces of

research have mentioned that in addition to this criterion,

such other criteria are also needed for classification (Chen

et al. 2008). Therefore, ABC inventory classification is a

multi-criteria problem rather than considering a single

criterion.

Classification criteria have different levels of impor-

tance based on the items considered and the industry that

they are applied to. Prioritizing the importance of criteria is

somewhat subjective in some real-world applications.

Inventory management experts assign diverse importance

to the criteria based on the conditions governing the

industry and the market. For example, when items suppli-

ers assure that they will prepare the necessary items in due

time, it will reduce the importance of the lead time crite-

rion in their opinion.

In the past 20 years, more researches have been con-

ducted on multi-criteria inventory classification (MCIC).

Various methods for categorizing inventory considering

several criteria have been proposed. MCIC is one of the

implicational areas of multi-criteria decision making

(MCDM) (Wu and Tiao 2018; Maliene et al. 2018).

Flores et al. (1992) applied the Analytic Hierarchy

Process (AHP) (Saaty 1980) to the MCIC problem. The

supremacy of the AHP is that it is able to integrate a set of

criteria with ease of use, but its weakness is that it majorly

relies on subjective judgments in pairwise comparisons of

criteria. They have used the AHP to aggregate multiple

criteria in the form of a unique and consistent measure.

Average unit cost and annual dollar usage have been taken

as classification criteria in this study.

One of the usual methods to find a solution to the

inventory problems is using mathematical optimization

methods; like many other production management prob-

lems. The main steps in using optimization approach and

Mathematical optimization are formulating the problem

and solving the model. Defining the parameters in mathe-

matical optimization approach is an important step. The

defined parameters that are used in the model must be

consistent with the real world and using the crisp numbers

for parameters results in the unrealizable solution for

models. Uncertainty is an intrinsic feature of real-world

implementations.

Usually, the uncertainty can occur due to (1) partial or

(2) approximate information (Pedrycz and Gomide 1998).

Several frameworks are proposed to deal with uncertainty.

Each framework has its characteristics and will be appro-

priate for special cases. While probability corresponds to

the happening of well-defined events, fuzzy sets deal with

gradual ambiguity or vagueness and describe their bound-

aries (Tang and Grubbström 2002; Razavi Hajiagha et al.

2019). Developing inventory control models under uncer-

tainty is an accepted way of dealing with real-world

incomplete and approximated information (Shekarian et al.

2017).

The main idea of the current study is taken from the

notion of heterogeneous MCDM. In many decision-making

(DM) problems, both qualitative and quantitative attributes

are important. In these DM problems which precise cal-

culation is almost unlikely, people’s involvement is nec-

essary to evaluate the attributes and assess the alternatives.

In these situations, there may be different types of infor-

mation such as fuzzy numbers, real numbers, and

stochastic information. Heterogeneous DM methods can

include multiple formats of information (Wan and Li 2013;

Yu et al. 2018). In the inventory control framework, the

behavior of demand along with time can be assessed with a

probability distribution; while cost parameters ambiguity is

often due to the lack of knowledge and does not behave

stochastically. Therefore, as it is convenient, demands are

taken into account as stochastic variables, while cost

parameters are considered to be fuzzy numbers. This paper

aims to combine them both in a singular model. Modeling

inventory management in hybrid fuzzy-stochastic
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environments is also previously considered in some studies

(Dutta et al. 2007).

The main contribution of the proposed paper is to pro-

pose a hybrid fuzzy-stochastic method to deal with the

uncertain and heterogeneous nature of MCIC problems. In

this context, as described above, demand-related informa-

tion is considered to be stochastic due to the presence of

historical data and the possibility of fitting a statistical

distribution to this time-varying information. On the other

hand, cost-related parameters are considered to be fuzzy

information due to their cognitive uncertainty and lack of

information, since usually in unstable markets, price

behavior cannot be approximated by previous information.

This heterogeneous formulation of the MCIC problem can

be considered as the main novelty of this paper. Also, to

solve the formulated multi-objective problem, a hybrid

approach based on chance-constrained programming

(Charnes and Cooper 1959) and possibilistic programming

(Lai and Hwang 1992) is developed.

The paper is organized as follows. Section 2 includes an

extensive review of previous studies. Determination of

ABC classification criteria importance weights using the

analytic hierarchy process is then described in Sect. 3.

Mathematical problem formulation and its solving

approach are explained in Sects. 4 and 5, respectively. The

application of the proposed approach is then illustrated in a

real-world case study. Finally, the paper is concluded in

Sect. 6.

2 Literature review

Conventional ABC classification uses annual demand and

item price as two classification criteria. It has been shown

that categorizing items by their common order cycle could

result in a similar grouping (Chakravarty 1981). Flores and

Whybark (1986, 1987) are among the first researchers to

consider other criteria as well. Subsequent to these authors,

a significant number of MCDM methods have been used to

deal with the MCIC problem.

Ramanathan (2006) proposed a weighted linear opti-

mization method for multi-criteria ABC classification. A

weighted additive function is developed to aggregate the

performance of an inventory item in various criteria and a

particular score, called the optimum inventory score, is

approximated for items. An optimization model is pro-

posed to determine criteria weights, and it has to be con-

sidered that this model is subject to the constraint that the

sum of weights for all the items must be less than or equal

to one. Four criteria of average unit cost, annual dollar

usage, critical factor, and lead time are considered.

Ng (2007) presented a weighted linear optimization

model for MCIC that evaluated a numeric score based on

classification criteria. Optimum scores of inventory items

could be handily acquired without a linear optimization.

Tsai and Yeh (2008) developed an inventory classifi-

cation algorithm applying particle swarm optimization

(PSO). In this model, inventory items can be categorized

based on a specific objective or multiple objectives. Also,

this method specified the best number of inventory cate-

gory, and the way items should be categorized. To specify

the best composition of the parameters of the algorithm

quantity, some experiments are employed. Four item

properties are used for item classification: item setup cost,

unit holding cost, demand per unit time, and supplier

ordering cost.

Chu et al. (2008) proposed an inventory control

approach called ABC–fuzzy classification (ABC–FC). This

method handles variables either with nominal or non-

nominal characteristics. Also, the manager’s expertise is

gathered and implied in inventory classification. Annual

demand, unit price, usage frequency, procurement lead

time, current item status, the criticality of an inventory

item, and severity of the impact of the inventory are con-

sidered to be classification criteria in their case study.

Chen (2011) proposed a peer-estimation approach for

MCIC. This method specified two common sets of

importance degrees of criteria and the two resulting per-

formance scores are aggregated in the most favorable and

least favorable senses for each item. In this approach, the

DEA cross-efficiency method is improved for solving

MCDM problems. A separate model is being solved to

specify the weight coefficients for this aggregation. Annual

dollar usage, average unit cost, and lead time are consid-

ered to be classification criteria in this study.

Hadi-Vencheh (2010) developed the Ng-model for the

MCIC problem. Along with combining multiple criteria,

this method also retains the effects of weights in the final

score. In this study, annual dollar usage, average unit cost,

and lead time are used as classification criteria.

Hadi-Venche and Mohamadghasemi (2011) developed

an integrated fuzzy analytic hierarchy process–data

envelopment analysis (FAHP-DEA) method for MCIC. In

this method, FAHP is used to determine criteria importance

using linguistic terms. The values of the linguistic terms

are specified with DEA, and then, item scores under vari-

ous measures are aggregated into a final score for each item

with SAW (simple additive weighting). Annual dollar

usage, limitation of warehouse space, average lot cost, and

lead time are considered to be classification criteria in this

study.

Torabi et al. (2012) aggregated the common weight

MCDM–DEA model of Hatefi and Torabi (2010) and the

imprecise data envelopment analysis (IDEA) model (Zhu

2003) and proposed a new DEA-based methodology for

MCIC problem. The developed method is a linear
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programming model with enhanced discerning power that

applied a common weight approach and can deal with both

quantitative and qualitative criteria. Annual dollar usage,

average unit cost, critical factor, and lead time are con-

sidered to be categorization criteria in this study.

Millstein et al. (2014) developed an optimization model

to optimize the number of inventory groups, their com-

mensurate service levels, and allotment of SKUs to groups

when the inventory budget is constrained. The criteria used

in their example are annual demand, gross profit per unit of

SKU, inventory holding cost, fixed overhead management

cost, and service level.

Rezaei and Salimi (2015) proposed an interval pro-

gramming model for the MCIC problem. In this method,

the values of demand, overage, and shortage costs for each

item are estimated as interval numbers.

Liu et al. (2015) proposed an approach based on the

non-compensatory ELECTRE method for the multi-criteria

ABC classification. A combination of cluster analysis and

the simulated annealing algorithm is used to search for the

optimal categorization. In their example, inventory items

evaluated based on four criteria: average unit cost, annual

RMB usage, lead time, and turnover (rate).

Fu et al. (2016) developed the Ng-model (2007) based

on a distance-based decision-making method. In this

method, a set of common weights corresponding to all

rankings of the criteria importance are specified, and

finally, an inclusive scoring scheme is provided by aggre-

gating all rankings. Three criteria, namely, annual dollar

usage (ADU), average unit cost (AUC), and lead time (LT)

are considered in this study.

Baykasoglu et al. (2016) proposed a fuzzy linear

assignment method for multi-attribute group decision-

making problems. Due to the uncertain nature of many

decision-related problems, various concepts—from fuzzy

set theory—like fuzzy arithmetic and aggregation, fuzzy

ranking, and fuzzy mathematical programming are com-

bined into a fuzzy concordance-based group decision-

making process. In their case study, inventory items are

appraised based on three criteria: Annual demand, Unit

cost/part, Annual cost.

Shanshan et al. (2017) extended Ng-model (2007). The

importance of criteria is computed through Shannon

entropy. They solved an example using three criteria:

annual dollar usage, average unit cost, and lead time. They

also compared their result with Ng-model.

Yang et al. (2017) developed a mixed-integer linear

programming model by considering the non-stationary

demand for inventory items. Demand is discretized in time

horizon into several time periods, and it is supposed that

the demand for an item is distributed normally. The net

present value is considered to be an objective function.

Sales volume, coefficient of variation in demand, number

of orders, shelf life, and gross profit are considered to be

categorization criteria in their case study.

Using a randomized greedy strategy, López-Soto et al.

(2017) designed a multi-start constructive algorithm to

train a discrete artificial neural network for solving the

MCIC problem. They investigated three data sets of ABC

classifications. In the first data set, the criticality factor of

the part, annual usage, the annual average cost per unit, and

lead time are used as classification criteria. In the next two

cases; unit price, ordering cost per lot; demand, and lead

time are used.

Li et al. (2019) applied a version of stochastic multi-

criteria acceptability analysis (SMAA-2) by considering

classification criteria following two kinds of distribution

functions, namely, uniform and normal distributions. They

solved a problem consisting of average unit cost, annual

dollar usage, and lead time.

Hadi-Vencheh et al. (2018) considered the information

uncertainty with Gaussian interval type 2 fuzzy sets. They

proposed two linear programming problems to arrive cri-

teria involved in inventory items classification and then

developed a TOPSIS approach to assign items into ABC

classes. In their case study, they used annual dollar usage,

lead time, average lot cost, limitation of warehouse space,

and availability of the substitute raw material as ABC

classification criteria.

Ishizaka et al. (2018) proposed a variant of data envel-

opment analysis introduced as DEA Sort to solve the

MCIC problem. In their method, they used information

obtained from the analytic hierarchy process (AHP)

method to bound criteria weights based on managers’

opinions. Annual usage value, frequency of issue per year,

and current stock value are used as classification criteria in

their study.

İsen and Boran (2018) proposed a hybrid method of

inventory item classification. In their method, they opti-

mized fuzzy c-means clustering using a genetic algorithm.

Next, items are clustered using the fuzzy c-means method.

Then, the output of fuzzy c-means is entered as an input to

an Adaptive Neuro-Fuzzy Inference System (ANFIS) to

create fuzzy rules. Cost, size, lead time, and critical factor

are used as classification criteria.

Wu et al. (2018) developed a weighted least-square

dissimilarity approach to solving the MCIC problem. They

proposed a mathematical programming approach to derive

criteria weights. They investigated an MCIC problem

where inventory items are characterized by three criteria of

annual dollar usage, average unit cost, and lead time.

Lolli et al. (2019) trained supervised classifiers to clas-

sify inventory items. Their proposed method is developed

to deal with intermittent demands. They tested their

method on two large datasets. Demand, lead time, pur-

chasing, and holding costs are used in their case studies as
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classification criteria. Agarwal and Mittal (2019) also used

multi-level association rule mining for the MCIC problem.

They used the concept of loss profit to rank inventory items

at different levels.

Sheikh-Zadeh and Rossetti (2019) defined the concept

of artificial stocking policy as a classification criterion.

Their model mainly focused on repairable items. Then, a

non-subjective weighted linear scoring method is devel-

oped and a heuristic partitioning method is proposed for

ranking items. In this method, the cost and demand of

items, depot repair cycle time, repair cycle time at the base,

depot-to-base resupply time, and the probability of items

being repaired at the base are considered to be classifica-

tion criteria.

Kheybari et al. (2019) used a combination of methods

including entropy, the technique for ordering preferences

based on similarity to ideal solution (TOPSIS), and goal

programming to determine classification criteria weights.

Then, the value of each item is calculated. Shannon’s

entropy is used to determine the criteria weights and the

value of each item is determined using TOPSIS. Finally,

items are clustered applying goal programming. In their

numerical example, average unit cost, critical factor,

annual dollar usage, and lead time are used as classification

criteria.

Ersalan and Tansel iÇ (2019) developed an improved

decision support system (IDSS) for MCIC problem. This

IDSS includes two modules one of which is assigned to

specific product characteristics and the other compares and

ranks inventory items. The ABC analysis module includes

annual dollar usage (ADU) and analytic hierarchy process

(AHP) methods. A case study based on price, demand, lead

time, criticality, and volume as classification criteria indi-

cated that the AHP method produces more realistic results.

Douissa and Jabur (2019) proposed a classification

approach based on ELECTRE III and computed a score for

inventory items. The non-compensatory nature of ELEC-

TREE III prohibited items with poor performance in one or

some parameters to being classified as important (A class)

items.

The above studies are summarized in Table 1. Accord-

ing to this table, it can be concluded that:

1. Research into multi-criteria ABC classification has

drawn considerable attention until recent years taking

into account the researches published in 2018 and

2019;

2. Two main streams are being ruled in multi-criteria

ABC classification problems. A class of studies applied

multi-attribute decision-making techniques, e.g., AHP,

TOPSIS, and outranking methods. In another class,

MCIC problem analysis includes formulating the

problem as a mathematical programming one and then,

developing methods and algorithms to solve this

problem. The third stream including artificial intelli-

gence and machine learning does also seem to be

rising;

3. Since the MCIC problem required investigation of each

inventory item according to different criteria—some

are subjective and some partially known—uncertainty

seems inevitable in these problems. However, consid-

ering 26 papers investigated, the frequency of different

types of uncertainty is being considered and shown in

Fig. 1.

Based on Fig. 1, it is evident that while uncertainty

seems axiomatic, the main flow of papers considered

MCIC problems as deterministic.

4. Considering criteria used in MCIC case studies, the

criteria can be classified into four categories, including

cost-related criteria, demand- or usage-related criteria,

lead time, critical factor, and other factors. The

frequency of criteria in these categories is shown in

Fig. 2. Each category includes several criteria as

illustrated in Table 2. The first category involves

cost-related criteria (numbers in parenthesis indicate

the frequency of the criterion being used).

3 Modeling of the hybrid multi-objective
fuzzy-stochastic problem

3.1 Problem definition

Suppose that there are N stocks keeping units (SKUs). Each

SKU0
is; i ¼ 1; 2; . . .;N; demand followed a normal distri-

bution d̂i with mean �di and standard deviation of ri. Each
SKUi has a known lead time Li. To develop a suitable in-

ventory management system appropriate for SKUs status,

the inventory manager wants to classify the N inventory

items. It is assumed that a generic inventory policy, i.e.,

service level, is required for each group. Setting a high

service level for all the SKUs will guarantee the highest

desirability, but it is not practical since doing so incurs a

significant amount of expenditure. The inventory holding

cost for SKUi is ~ci per unitestimated ambiguously as a

fuzzy parameter. There is an overall budget of B assigned

to inventory management in the considered time horizon

and the inventory manager should design their inventory

policy accordingly. Therefore, the inventory manager

decided to classify SKUs into three subgroups of A, B, and

C. To achieve this aim, a hybrid fuzzy-stochastic multi-

criteria ABC inventory classification (HFSMCIC) model is

proposed.
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Table 1 A synthesis on previous studies of MCIC problem

Author Year Criteria uncertainty type Analytical method(s) Criteria used

Fuzzy Stochastic Interval Robust

Ramanathan 2006 – – – – Weighted linear optimization Average unit cost;

Annual dollar usage;

Critical factor;

Lead time

Tsi and Yeh 2008 – – – – Particle swarm optimization Setup cost;

Unit holding cost;

Demand per unit time;

Supplier ordering cost

Chu et al. 2008 4 – – – Fuzzy classification analysis Demand

Unit price

Usage frequency

Procurement lead time

Current item status

Criticality

Severity of the inventory
running out

Hadi-Venche 2010 – – – – Nonlinear programming model Annual dollar usage;

Average unit cost;

Lead time

Chen 2011 – – – – Peer-estimation approach Annual dollar usage;

Average unit cost;

Lead time

Hadi-Venche and
Mohamadghasemi

2011 4 – – – Fuzzy AHP-DEA approach Annual dollar usage;

Limitation of warehouse
space;

Average lot cost;

Lead time

Torabi et al. 2012 – – – – Linear programming(DEA) Annual dollar usage;

Average unit cost;

Lead time;

Critical factor

Millstein et al. 2014 – – – – Mixed-integer linear program Annual demand;

Gross profit per unit of SKU;

Inventory holding cost;

Fixed overhead cost;

Service level

Rezaei and Salimi 2015 – – 4 – Parametric linear programming with
interval number

Demand;

Overage cost;

Shortage cost.

Liu et al. 2015 – – – – Outranking model

clustering analysis and the simulated
annealing algorithm

Average unit cost;

Annual RMB usage;

Lead time;

Turnover (rate)

Fu et al. 2016 – – 4 – Distance-based decision-making method Annual dollar usage;

Average unit cost;

Lead time

Baykasoglu et al. 2016 4 – – – Fuzzy linear assignment method Durability

Availability

Criticality

Replenishment time

Total annual cost

1070 S. H. Razavi Hajiagha et al.

123



Table 1 (continued)

Author Year Criteria uncertainty type Analytical method(s) Criteria used

Fuzzy Stochastic Interval Robust

Yang et al. 2017 – 4 – – Mixed-integer linear programming Sales volume;

Coefficient of variation in
demand;

Number of orders;

Shelf life;

Gross profit

Li et al. 2017 – 4 – – Stochastic multi-criteria acceptability
analysis

Average unit cost;

Annual dollar usage;

Lead time

Shanshan et al. 2017 – – – – Shannon entropy, Mathematical
programming

Annual dollar usage;

Average unit cost;

Lead Time

López-Soto et al. 2017 – – – – Artificial neural network Annual usage;

Annual average cost per unit;

Criticality factor of the part;

Lead time;

Unit price;

Ordering cost per lot

Hadi-Vencheh et al. 2018 4 – – – Linear programming, TOPSIS Annual dollar usage;

Lead time;

Average lot cost;

Limitation of warehouse
space;

Availability of the substitute
raw material

Ishizaka et al. 2018 – – – – DEA, AHP Annual usage value;

Frequency of issue per year;

Current stock value

İsen and Boran 2018 – – – – Fuzzy c-means, genetic algorithm,
ANFIS

Cost;

Size;

Lead time;

Critical factor

Wu et al. 2018 – – – – Mathematical programming Annual dollar usage;

Average unit cost;

Lead Time

Kheybari et al. 2019 – – – – Shannon’ entropy, TOPSIS, goal
programming

Average unit cost

Critical factor

Annual dollar usage

Lead time

Lolli et al. 2019 – – – – Machine learning Demand

Lead time

Purchasing cost

Holding cost

Sheikh-Zadeh and
Rossetti

2019 – – – – Mathematical modeling Cost

Demand

Depot repair cycle time

Repair cycle time at base

Depot-to-base resupply time

Probability of items being
repaired at base
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3.2 Multi-criteria formulation of ABC inventory
classification problem

Before proceeding to the modeling of inventory classifi-

cation problem, it is notable that the multi-criteria nature of

ABC inventory classification problems requires investi-

gating each inventory item according to several criteria.

Suppose that there is a set of K criteria, C1;C2; . . .;CKf g.
Also, suppose that performance of inventory items (SKUs)

in these criteria are illustrated in the following decision

matrix:

C1 C2 � � � CK

SKU1 x11 x12 � � � x1K

C1 C2 � � � CK

SKU2 x21 x22 � � � x2K

..

. ..
. ..

. . .
. ..

.

SKUN xN1 xN2 � � � xNK

where xik denoted the performance of SKUi with regard to

criterion Cj. To obtain an aggregated performance for

SKUi, i.e., Fi, the above matrix information could be

aggregated as

Fi ¼
XK

j¼1

ujrij ð1Þ

In Eq. (1),

Table 1 (continued)

Author Year Criteria uncertainty type Analytical method(s) Criteria used

Fuzzy Stochastic Interval Robust

Ersalan and Tansel iÇ 2019 – – – – Improved decision support system Price

Demand

Lead time

Criticality

Volume

Douissa and Jabeur 2019 ELECTRE III Annual Dollar Usage

Annual Unit Cost

Lead Time

Critical Factor

Proposed method 4 4 – – Mathematical programming Stochastic demand

Unit price

Current stock value

Lead time

Criticality factor of the part

16

4 

2 2 

0

2

4

6

8

10

12

14

16

18

Deterministic Fuzzy Stochastic Interval

Fig. 1 Frequency distribution of information uncertainty in MCIC

problems

29

23 23
19

9 

0
5

10
15
20
25
30
35

Cost related
criteria

Other factors Demand or
usage related

criteria

Lead time Critical
factor

Fig. 2 Frequency of criteria being used for MCIC
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rij ¼
rij � rj�
r�j � rj�

ð2Þ

Is the normalized performance of SKUi with regard to

criterion Cj, where r�j and rj� are the ideal and anti-ideal

performances over criterion j. also, uj; j ¼ 1; 2; . . .;K are

the weights of criteria. In this paper, AHP is used to derive

these weights. Constructing a set of pairwise matrices for a

group of experts, El; l ¼ 1; 2; . . .; L, each expert provides

their pairwise matrix as illustrated in Table 3.

Where, alij 2 1=9; 1=8; . . .; 8; 9f g � 0f g, according to

the scale proposed by Saaty (1977, 1990), is the ratio of

preference of Ci to Cj from the viewpoint of lth

expert. Using the geometric averaging operator, these

pairwise matrices are aggregated as P ¼ aij
� �

; aij ¼

a1ij � a2ij � � � � � aLij
� �1=L

. Saaty (1977) proposed using eigen-

vectors corresponding largest eigenvalue of pairwise

matrix. Using this method in this paper, the criteria

weighting vector u1; u2; . . .; uKð Þ is determined and apply-

ing this vector to Eq. (1), the overall performance of each

SKU based on all the classification criteria is then calcu-

lated. This overall performance vector f1; f2; . . .; fNð Þ will

be used in the next sections to extend the inventory clas-

sification problem.

3.3 Formulation as a multi-objective
programming problem

Considering N SKUs to be classified in 3 classes of A

(j = 1), B (j = 2), and C (j = 3), in this section, the

HFSMCIC problem is formulated as a multi-objective

programming problem.

The first objective seeks to maximize the total value of

SKUs classification. Each SKUi has a stochastic demand of

d̂i with an evaluated performance of Fi, obtained using

Eq. (1). Also, decision maker considered a service level of

aj; j ¼ 1; 2; 3 for each group in a way that a1 [ a2 [ a3.
Therefore, the first objective is proposed to maximize total

score of assigning SKUs to each class. This objective is

formulated as:

Max
XN

i¼1

X3

j¼1

Fid̂ixijaj ð3Þ

Hereafter, 8i 2 1; 2; . . .;Nf g and 8j 2 1; 2; 3f g,

xij ¼
1 if SKUi is assigned to inventory class j
0 otherwise

�

Table 2 The criteria being used in MCIC

Class Criterion Frequency Class Criterion Frequency

Other factors Current item status 2 Cost-related criteria Average unit cost 13

Durability 2 Inventory holding cost 3

Frequency of issue per year 2 Average cost 2

Gross profit 2 Average lot cost 2

Limitation of warehouse space 2 Ordering cost per lot 2

Sales volume 2 Unit price 2

SIZE 1 Shortage cost 1

Availability 1 Fixed overhead cost 1

Availability of the substitute 1 Setup cost 1

Coefficient of variation in demand 1 Annual average cost per unit 1

Price 1 Total annual cost 1

SERVICE level 1 Demand-related criteria Annual dollar usage 14

Severity of inventory running out 1 Annual demand 8

Turnover rate 1 Usage frequency 1

Repair cycle time at base 1 Lead time 19

Depot-to-base resupply time 1 Critical factor 9

Probability of items being repaired at base 1

Table 3 Pairwise comparison

matrix of criteria
C1 C2 � � � CK

Pl C1 1 al12 � � � al1K

C2 al21 1 � � � al2K

..

. ..
. ..

. . .
. ..

.

CK alK1 alK2 � � � 1
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On the other hand, considering stochastic nature of

SKUs demand, the overall value obtained in Eq. (3) will

have a variance. The aim of the second objective is to

minimize Var
PN

i¼1

P3

j¼1

Fid̂iXijaj

 !
. This objective is formu-

lated as:

Min
XN

i¼1

X3

j¼1

Firiaj
� �2

x2ij ð4Þ

Also, since assigning each SKU to each class imposes

some overhead costs due to different inventory control

policies; the third objective is formulated to minimize the

total overhead cost of SKUs assignment to inventory

classes as below:

Min
X3

j¼1

~xj

XN

i¼1

xij

 !
ð5Þ

where ~xj; j ¼ 1; 2; 3 is the fixed overhead management

cost of inventory group j. Equations (3)–(5) are three

considered objectives of the problem.

The first constraint is a rational constraint imposed to

assign each SKU to just one class:

X3

j¼1

xij ¼ 1; 8i ð6Þ

Second constraint is to assure that if SKUi is assigned to

class j, then its inventory level should always be greater

than its lead time demand d̂iLi with at least probability aj.
This constraint can be illustrated as:

Pr d̂iLixij � vi
� �

� aj; 8i; j ð7Þ

In Eq. (7), vi; i ¼ 1; 2; . . .;N is the minimum required

inventory level of SKUi; 8i. This constraint is trans-

formed to an equivalent constraint that can be handled

efficiently. To achieve this aim, it is notable that

E diLixij
� �

¼ �diLixij and Var diLixij
� �

¼ riLið Þ2x2i . Then, the
constraint is reformulated as:

Pr
diLixij � �diLixij

riLixij
� vi � �diLixij

riLixij

	 

� aj; 8i; j ð8Þ

If /�1 aj
� �

is defined as the converse cumulative stan-

dard normal distribution at satisfaction level aj, Eq. (8) is
transformed as below:

vi � �diLixij
riLixij

�/�1 aj
� �

! vi � �di þ ri/
�1 aj
� �� �

xij � 0; 8i; j

ð9Þ

Third constraint is to limit the expenditure amount of

SKUs inventory levels.

XN

i¼1

~civi �B; 8i ð10Þ

This constraint is a fuzzy type constraint. If ~ci ¼
ci1; ci2; ci3; ci4ð Þ is a trapezoidal fuzzy number, Jimenez et al.

(2007) proposed the below equivalent constraint at a satis-

faction level of a, based on the notion of expected interval

and expected value of fuzzy numbers (Heilpern 1992) and

the concept of the degree in which a fuzzy number is greater

than another, introduced by Jimenez (1996).

XN

i¼1

1� að Þ ci1 þ ci2
2

þ a
ci3 þ ci4

2

h i
vi �B; 8i ð11Þ

Using the above relations, the multi-objective

HFSMCIC problem is constructed as below:

Max
PN

i¼1

P3

j¼1

fid̂ixijaj ðaÞ

Min
PN

i¼1

P3

j¼1

ri fixijaj
� �2 ðbÞ

Min
P3

j¼1

~xj

PN

i¼1

xij

	 

ðcÞ

S:T:
P3

j¼1

Xij ¼ 1; 8i ðdÞ

vi � �di þ ri/
�1 aj
� �� �

xij � 0; 8i; j ðeÞ
PN

i¼1

1� að Þ ci1 þ ci2
2

þ a
ci3 þ ci4

2

h i
vi �B; 8i ðfÞ

xij 2 0; 1f g; 8i; j ðgÞ
vi � 0; 8i ðhÞ

ð12Þ

4 Solving approach

The model proposed in Eq. (12) is a hybrid multi-objective

fuzzy-stochastic problem. Considering the second objec-

tive, the above model is a multi-objective constrained

quadratic binary programming problem. In this section, a

hybrid approach is proposed to solve the above problem,

inspiring from chance-constrained programming to deal

with stochastic constraints and objectives, and possibilistic

programming to handle fuzzy objectives and constraints.

According to Abdelaziz et al. (2007) and Ekhtiari and

Ghoseiri (2013), to transform this stochastic objective into

an equivalent deterministic inequality, an ideal value is

required for the first objective. To this aim, ideal value of

the first objective is determined by letting j ¼ 1 and

xi1 ¼ 1. The ideal value is determined as

F�
1 ¼

PN
i¼1 fia1 �di þ 3rið Þ. Now, let

Prob
XN

i¼1

X3

j¼1

f id̂ixijaj �F�
1

 !
� a ð13Þ

Now, the first objective is restated as:
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Min y

Prob
XN

i¼1

X3

j¼1

fid̂ixijaj þ y�F�
1

 !
� 1� a

ð14Þ

Then,

Min y

Prob F�
1 �

XN

i¼1

X3

j¼1

fid̂ixijaj � y

 !
� 1� a

ð15Þ

Since d̂i is normally distributed, F�
1 �PN

i¼1

P3
j¼1 fid̂ixijaj also normally distributed with mean of

F�
1 �

PN
i¼1

P3
j¼1 fi

�diajxij and standard deviation of
PN

i¼1

P3
j¼1 firiajxij. To achieve the equivalent form of

Eq. (15), considering / 1� að Þ ¼ Prob z� 1� að Þ, then it

can be concluded that:

y� F�
1 �

PN
i¼1

P3
j¼1 fi

�diajxij
� �

PN
i¼1

P3
j¼1 firiajxij

�/�1 1� að Þ ð16Þ

And therefore,

y�/�1 1� að Þ
XN

i¼1

X3

j¼1

firiajxij þ F�
1 �

XN

i¼1

X3

j¼1

fi �diajxij

ð17Þ

On the other hand, since for xij 2 0; 1f g, x2ij ¼ xij, the

third objective, Eq. (11c), is transformed into a multi-ob-

jective mixed binary programming model. In this case, the

second objective can be stated as
PN

i¼1

P3
j¼1 fiajri
� �2

xij.

Using these modifications, the problem in Eq. (13) is

transformed into the following problem which is a multi-

objective linear mixed binary programming model.

Miny

Min
XN

i¼1

X3

j¼1

fiajri
� �2

xij

Min
X3

j¼1

~xj

XN

i¼1

xij

 !

S:T:
X3

j¼1

Xij ¼ 1; 8i

y�/�1 1� að Þ
XN

i¼1

X3

j¼1

firiajxij þ F�
1 �

XN

i¼1

X3

j¼1

fi �diajxij

vi � �di þ ri/
�1 aj
� �� �

xij � 0; 8i; j
XN

i¼1

1� að Þ ci1 þ ci2
2

þ a
ci3 þ ci4

2

h i
vi �B;

xij 2 0; 1f g; 8i; j
vi � 0; 8i

ð18Þ

Now, suppose that the solution space of the above

problem at satisfaction levels a1; a2; a3 and a is illustrated

as S a1;a2;a3;að Þ.

At the first step of the proposed solving approach, the

below problems are solved:

Miny

S:T: x; vð Þ 2 S a1;a2;a3;að Þ
ð19Þ

Min
XN

i¼1

X3

j¼1

fiajri
� �2

xij

S:T: x; vð Þ 2 S a1;a2;a3;að Þ

ð20Þ

Min
X3

j¼1

~xj

XN

i¼1

xij

 !

S:T: x; vð Þ 2 S a1;a2;a3;að Þ

ð21Þ

To handle the fuzzy objective of the third model in

Eq. (21), according to Jimenez et al. (2007), the expected

value of the objective function, when wj ¼
wj1;wj2;wj3;wj4

� �
; j ¼ 1; 2; 3 is a trapezoidal fuzzy num-

ber, is represented as below:

Min
X3

j¼1

wj1 þ wj2 þ wj3 þ wj4

4

� � XN

i¼1

xij

 !

S:T: x; vð Þ 2 S a1;a2;a3;að Þ

ð22Þ

Solving these problems, the anti-ideal value of the first

objective, i.e., F1�, and the ideal values of second and third

objectives are obtained as F�
2, and F�

3, respectively. Then,

the anti-ideal values of second and third objectives are

obtained reversing their objectives from Min to Max. These

anti-ideal objectives are illustrated as F2�, and F3�. Now,
following Zimmermann (1978, 1983), Tiwari et al. (1986),

Sadeghi et al. (2013), Razavi Hajiagha et al. (2014), and

the membership function of the first objective function can

be constructed as below:

l1 x; vð Þ ¼
1 if y�F�

1
y� F1�
F�
1 � F1�

; if F�
1 � y�F1�

0 if F1� � y

8
><

>:
ð23Þ

Similarly, the membership functions of the second and

third objectives are formulated as

l2 x; vð Þ ¼

1; if
PN

i¼1

P3

j¼1

fiajri
� �2

xij �F�
2

F2� �
PN

i¼1

P3
j¼1 fiajri
� �2

xij

F2� � F�
2

; if F�
2 �

PN

i¼1

P3

j¼1

fiajri
� �2

xij �F2�

0; if F2� �
PN

i¼1

P3

j¼1

fiajri
� �2

xij

8
>>>>>>>>><

>>>>>>>>>:

ð24Þ
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At this stage, an additional constraint is added to the

model to assure the distribution of items between three

classes. Therefore, if pj; j ¼ 1; 2; 3 is defined as the per-

centage (of number) of items in jth class, a constraint of the

following type is added to the model:

XN

i¼1

xij � pj; j ¼ 1; 2; 3 ð26Þ

Based on these membership functions, the solution of

the main multi-objective problem is obtained by solving

the following single-objective binary programming prob-

lem using the max–min operator of Zimmermann (1978):

Max Min l1 x; vð Þ; l2 x; vð Þ; l3 x; vð Þf g

S:T:
X3

j¼1

Xij ¼ 1; 8i

0� l1 x; vð Þ� 1

0� l2 x; vð Þ� 1

0� l3 x; vð Þ� 1

y�/�1 1� að Þ
XN

i¼1

X3

j¼1

firiajxij þ F�
1 �

XN

i¼1

X3

j¼1

fi �diajxij

vi � �di þ ri/
�1 aj
� �� �

xij � 0; 8i; j
XN

i¼1

1� að Þ ci1 þ ci2
2

þ a
ci3 þ ci4

2

h i
vi �B; 8i

XN

i¼1

xij � pj; j ¼ 1; 2; 3

xij 2 0; 1f g; 8i; j
vi � 0; 8i

ð27Þ

Or using additive model of Tiwari et al. (1986):

Max l1 x; vð Þ þ l2 x; vð Þ þ l3 x; vð Þ

S:T:
X3

j¼1

Xij ¼ 1; 8i

0� l1 x; vð Þ� 1

0� l2 x; vð Þ� 1

0� l3 x; vð Þ� 1

y� /�1 1� að Þ
XN

i¼1

X3

j¼1

firiajxij þ F�
1 �

XN

i¼1

X3

j¼1

fi �diajxij

vi � �di þ ri/
�1 aj
� �� �

xij � 0; 8i; j
XN

i¼1

1� að Þ ci1 þ ci2
2

þ a
ci3 þ ci4

2

h i
vi �B; 8i

XN

i¼1

xij � pj; j ¼ 1; 2; 3

xij 2 0; 1f g; 8i; j
vi � 0; 8i

ð28Þ

The proposed methodology to solve the model is illus-

trated in Fig. 3.

Both models in Eqs. (27) and (28) are binary program-

ming ones. Both of these approaches can be used separately

or comparably to determine the problem solution. The

model in Eq. (27) is used the Zimmermann (1978) min–

max approach. This approach can be considered as a cau-

tious and non-compensatory approach to solving the

problem. On the other hand, the problem in Eq. (28)

illustrated a compensatory approach that allows the com-

pensation among objectives. Both methods can be applied

to solve the problem, and there is no guarantee that one of

them can be considered as the more preferred one in all

situations. The main suggestion is to use both approaches

in each occasion and to compare and choose the better one.

This problem can be solved using ordinary optimization

packages, e.g., Lingo or GAMS. A real-world case study

along with its corresponding discussion is presented in the

next section.

l3 x; vð Þ ¼

1; if
P3

j¼1

wj1 þ wj2 þ wj3 þ wj4

4

� � PN

i¼1

xij

	 

�F�

3

F3� �
P3

j¼1

wj1 þ wj2 þ wj3 þ wj4

4

� � PN
i¼1 xij

� �

F3� � F�
3

; if F�
3 �

P3

j¼1

wj1 þ wj2 þ wj3 þ wj4

4

� � PN

i¼1

xij

	 

�F3�

0; if F3� �
P3

j¼1

wj1 þ wj2 þ wj3 þ wj4

4

� � PN

i¼1

xij

	 


8
>>>>>>>>>><

>>>>>>>>>>:

ð25Þ
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5 Case study

Dastgireh Iran Tolerance (DIT) is a manufacturer of door

handle and plaques in Iran with more than 30 years of

relevant background. The advent of new competitors

caused DIT to become more sensitive to its expenditures to

maintain and enhance its competitive advantage and mar-

ket share. According to the impact of inventory manage-

ment systems costs on the company’s overall cost, the

necessity of monitoring and improving the performance of

this system became evident. Therefore, the company

decided to restudy its inventory management system status.

This company carries 51 types of inventory items and

parts in its warehouse. A large percentage of these items

can be classified as easy-to-acquire items that do not need

to be controlled through rigorous and exact inventory

control methods. Therefore, the managers of DIT decided

to classify their inventory items using a multi-criteria ABC

classification analysis.

In the first step, the classification criteria are identified

based on the literature. Considering Fig. 2, four criteria are

identified to be:

• Unit price (C1);

• Current stock value (C2);

• Lead time (C3);

• Criticality factor of the part (C4);

In this stage, using pairwise comparisons, the impor-

tance of the above criteria is identified. To this aim, a group

of three experts completed their pairwise matrices and

using geometric average (Saaty (1989)), the group pairwise

matrix is constructed as Table 4.

Using MATLAB, the largest eigenvalue of the above

pairwise matrix is obtained as kmax ¼ 4:0145 with the

corresponding eigenvector of

�0:8060;�0:4251;�0:1713;�0:3745ð Þ. The consistency

ratio of this matrix is calculated to be 0.0054 that is less

than 0.1. Therefore, normalizing the eigenvector, the

Fig. 3 Flowchart of solving methodology
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weight vectors of criteria are obtained to be

0:4536; 0:2392; 0:0964; 0:2107ð Þ.
Raw data for inventory items are represented in Table 5.

The demand for each item is approximated using a normal

distribution, where the numbers in column d̂j of Table 5

indicate its mean and variance that are approximated to be

equal numbers. Also, the last column of the table, titled fi,

is calculated using Eq. (1).

Inventory management department determines that ser-

vice levels of 80%, 60%, and 50% are required for

inventory classes A, B, and C, respectively. The overhead

cost associated with developing and maintaining an exact

computerized system for inventory items of class A is

approximated to be (80$, 120$, 140$, 168$) per item. An

overhead cost for developing and controlling an inter-

company-based system for inventory class B is approxi-

mated to be (25$, 40$, 55$, 77$) per item and the human-

based inventory control system for items in class C is

approximated to have an overhead cost of (5$, 8$, 10$,

12$) per item.

The HFSMCIC model is formulated based on the above

information. Solving the models in Eqs. (19)–(21), the

ideal and anti-ideal objective values, i.e., F�
r and Fr�,

respectively, are determined as shown in Table 6. In these

models, a1; a2; a3; að Þ ¼ 0:8; 0:6; 0:5; 0:1ð Þ.
Based on these values, the membership functions can be

developed as follows:

l1 x; vð Þ ¼
0; if y� 26153900000
y� 26153900000

1425089
; if 26153900000� y� 26155325089

1; if 26155325089� y

8
><

>:

Now, solving the model in Eq. (27),—considering 11 items

in class A, 20 items in class B, and 20 items in class C—the

optimal objective value is obtained as 2.647. On the other

hand, the optimal objective value of Eq. (28) is obtained to

be 0.65. The membership and objective values of three

objectives are demonstrated in Table 7.

According to Table 7, the results obtained from solving

the model in Eq. (27) outperformed the results of Eq. (28).

That is to say since the obtained membership value for the

first and third objective are equal in both models, and the

max–min model attained a higher membership value from

the additive model. Therefore, the results from Eq. (27) are

preferred to Eq. (28). However, it is not a general case. The

main advantage of the maxi-min approach against the

additive model, in this case, is that it improves the variance

of inventory items classification about 47% regard to

additive model, meaning a more stable classification result

in the uncertain context of the study.

Table 4 Group pairwise matrix of classification criteria

C1 C2 C3 C4

C1 1.00 1.714 5.60 1.980

C2 0.583 1.000 2.289 1.120

C3 0.178 0.437 1.00 0.500

C5 0.505 0.892 2.00 1.00

l2 x; vð Þ ¼

1; if
P51

i¼1

P3

j¼1

fiajri
� �2

xij � 87431:327

223824:197�
P51

i¼1

P3
j¼1 fiajri
� �2

xij

136392:9
; if 87431:327�

P51

i¼1

P3

j¼1

fiajri
� �2

xij � 223824:197

0; if 223824:197�
P51

i¼1

P3

j¼1

fiajri
� �2

xij

8
>>>>>>>><

>>>>>>>>:

l3 x; vð Þ ¼

1; if
P3

j¼1

wj1 þ wj2 þ wj3 þ wj4

4

� � P51

i¼1

xij

	 

� 446:25

6477�
P3

j¼1

wj1 þ wj2 þ wj3 þ wj4

4

� � PN
i¼1 xij

� �

6030:75
; if 446:25�

P3

j¼1

wj1 þ wj2 þ wj3 þ wj4

4

� � P51

i¼1

xij

	 

� 6477

0; if 6477�
P3

j¼1

wj1 þ wj2 þ wj3 þ wj4

4

� � P51

i¼1

xij

	 


8
>>>>>>>>><

>>>>>>>>>:
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Table 5 Data for inventory items

Code Inventory item Unit Criteria Holding cost

d̂i Unit

price

Criticality

degree

Lead

time

Inventory on

hand

fi

1 Zamak kg 89,000 0.01 9 2 7000 0.4578 (0.15, 0.29, 0.44, 0.59)

2 Seamless aluminum

pipe

Beam 160 0.02 7 1 13 0.4089 (0.09, 0.17, 0.26, 0.35)

3 Seamless brass pipe Beam 380 0.03 7 1 30 0.4187 (0.16, 0.32, 0.48, 0.64)

4 Corrugated brass pipe Beam 1150 0.04 7 1 80 0.4221 (0.18, 0.37, 0.55, 0.74)

5 Oily flat sheet

25.1 mm

m2 420 0.05 7 2 30 0.4049 (0.03, 0.07, 0.1, 0.13)

6 Oily flat sheet 1 mm m2 2800 0.06 8 2 200 0.4314 (0.04, 0.07, 0.11, 0.15)

7 Galvanized flat sheet

4.0 mm

m2 390 0.07 7 1 30 0.4018 (0.03, 0.07, 0.1, 0.14)

8 Galvanized flat sheet

5.1 mm

m2 390 0.08 7 1 30 0.4028 (0.04, 0.08, 0.12, 0.17)

38 Lubricant spray Quantity 596 0.09 1 1 48 0.2461 (0.05, 0.1, 0.16, 0.21)

39 Stabilizer Liter 170 0.1 2 2 10 0.2766 (0.06, 0.12, 0.17, 0.23)

45 Acetic acid (vinegar) Liter 740 0.11 5 1 60 0.3499 (0.04, 0.08, 0.12, 0.16)

48 Chromic acid kg 1500 0.12 5 1 100 0.5477 (1.5, 3, 4.5, 6)

51 Laboratorial nitric

acid

Liter 76 0.13 5 1 4 0.3727 (0.21, 0.42, 0.62, 0.83)

60 Cyanide Copper

plater A

Liter 760 0.14 3 2 60 0.3623 (0.5, 0.99, 1.49, 1.98)

61 Cyanide Copper

plater B

Liter 760 0.15 3 2 60 0.3936 (0.73, 1.45, 2.18, 2.91)

161 10*1000 m Bolt Quantity 1450 0.16 6 3 110 0.3775 (0.002, 0.003, 0.005, 0.006)

182 8*1000 m Bolt Quantity 1450 0.17 6 3 110 0.3774 (0.001, 0.003, 0.004, 0.005)

274 Rosette fix bolt Quantity 360,000 0.18 6 3 25,000 0.3232 (0, 0.001, 0.001, 0.001)

275 Yellow fix bolt Quantity 1,380,000 0.19 6 3 110,000 0.1383 (0, 0.001, 0.001, 0.001)

277 White fix bolt Quantity 1,380,000 0.2 6 3 110,000 0.1383 (0, 0.001, 0.001, 0.001)

282 6*6 Set screw Quantity 1,310,000 0.21 6 3 105,000 0.1492 (0, 0.001, 0.001, 0.001)

283 6*8 Set screw Quantity 1,310,000 0.22 6 3 105,000 0.1492 (0, 0.001, 0.001, 0.001)

338 Thiocyanate kg 200 0.23 2 2 15 0.2970 (0.21, 0.42, 0.62, 0.83)

365 Electrical oil

skimmer

kg 3800 0.24 1 2 300 0.2520 (0.08, 0.15, 0.23, 0.3)

366 Hot oil skimmer kg 900 0.25 1 2 50 0.2493 (0.05, 0.1, 0.15, 0.2)

375 Solvent Liter 320 0.26 5 4 20 0.4202 (0.48, 0.97, 1.45, 1.94)

398 Resin 413 kg 530 0.27 7 30 40 0.6499 (1.15, 2.31, 3.46, 4.62)

399 Resin 418 kg 2110 0.28 7 30 150 0.6653 (1.27, 2.54, 3.81, 5.08)

401 Electrophoretic

yellow color

Cc 25,000 0.29 1 5 2000 0.3596 (0.82, 1.64, 2.47, 3.29)

402 Electrophoretic red

color

Cc 6800 0.3 1 5 500 0.7050 (3.35, 6.69, 10.04, 13.38)

426 Caustic soda kg 1400 0.31 3 4 100 0.3046 (0.02, 0.04, 0.07, 0.09)

429 Ammonium crystal

sulfate

kg 1400 0.32 4 3 100 0.3457 (0.16, 0.31, 0.47, 0.62)

430 Zinc sulfate kg 1400 0.33 4 3 100 0.3340 (0.07, 0.14, 0.21, 0.28)

431 Nickel sulfate kg 1400 0.34 4 3 100 0.3509 (0.19, 0.39, 0.58, 0.78)

433 Cyanide sodium kg 900 0.35 4 6 50 0.3597 (0.18, 0.37, 0.55, 0.74)

434 Cyanide copper kg 394 0.36 4 6 30 0.3989 (0.47, 0.95, 1.42, 1.89)

447 Spring 3 Quantity 720,000 0.37 4 26 50,000 0.2926 (0, 0.001, 0.001, 0.002)

486 Barium carbonate kg 700 0.38 3 2 50 0.3005 (0.04, 0.08, 0.12, 0.16)
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The classification of inventory items with their required

inventory level is illustrated in Table 8. In this table, the

classifications of inventory items are determined and the

minimum required inventories to assure meeting the cor-

responding satisfaction levels are determined. The above

models are solved using the GAMS optimization package

by Cplex solver.

According to Table 8, 11 items (20%) are classified as

extremely important (i.e., A), 20 items (40%) are classified

as moderately important (i.e., B), and 20 items (40%) are

assigned to a relatively unimportant class (i.e., C). The

obtained result is consistent with the traditional 80-20 rule.

On the other hand, the optimal inventory levels obtained

can be used as a determinant of an inventory control policy

for each class.

6 Conclusions

In this paper, a model is proposed for multi-criteria ABC

inventory classification when the uncertainties of data have

a hybrid form of stochastic and fuzzy information.

Generally speaking, ABC classification is a fundamental

decision in the field on inventory control that is considered

by many researchers and a planetary of approaches are

proposed to handle this problem. The main consideration in

this problem is to determine the classification of inventory

items to develop various inventory control policies for each

category. The multi-criteria and uncertain nature of this

problem seems inevitable. Therefore, this paper can be

considered as an extension of this path of researches.

A part of previous studies proposed ABC classification

under crisp and exact data, while another part considered

uncertain data as stochastic or fuzzy. However, the type of

uncertainty in information related to ABC classification is

usually different, and considering a unique type of uncer-

tainty seems challenging. Theoretically, this paper exten-

ded the context of uncertain ABC classification into a

heterogeneous environment in which information follow

Table 5 (continued)

Code Inventory item Unit Criteria Holding cost

d̂i Unit

price

Criticality

degree

Lead

time

Inventory on

hand

fi

488 Sodium carbonate kg 1450 0.39 3 2 100 0.2993 (0.03, 0.06, 0.1, 0.13)

495 Ammonium chloride kg 750 0.4 3 1 50 0.2956 (0.03, 0.06, 0.09, 0.12)

496 Nickel chloride kg 750 0.41 3 1 50 0.3262 (0.25, 0.51, 0.76, 1.02)

511 Polish skimmer kg 640 0.42 2 7 40 0.2955 (0.08, 0.15, 0.23, 0.3)

515 Satin/opaque polish

(Turkey)

Liter 220 0.43 2 7 10 0.4481 (1.2, 2.4, 3.6, 4.8)

559 Rosette fix nut Quantity 384,000 0.44 6 5 30,000 0.3191 (0.001, 0.002, 0.003, 0.005)

563 24 white fix nut Quantity 1,460,000 0.45 6 5 110,000 0.1451 (0.001, 0.002, 0.003, 0.005)

574 Silver Gr 19,800 0.46 7 4 1500 0.4076 (0.03, 0.05, 0.08, 0.11)

576 Rochelle salt kg 350 0.47 2 2 20 0.2852 (0.12, 0.24, 0.36, 0.48)

665 Hex key 4 Quantity 94,000 0.48 1 3 7000 0.2308 (0.001, 0.003, 0.004, 0.005)

965 Nanomat kg 320 0.49 4 4 20 0.5236 (1.44, 2.88, 4.33, 5.77)

966 Potassium cyanide kg 260 0.5 4 5 10 0.4097 (0.58, 1.15, 1.73, 2.31)

561 24 yellow fix nut Quantity 1,460,000 0.51 6 5 110,000 0.1451 (0.001, 0.002, 0.003, 0.004)

Table 7 Comparison of results from Eqs. (27) and (28)

Objective function value obtained by solving … Membership value obtained by solving … (%)

Equation (27) Equation (28) Equation (27) Equation (28)

First objective 26,155,300,000 26,155,300,000 98.24 98.24

Second objective 87,826.26 129,200.5 99.71 69.38

Third objective 2557 2557 64.67 64.67

Table 6 Objective functions ideal and anti-ideal values

Ideal value (F�
r ) Anti-ideal value (Fr�)

First objective 26,155,325,089 26,153,900,000

Second objective 87,431.327 223,824.197

Third objective 446.250 6477.000
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different behavioral patterns. Considering the heterogene-

ity of information, a hybrid fuzzy-stochastic model is

developed dealing with a different types of uncertainty.

With an overview of previous studies in this field, no other

research is found to investigate this common heteroge-

neous information in ABC classification. The model is

formulated as a hybrid fuzzy-stochastic multi-objective

model and a method is developed based on possibilistic

programming and chance-constrained programming to

solve the problem.

Practically, the application of the proposed method is

illustrated in a real-world case, consisting of 51 inventory

items. Formulating and solving the problem, the items are

classified into three classes of A, B, and C. Also, the

minimum required inventory levels of items are deter-

mined. It seems that the importance of inventory items

classification will be rethinking considering the recently

experienced disorder of supply chains due to the Coron-

avirus pandemic. However, especially, the magnitude of

oscillation observed in demand information required a

more powerful framework to analyze the MCIC problem in

a noisy environment. The varieties of information ambi-

guity necessitate the application of flexible frameworks to

analyze the inventory classification framework. The pro-

posed method in this paper can be considered as a

methodology to respond to this need.

Future researchers can focus on extending the proposed

model in two directions. First of all, one of the limitations

of the proposed model was to assume that the item

demands follow a normal distribution. Future researchers

can extend some algorithms to solve the model under

general statistical distribution using different multi-ob-

jective stochastic programming approaches like Abdelaziz

(2012) and Amoozad Mahdiraji et al. (2018). Also, since

in some cases, the number of inventory items might be

very large, e.g., more than one hundred thousand, using

ordinal binary programming approaches might be ineffi-

cient. Therefore, researchers can use population-based

(e.g., genetic algorithm), or single solution-based (e.g.,

simulated annealing) metaheuristics to solve the proposed

problem.

Table 8 ABC classification and the minimum required inventory level

Code Inventory class Minimum required inventory við Þ Code Inventory class Minimum required inventory við Þ

1 C 89,000 398 C 530

2 A 170.646 399 C 2110

3 B 384.939 401 C 25,000

4 B 1158.591 402 C 6800

5 B 425.192 426 B 1409.479

6 C 2800 429 B 1409.479

7 B 395.003 430 B 1409.479

8 B 395.003 431 B 1409.479

38 A 616.547 433 B 907.600

39 A 180.973 434 B 399.029

45 B 746.892 447 C 720,000

48 C 1500 486 B 706.703

51 A 83.337 488 B 1459.647

60 B 766.984 495 B 756.938

61 B 766.984 496 B 756.938

161 C 1450 511 A 661.292

182 B 1459.647 515 A 232.483

274 C 360,000 559 C 384,000

275 C 1,380,000 563 C 1,460,000

277 C 1,380,000 574 C 19,800

282 C 1,310,000 576 A 365.745

283 C 1,310,000 665 C 94,000

338 A 211.902 965 B 324.532

365 C 3800 966 A 273.571

366 A 925.249 561 C 1,460,000

375 A 335.055
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