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Without low spatial frequencies, high resolution vision would
be detrimental to motion perception
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A normally sighted person can see a grating of 30 cycles
per degree or higher, but spatial frequencies needed for
motion perception are much lower than that. It is
unknown for natural images with a wide spectrum how
all the visible spatial frequencies contribute to motion
speed perception. In this work, we studied the effect of
spatial frequency content on motion speed estimation
for sequences of natural and stochastic pixel images by
simulating different visual conditions, including normal
vision, low vision (low-pass filtering), and
complementary vision (high-pass filtering at the same
cutoff frequencies of the corresponding low-vision
conditions) conditions. Speed was computed using a
biological motion energy-based computational model. In
natural sequences, there was no difference in speed
estimation error between normal vision and low vision
conditions, but it was significantly higher for
complementary vision conditions (containing only
high-frequency components) at higher speeds. In
stochastic sequences that had a flat frequency
distribution, the error in normal vision condition was
significantly larger compared with low vision conditions
at high speeds. On the contrary, such a detrimental
effect on speed estimation accuracy was not found for
low spatial frequencies. The simulation results were
consistent with the motion direction detection task
performed by human observers viewing stochastic
sequences. Together, these results (i) reiterate the
importance of low frequencies in motion perception,
and (ii) indicate that high frequencies may be
detrimental for speed estimation when low frequency
content is weak or not present.

Introduction

Visual motion perception plays an important role
in a wide range of tasks in an organism’s life, such
as navigation and detection of obstacles. Motion
perception in humans (or in primates in general) is
not just restricted to the detection or registration
of moving patterns, but also includes the ability to
estimate speed. Primate visual cortex is known to house
circuitry necessary for speed perception. Neurons in
the MT region, as well as some complex V1 neurons
in primates are specially tuned for speed perception
(Perrone & Thiele, 2001; Perrone & Thiele, 2002;
Priebe, Cassanello, & Lisberger, 2003). A particularly
intriguing aspect of these speed tuned MT neurons is
that they are known to be somewhat invariant to the
spatial frequency of the stimuli, which is especially
important given the wide band of spatiotemporal
frequencies received by our visual system (Simoncelli
& Heeger, 2001). However, despite this invariance of
the speed tuned MT neurons to changes in the spatial
frequency spectrum of the stimuli, motion perception is
not the same across the entire visible spatial frequency
spectrum.

Our ultimate goal is to explore motion perception
in people with low vision in various situations. One
interesting aspect of this problem is to study motion
perception in different situations, specifically looking at
the interaction of motion speed and spatial frequency
content of the scene. We implemented a computational
model that is broadly based on some of the existing
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theories of motion perception in primate visual cortex.
Our aims in this work are to simulate different visual
conditions stratified by spatial frequency bands and
examine motion perception at different motion speeds
in different kinds of stimuli. The simulation findings
are then compared with human subject data that we
report in support of the computational model along
with previous studies regarding motion perception in
humans.

Previous studies have explored the role of spatial
frequencies in motion perception via motion
psychophysics (Gilden, Bertenthal, & Othman, 1990;
Hess & Aaen-Stockdale, 2008; Ramachandran,
Ginsburg, & Anstis, 1983; Shioiri, Ito, Sakurai, &
Yaguchi, 2002; Wichmann & Henning, 1998; Yang &
Stevenson, 1997), and a general conclusion emerging
from these studies is that low spatial frequencies play
a key role in motion perception. Studies measuring
human performance at different visual acuities (VAs)
provide further evidence of the same conclusion.
Normally sighted humans were able to understand the
scene content in the presence of motion information
even when their vision was blurred (i.e. they lacked high
spatial frequency visual cues; Pan & Bingham, 2013;
Saunders, Bex, Rose, & Woods, 2014). Low vision only
degraded the capability to perceive very slow motions
(< 2 °/s), and there was no significant difference in
perception of faster motion in individuals with small
to moderate VA loss compared with normally sighted
subjects (Lappin, Tadin, Nyquist, & Corn, 2009). Thus,
based on the previous studies, it is clear that low spatial
frequencies are critical for motion perception, which
may not be affected by the loss of high-resolution
vision.

However, the range of speeds and spatial frequencies
used in these studies was limited, excluding extremities
of frequency and speed values. In addition, the testing
generally involved a single spatial frequency presented
in terms of an artificial stimulus at a given moment,
or using spatially band-pass filtered random dot
kinematogram stimuli (Cleary & Braddick, 1990). A
range of spatial frequencies are commonly present
in complex real-world stimuli, and the interaction
between the various spatial frequency bands and
motion perception performance is not completely
clear for such natural images. As natural images
would be more relevant to our visual experience than
random dot stimuli commonly used in laboratory
experiments, we intend to explore some of the
pertinent questions concerning the relationship
between speed and the presence and/or absence of
various spatial frequency bands in natural visual
stimuli.

In this study, we used an implementation of an
algorithm based on the well-known biological motion
energy model (Adelson & Bergen, 1985; Etienne-
Cummings, Van der Spiegel, &Mueller, 1999; Grzywacz

& Yuille, 1990; Ogata & Sato, 1991), to quantitatively
derive motion speed across different spatiotemporal
frequency bands in natural and stochastic (binary noise
patterns) visual stimuli. Such a model used multiple
channels of spatial and temporal narrow-band filters
(Bex & Dakin, 2002) to capture the motion information
(for reviews about earlier motion energy models, see
[Burr & Thompson, 2011; Nishida, 2011]). Using the
computational model, we quantitatively analyzed the
interaction of different spatial frequency channels
in visual motion speed estimation by simulating
different VA levels, such as normal vision (20/20), low
vision (20/50 and 20/200), and complementary vision
conditions containing only high spatial frequency
components. Although the complementary vision
conditions do not exist in the context of daily visual
experience, they allowed us to explore independently
the effect of spatial frequencies on speed perception.
Furthermore, given that spatial frequency distribution
differs greatly between natural and stochastic visual
stimuli, independently looking at high and low spatial
frequency bands in these two different kinds of stimuli
allow us the opportunity to examine causal relationship
between spatial frequency and speed estimation. We
replicated earlier findings about the importance of
low spatial frequencies in speed perception, while
showing that, in certain situations, high spatial
frequencies can actually be detrimental for speed
estimation.

Methods

An overview of our methods for this work is shown
in Figure 1. First, we generated motion sequences by
translating different natural and stochastic images
with known speed (Figure 2). Next, we filtered these
sequences to simulate effects of different visual
conditions: low vision or loss of VAs at different levels
using low pass filters with different cutoff frequencies
and complementary vision conditions (hypothetical)
using high pass filters (Figure 3). Spatiotemporally
white noise was added to the sequences before the vision
condition filtering to simulate external (physical world)
noise. Finally, we applied Shi & Luo’s (Shi & Luo,
2018) implementation of Grzywacz and Yuille’ motion
energy model (see Figure 1) to estimate the speed of
motion in these sequences from their spatiotemporal
frequency components called motion energy. We
examined the relationship between spatial frequencies
and speed estimation accuracy of the computational
model under different simulated vision conditions and
at different speeds. We further tested motion direction
discrimination ability of human observers for different
speeds.
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Figure 1. An overview of our method for motion speed estimation. Motion sequences were generated by translating images with
different speeds. We filtered these sequences to simulate effects of different visual conditions and then we applied the biological
motion perception model to these sequences. Motion estimation at time t0 requires the frames within a time window of 2�t
centered at t0, where 2�t is the length of temporal filters used in the biological model. The preprocessing stage filtered out very high
frequency noise and spatial DC components. Then the spatiotemporal filtering stage sampled multiple spatiotemporal frequency
components to generate motion energy maps as the spatiotemporal filtering results. Finally, the speed synthesizing stage used the
motion energy maps to infer the real motion speed, which was then compared with the known value to obtain speed estimation error
at different speed values as well as for different simulated vision conditions.

Figure 2. The high-resolution daily life natural images (n = 30) downloaded from the internet and artificially generated binary
stochastic images (n = 10) were used for generating the motion sequences.

Generation of motion sequences

To generate motion sequences of natural scenes, we
the used Google image search engine with keywords
like natural scenes, urban scenes, rural scenes, street
blocks, buildings, railways, beaches, and so on, and
randomly picked 30 high resolution images out
of the search results (see Figure 2). These natural
images were then down-sampled (with anti-aliasing
processing) to 900 × 600 grayscale pixels to ensure

that they contained sufficient high spatial frequency
components for simulating the 20/20 normal vision.
To simulate the inherently continuous physical world,
we set a high view-field resolution of 120 pixel/°
on these images so that each such 900 × 600 image
corresponded to a field-of-view of 900/120 × 600/120
= 7.5° × 5° in the physical world. To compare with low
spatial frequency dominated natural images, we also
generated 10 additional binary stochastic images of
the same resolution in which each pixel was randomly
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Figure 3. Simulated vision conditions. A frame from a natural
sequence (left column) and a stochastic sequence (right
column) filtered to simulate the five different vision conditions
(each row). The visual acuity levels and the corresponding
cutoff frequency is indicated for each row (* indicates
complementary vision conditions). The low vision sequences
only contained lower spatial frequencies (blurring effect),
whereas the complementary conditions, which do not exist in
real world, contained only high spatial frequency components
(preserving edges).

assigned as either 0 (dark) or 1 (white) with equal
probabilities. The spatial frequency spectrums of these
stochastic images were nearly flat from low to high
frequencies.

We generated motion sequences from the above
40 images by horizontally shifting them in a cyclic
manner (the part shifted out on one sidewas to be shifted
in on the other side). For each image, we generated
5 motion sequences with different speeds: 0.1 °/s,
1 °/s, 5 °/s, 15 °/s, and 30 °/s. The time duration of each
sequence was set to 2�t = 0.2s, exactly covering the
length of temporal filters used in the biological motion
perception model, as will be introduced later. Therefore,
the estimated speed for a sequence was actually for the
central time instant t0 = 0.1 seconds (see Figure 1).

Because the speed did not change over time and the
image contents did not change despite the shift, the
estimated motion at any frame was representative of the
motion for the entire sequence. Thus, the need for using
longer motion duration time for motion estimation was
obviated.

Simulation of visual conditions

By filtering the motion sequences in different
manner, we simulated 5 visual conditions: VA of 20/20
(normal vision), VA of 20/50 (moderate vision loss),
VA of 20/200 (severe vision loss), a complementary
VA of 20/50, and a complementary VA of 20/200.
The underlying assumption in simulating these visual
conditions was that low vision conditions correspond
to loss of high spatial frequency components in
the scene. On the other hand, the complementary
vision conditions simulated a situation where only
high spatial frequency components were present.
Although this is not realistic, it helps us to investigate
the causal relationship between spatial frequency
and motion speed estimation. In terms of spatial
frequency, a VA of 20/20 (normal vision) simulated the
perceivable spatial frequencies up to 30 cycle/° (cpd),
whereas the 20/50 and 20/200 low vision conditions
simulated perceivable frequencies no higher than 12 and
3 cpd, respectively. The normal and low vision
conditions were realized by applying low-pass spatial
filters (called vision filters in this paper) with cutoff
frequencies of 30, 12, and 3 cpd, respectively, to
every frame of the original motion sequences. The
complementary vision conditions that simulated only
high spatial frequency components were realized by
subtracting their corresponding low vision sequences
from the normal vision sequence frame by frame. For
example, the complementary VA of 20/50 simulated
a condition where frequencies within between 12 and
30 cpd were present. These imaginary complementary
vision conditions that simulate the presence of only
high spatial frequencies do not exist in the real world.
They were used as hypothetical references for studying
the effects of low and high spatial frequencies on
motion perception. The frames were filtered first
and then displaced to generate the motion sequences
corresponding to different visual conditions.

Moreover, to simulate external noise in the physical
world, we added spatiotemporally white Gaussian
noises with a standard deviation of 10% of the dynamic
range of image brightness to all sequences before
the vision condition filtering. Figure 3 shows the
first frames of one natural motion sequence and one
stochastic motion sequence after being filtered to
simulate the 5 visual conditions, all with the simulated
10% external noise.
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Biological visual motion perception model

More detailed description regarding the
computational model is provided in the Supplementary
Material. We implemented the widely accepted
computational motion perception model (Adelson
& Bergen, 1985; Grzywacz & Yuille, 1990) with the
following modifications (see Figure 1). (1) The 2D
spatial filters were decomposed to faster 2-stage
cascaded 1D filtering (Etienne-Cummings, Van der
Spiegel, & Mueller, 1999; Shi & Luo, 2018). (2) In
the pre-processing stage, we used a DoG filter to
embrace a wider spatial frequency band from 0.5 to
36 cpd to facilitate successive processing. (3) In the
spatiotemporal filtering stage to extract motion energy,
the sampling density was higher: 0.6 cpd × {1, 2, …,
50} for spatial frequencies, and 5 Hz × {0, ±1, ±2,
…, ±10} for temporal frequencies. (4) In the speed
synthesizing stage, the speed candidates were sampled
from -40 to 40 °/s, with a step of 0.01 °/s from -0.2
to 0.2 °/s, and a step of 0.1 °/s elsewhere. In addition,
because all spatial locations of a motion sequence
moved with the same speed, the speed estimates of the
model were sampled at spatial locations at an interval
of 1/6° along both dimensions (excluding locations
near the boundary lying within the radius of the spatial
filters). The average estimated speed for these sampled
locations was used as the perceived speed for the entire
sequence.

Evaluation of the simulation and statistical
analysis

We presented the results of our simulation in terms
of motion energy distributions under different visual
conditions for natural and stochastic motion sequences.
For a given speed and vision condition, the distributions
were obtained by accumulating the motion energy for
each sampled spatial frequency (with the temporal
frequencies integrated out) for all the probing spatial
image locations and then averaged over all the 30 natural
sequences. Speed estimation errors were calculated with
respect to the ground truth. We performed repeated
measures analysis of variance (ANOVA) to determine
the within-subject effects of different speeds and visual
conditions on speed estimation error for a given type
of image sequence, and between subject effects of
sequence type (each image sequence can be considered
to be a subject). The relative speed estimation errors
were inverted for natural sequences to ensure normality
of the data; the data for stochastic sequences were
normal. Normality was tested using Shapiro-Wilks test
and data for three natural images and one stochastic
image were considered outliers (outside 99% confidence
interval). Thus, the statistical analysis was done using

27 natural and 9 stochastic sequences. Wherever
required, the ANOVA results were corrected for
sphericity and the corrected results are reported.
The nonparametric testing method was used for
comparing the speed estimation error for natural and
stochastic sequences (2 sample Kolmogorov-Smirnov
test). Statistical analysis was performed using
IBM-SPSS.

Human subject evaluation

Wewanted to verify the findings of the computational
model in humans by testing the hypothesis that low
spatial frequency components are critical for motion
perception. For this purpose, we generated stochastic
sequences from binary images in which each pixel was
randomly assigned as either 0 (dark) or 1 (white) with
equal probabilities (same as described previously for
the simulation). The motion sequence was generated by
shifting the image frame horizontally in a cyclic manner.
Stochastic stimuli moving at two different speeds
were used for testing: 26 °/s and 50 °/s, representing
relatively slower and faster speed values. The stimuli
were presented in a circular patch (13° size) surrounded
by black background for a duration of 1.5 seconds for
a given trial on a computer screen. The direction of
motion in the stimulus for a given trial was randomly
either from left to right or vice versa. The human
observer viewed the stimuli monocularly from a
distance of 33 cm and responded by pressing arrow
keys (left or right arrow) corresponding to the perceived
direction of the motion stimulus. The observer either
viewed the screen directly (normal vision condition
[NV]) or while wearing a +7D blur lens in front of
the test eye (low vision [LV]). The experiment was
carried out in 4 conditions: 2 different stimuli speeds
26 and 50 °/s × 2 visual conditions (NV and LV). There
were 32 trials per condition, 16 in each direction, with
the direction of motion changing randomly between
successive trials.

A total of 8 normally sighted observers, with
near VA of 20/20 or better, participated in the study.
The study followed the tenets of the Declaration
of Helsinki and informed consent was obtained
from all the study participants. The protocol was
approved by the institutional review board at the
Massachusetts Eye and Ear. When wearing blur lens
(simulating the LV condition), the monocular VA
of the participants dropped to 20/200 or worse. The
order of the experimental conditions was balanced
across subjects for vision and speed. Motion direction
detection accuracy in each condition was obtained from
the subject responses. The motion direction detection
accuracy was compared between speed and visual
conditions via pairwise testing (using nonparametric
Wilcoxson signed rank test), as well as using a
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mixed effect model (vision, speed, and vision-speed
interaction as fixed effects and subject wise random
effects).

Task equivalence between model and human
judgment

Because speed estimation error was the performance
metric for the computational model, whereas motion
direction discrimination was the task in our human
subject evaluation, the question of direct comparison
between the model and behavior needs to be addressed.
The model computes motion energy, with the speed
estimation as its final step. Therefore, how accurately
the model predicts speed is based on the “perception
of motion” by the model. To show a direct link
with the human judgment data we obtained in our
experiments, we used the intermediate results of the
speed computation to model the motion direction
judgment probabilistically.

The procedure for making a motion direction
judgment based on the computational model is as
follows. An intermediate result of the computational
model is the speed value computed in each of the
735 local blocks in the images. In addition to speed,
each block also outputs the direction of motion.
However, not all blocks estimate the same direction of
motion and the same speed value. Naively averaging the
direction of all the blocks to obtain the final motion
direction would not represent the correct overall motion
direction judgment, especially when the variability
(error) across the image is large. Therefore, we average
directions for the blocks that estimate speed within
75% to 125% of the mean estimated speed for the entire
sequence. The decisions of the rest of the blocks are
randomized 50% in either direction. Thus, we arrive
at a motion direction judgment and its probability for
a given sequence. The overall probability of correct
direction estimation is arrived at by averaging the
results for 10 sequences of the stochastic pixel images
described above for 2 motion speeds (5 °/s and 30 °/s)
for two visual conditions (NV: 20/20 and LV: 20/200).

Results

The raw motion energy distributions over spatial
frequencies in natural sequences for different speeds
in normal vision condition are highly skewed toward
low spatial frequencies (Figure 4a). The normalized
cumulative motion energy distributions of Figure 4a
have about 90% of the total motion energy concentrated
below 12 cpd frequencies for 0.1 °/s speed curve and this
amount increases for other speed curves, going up to

99.9% for 30 °/s speed. Due to the higher concentration
of motion energy at lower spatial frequencies in natural
sequences, there is also a relatively large overlap between
the motion energy distributions for NV and the LV
conditions (85% for VA 20/50 and 45% for 20/200), but
relatively smaller overlap for the complementary vision
conditions (38% for VA *20/200 and 3% for *20/50; see
Figure 4b). A larger amount of overlap indicates more
similarity in the motion energy distributions. Because
the cutoff frequencies for vision condition simulating
filters are 3 and 12 cpd (the LV conditions are low
pass cases, whereas the complementary conditions
are high pass cases around these cutoff frequencies),
larger overlap of NV and LV conditions is the expected
outcome.

Compared with natural sequences, the motion
energy distributions for stochastic images in NV
condition are no longer concentrated near low spatial
frequency bands but instead appear flat across the
entire frequency spectrum (see Figure 4c). The motion
energies are also of significantly smaller magnitude
(reduced by about 89%). If we compute the normalized
cumulative distribution for 0.1 °/s speed curve, then
40% of the motion energy is concentrated below
12 cpd in stochastic sequences compared with about
90% for natural sequences for the same spatial frequency
band. Furthermore, contrary to the natural sequences,
there is a relatively larger overlap between NV and
complementary vision conditions (86% for *20/200
and 12% for *20/50) than the LV condition (58% for
20/50 and 6% for 20/200; see Figure 4d). Again, this
is expected because there is a relatively small amount
of motion energy present in the low spatial frequency
band in the stochastic sequences to begin with.

There is a discernable effect of speed on the motion
energy distributions, as higher speeds lead to a higher
concentration of motion energy in the lower spatial
frequency region in both natural and stochastic
sequences (see Figure 4e). Because 3 cpd was the lowest
cutoff frequency for simulation of LV conditions, the
fraction of motion energy at or below 3 cpd was used
as a way to quantify the effect of speed on motion
energy distributions. Predictably for the 20/200 vision
condition with 3 cpd cutoff frequency, the motion
energy fraction at 3 cpd is already at 99% at 0.1 °/s.
In natural sequences for NV and 20/50 condition, the
fraction of motion energy ≤ 3 cpd at 0.1 °/s speed is
at 51% and 68%, respectively. As the speed increases,
this amount increases close to about 100% at 30 °/s.
The same effect is also seen in stochastic sequences.
However, the motion energy fraction ≤ 3 cpd for
0.1 °/s is a lot lower in stochastic sequences compared
with natural sequences (5% and 18% for 20/20 and
20/50 conditions for stochastic, whereas 51% and 68%
for the same in natural sequences, respectively), before
increasing to close to 100% at 30 °/s. There is also a
noticeable interaction of visual conditions and speed
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Figure 4. Motion energy distribution over spatial frequency in normal vision condition for different speeds in natural (a) and
stochastic (c) sequences. Percent overlap of motion energy distributions for various visual conditions (low-vision and complementary
vision conditions) with normal vision (20/20) in natural (b) and stochastic (d) sequences. A larger overlap means higher degree of
similarity between the distributions. Median speed (5 °/s) curve was used for computing the overlap. Effect of speed on the motion
energy distributions for normal and low vision conditions in natural and stochastic sequences (e). The fraction of motion energy
below 3 cpd frequency indicates its concentration in low spatial frequency region, which increases with increasing speed.

on the motion energy distribution within natural and
stochastic sequences: lower visual acuity leads to a
less steep increase in motion energy fraction ≤ 3 cpd
for higher speeds. This is again expected, because
more motion energy is concentrated in lower spatial
frequency regions for LV conditions to begin with.

Speed estimation error did not change significantly
in normal vision and the two LV conditions in
natural sequences (F(1, 2.745) = 2.745, p = 0.099;
Figure 5a). There was a significant effect of speed as
the error increased with speed in all visual conditions

(F(1, 1.161) = 34.92, p < 0.001). The interaction
between speed and visual conditions was significant
(F(1, 1.308) = 4.39, p = 0.034). In contrast to natural
sequences, speed estimation error was significantly
larger in 20/20 case compared with other LV
conditions in stochastic sequences (F(1, 1.403) = 849.2,
p < 0.001 see Figure 5b). The error also significantly
increased with speed in stochastic sequences
(F(1, 1.701) = 1029.34, p < 0.001). The interaction
of speed with the visual conditions was significant
(F(1, 2.091) = 428.37, p < 0.001), as the error in the
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Figure 5. Speed estimation error results. Comparison of relative error (ratio of absolute error value and the ground truth speed) in
normal vision (20/20) and low vision conditions (20/50 and 20/200) over the tested speed range is shown for natural (a) and
stochastic (b) sequences. Comparison of relative speed estimation error among normal vision, low vision, and complementary vision
conditions (high pass) in natural sequences are shown in (c). Low vision condition in this case is the mean of 20/50 and 20/200
conditions, whereas the high pass condition is the mean of *20/50 and *20/200 conditions. In plots a through c, error bars denote
standard error of mean. In addition, in these plots, please note the logarithmic scale for the horizontal axis. Comparison of the
relative error for natural and stochastic sequences is shown in (d). The pooled relative error distributions across all speeds for 20/20,
20/50, and 20/200 conditions are shown, with horizontal lines representing the median and the error bars showing the 25th and 75th
percentile (***: p < 0.001, **: 0.01 < p ≤ 0.001).

20/20 condition was significantly higher than 20/50 and
20/200 vision conditions at higher speeds. Speed
estimation was impaired in complementary vision
conditions as the error was significantly larger in
complementary conditions compared with the NV
or LV conditions (F(1, 1.301) = 26.56, p < 0.001;
see Figure 5c). The error increased significantly with
speed in the complementary vision conditions (F(1,
2.032) = 106.13, p < 0.001) and the interaction
between speed and visual conditions was significant
(F(1, 1.889) = 21.39, p < 0.001) as the error between
complementary and LV conditions was larger at higher
speeds. When comparing the two kinds of sequences in
normal and LV conditions, the speeds estimation error
was significantly different in natural and stochastic
sequences (F = 9.23, p = 0.005; see Figure 5d). There
was a significant differences in error distribution
(pooled across all speeds) in all three vision conditions
between natural and stochastic sequences (20/20:
Z = 2.32, p < 0.001; 20/50: Z = 1.94, p = 0.001; and
20/200: Z = 3.01, p < 0.001), even as the medians did
not differ. This was due to the highly skewed nature of

the error distribution, which necessitated use of the
nonparametric statistical approach in this particular
case.

The data collected from the human observers
for the motion direction detection task involving
stochastic stimuli (Figure 6a) showed a significant
effect of speed: overall, the correct response
rate was lower for 50 °/s speed compared with
26 °/s in both conditions (t = –8.03, df = 21,
p < 0.001). Importantly, a significant interaction was
seen between speed and visual conditions, with the
correct response rate improving from an average of
68% to 92% from NV to LV condition for 50 °/s speed
(t = 4.3, df = 21, p < 0.001). For 26 °/s speed, all
subjects detected the motion direction with 100%
accuracy in both vision conditions. Similar results were
seen for an equivalent direction discrimination task
simulated with the computational model (Figure 6b).
The probability of correct direction estimation was
lower (at 62%) for NV condition at the higher speed of
30 °/s than the lower speed of 5 °/s, but was the same
(100%) for both speeds in the LV condition.
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Figure 6. Direction discrimination task in stochastic sequences. (a) Correct response rate for human subjects (n = 8) are plotted for
two speeds and viewing conditions (NV: normal vision, LV: low vision induced with +7D blur lens). Error bars show standard error of
mean. A significant interaction between stimulus speed and vision condition can be seen. For the 26 °/s stimulus speed, the detection
rate was 100% in both the vision conditions. On the other hand, for the 50 °/s speed the detection rate increased significantly from
the NV to LV condition (avg. ± sem.: NV = 68.4 ± 5.3%, LV = 92.3 ± 2.24%, p < 0.001). (b) Analogous motion direction
discrimination task simulation for two speeds (5 °/s and 30 °/s) and two simulated visual conditions. The probability of direction
discrimination is estimated based on the computed speed and direction at multiple locations in the sequences. The probability of
correct direction response is averaged over 10 stochastic sequences.

Discussion

We used an analytical model based on motion energy
along with data from human observers to examine the
relationship between motion perception and spatial
frequency. By using a computational model, we were
able to address two issues that have not been addressed
in previous psychophysics studies measuring motion
perception thresholds: (i) the model performed direct
speed estimation, providing a more objective and
quantitative way of determining speed perception
sensitivity, and (ii) by simulating different visual
conditions, including complementary vision conditions
with only high spatial frequencies that do not exist in
natural world, we were able to independently explore
the causal relationships between speed estimation
accuracy and different spatial frequency bands in
natural images. We further verified some of the main
findings from the computational model simulation with
human subject experimentation. Overall, our results
show the dominant role played by low spatial frequency
components in speed perception that largely agree
with a wide variety of previous research in motion
psychophysics and primate neurobiology. At the same
time, we demonstrate the detrimental effects of high
spatial frequencies in speed estimation in certain special
cases.

The speed estimation results (see Figure 5) in
natural images showed that the error was the same
in NV and LV conditions, but was significantly
larger in complementary vision conditions. Because

LV conditions predominantly contained low spatial
frequency components of the scene compared with
the NV condition, and the complementary conditions
did not contain low frequencies, this suggests that low
frequencies are critical in speed estimation. Because
large errors will occur (especially for high speeds) if
only high frequencies are present in the stimuli, and
high frequencies did not seem to help improve speed
estimation accuracy when low frequencies are present,
we argue that the high spatial frequencies may actually
have detrimental effects on speed estimation in most
daily activities, where most motion speeds are not
low. High frequencies make positive contributions
only when we observe slow motion (e.g. watching
for subtle motion clues in surveillance videos). The
detrimental effect would not happen to those (high
frequency) feature tracking-based computer vision
algorithms.

Our human subject experimentation supports the
importance of low spatial frequency components
in perception of motion. When viewing stochastic
sequences normally (NV condition), the observers
performed far worse for higher speed stimuli than for
the lower speed stimuli. However, when viewing with
a blur lens (LV condition), the subjects performed
significantly better for higher speed stimuli than they
did in the NV condition. The explanation from the
motion energy perspective is as follows. When viewing
the stochastic sequences with NV, the eyes received
relatively weaker motion energy associated with low
spatial frequencies as compared with high frequencies.
Through the blurred lens, which smoothened the
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stimuli, the interference from the motion energy
content associated with the high spatial frequencies
was suppressed. This helped improve the direction
detection performance. The experiment demonstrated
that seeing more details does not necessarily help with
motion perception when the low spatial frequency
content is not predominant in the scene. The qualitative
consistency between model judgment simulation and
human judgment may support the validity of using the
computational model to understand motion perception
in humans in certain situations.

There is a strong support for the importance of low
spatial frequencies and/or relative irrelevance of high
frequency components in motion perception in the
literature (Gilden, Bertenthal, & Othman, 1990; Hess
& Aaen-Stockdale, 2008; Lappin, Tadin, Nyquist, &
Corn, 2009; Morgan, 1992; Pan & Bingham, 2013;
Ramachandran, Ginsburg, & Anstis, 1983; Saunders,
Bex, Rose, & Woods, 2014; Shioiri, Ito, Sakurai, &
Yaguchi, 2002; Tadin, Nyquist, Lusk, Corn, & Lappin,
2012; Wichmann & Henning, 1998; Yang & Stevenson,
1997). However, testing with complementary vision
conditions was not extensively explored previously,
except in the case of Smith et al., where testing was
also done with a high pass version of random dot
kinematogram (RDK; Smith, Snowden, &Milne, 1994).
Interestingly, they found no difference in global motion
perception between normal and high pass RDKs and
concluded that global motion perception was not
dependent on low spatial frequencies, which prima
facie seems contrary to our results. This inconsistency
can be explained with two observations. First, it is
possible that human observers in the study by Smith
et al. (Smith, Snowden, & Milne, 1994) were using
feature tracking to estimate global motion (as is their
conclusion), unlike our model that is based on motion
energy. It has been suggested that the feature tracking
mechanism remains unaffected by spatial filtering
and that it could simultaneously co-exist with motion
energy-based motion perception mechanism (Smith &
Ledgeway, 2001). Our second observation relates to the
experimental methodology, as the speeds of the test
stimuli in Smith et al. (Smith, Snowden, & Milne, 1994)
ranged from 2.5 °/s to 5.5 °/s, which were on the lower
side of the range used in our simulations. We can see
that at these speeds, our simulation shows relatively
small speed estimation errors between complementary
vision (high pass cases) and normal vision conditions
(see Figure 5c). It is only for higher speeds, where we
can see an appreciable difference in the estimation errors
between the LV and complementary vision conditions.

Thus, separately evaluating the LV (low spatial
frequency) and complementary vision conditions (high
frequency bands) for a wide range of speeds further
verified the known results regarding the importance of
low spatial frequencies in motion perception, showing
validity of our motion perception model. At the same

time, it helped explain apparent inconsistencies in the
previous work.

Implicit within the speed estimation error results
presented in Figure 5 is the observation that accurate
estimation at higher speeds requires lower spatial
frequencies, which is clearly seen in the biasing of
motion energy curves toward low frequency bands at
higher speeds in Figure 4. This is consistent with the
findings previously reported in different forms and
contexts in a number of previous studies showing
increasing speeds led to a shifting of the psychophysical
response curves toward low spatial frequencies (Chen,
Bedell, & Frishman, 1998; Chung, Levi, & Bedell,
1996; Levi, 1996; McKee, Silverman, & Nakayama,
1986; Mechler & Victor, 2000; Smith & Edgar, 1990).
Although the actual ranges tested in these studies
differed and were not as wide ranging in terms of
spatial frequencies or speeds used in these experiments,
the overall trend still holds. Serving as a proxy for the
psychophysical motion thresholds, the motion energy
distributions generated by our computational model
were able to replicate the observed relationship between
speed and spatial frequency content of the stimulus.

Although the results in Figure 5 were reported in
terms of absolute error values, it should be noted that
the model underestimated the speed at higher spatial
frequencies. This is consistent with the earlier finding
reported by Smith & Edgar (1990).

Simulating both LV and complementary vision
conditions and testing on different stimuli (natural
versus stochastic) also allowed us to answer questions
about the interaction between low and high spatial
frequency components, which are available at the same
time to the human eye in the real world. Specifically,
given the importance of low spatial frequencies in
speed perception, does it matter if high frequencies
are present or not as long as low frequencies are
present? Based on the speed estimation results for
natural sequences (see Figure 5a,c), one may conclude
that as long as low spatial frequencies are present,
speed estimation is equally accurate with and without
high spatial frequencies. However, speed estimation in
stochastic sequences (see Figure 5b) serves as a counter
to this claim, as error is significantly higher in NV
conditions compared with LV conditions. In addition,
the error is higher in 20/50 vision conditions at higher
speeds compared with 20/200 vision condition. This
indicates that in stochastic sequences, presence of high
spatial frequencies is detrimental to speed estimation.

A possible explanation for this effect can be provided
based on the signal-to-noise ratio (SNR) in the input
stimuli, while noting the difference between the motion
energy distributions of natural and stochastic sequences
(see Figure 4). Unlike in natural sequences where
motion energy pertaining to low spatial frequencies was
dominant, stochastic sequences had a relatively flat
motion energy distribution. This is the consequence



Journal of Vision (2020) 20(8):29, 1–13 Shi, Pundlik, & Luo 11

of spatial frequency distribution in natural imagery
following power-law (van der Schaff & van Hateren,
1996), being rich in low frequency content compared
with stochastic sequences. Speed estimation at higher
speeds is highly reliant on the motion energy extracted
from low spatial frequency bands. For stochastic
sequences with added noise, the SNR in the low
spatial frequency band was much lower compared
with the natural sequences, which led to higher speed
estimation errors in NV condition. When the sequences
were low pass filtered to simulate 20/50 and 20/200
vision conditions, the SNR improved and allowed
more accurate speed estimation compared with NV
conditions. This finding is in line with Van Doorn’s
study, which found that a high SNR is required for
accurate speed estimation in the case of fast visual
motion (Van Doorn & Koenderink, 1982).

Thus, we can conclude that sufficient low spatial
frequency content is required for accurate speed
estimation, otherwise detrimental effects of high spatial
frequencies may become evident. Natural images
have more low frequency components than higher
ones, and vision loss usually starts with impairment
of high-resolution visual function. Therefore, the
detrimental effect of high spatial frequencies is not
typically seen, unless specific artificial stimuli are
used. Probably because more low spatial frequency
components may help minimize motion perception
error, primate visual systems seem to have more neurons
tuned to low frequencies than those tuned to high
frequencies (Perrone & Thiele, 2001).

We further predict that there is a threshold spatial
frequency separating signal (consisting of motion
energy corresponding to the frequencies below the
threshold) from the noise (motion energy of frequencies
above the threshold) for any given speed that determines
the required SNR for speed perception in that scene.
Slower speeds push this signal-noise separating
threshold toward higher spatial frequencies, which
means a larger frequency band becomes signal, thus
improving the SNR. On the other hand, high speeds
push the threshold to low spatial frequency region
thereby increasing the reliance of speed perception
on low frequencies. Changes to the spatial frequency
spectrum on either side of this separating threshold
frequency accordingly affect the SNR and in turn affect
the speed perception. Further psychophysics studies are
needed to confirm this prediction in human observers.

Our findings can be explained at a more fundamental
level of V1 and MT neurons using the speed perception
model proposed by Simoncelli & Heeger (Simoncelli
& Heeger, 2001) that postulates that oriented spatial
receptive filed (SRF) of speed tuned MT neurons can
be derived by combining SRFs of different directionally
tuned V1 neurons (not speed tuned). In spatiotemporal
space, a speed tuned neuron has an oriented SRF that
shows speed invariance over a range of spatial and

temporal frequencies (Perrone & Thiele, 2001; Priebe,
Cassanello, & Lisberger, 2003). On the other hand,
a neuron that is not speed tuned (V1 simple cells)
will have an SRF that is parallel to the axes of the
spatiotemporal space. Larger slope of the oriented MT
neuron SRFs indicate tuning for higher speeds and
thus would involve combining different V1 neurons as
opposed to those tuned for slow speed. In the absence
of low frequencies and in the presence of high spatial
frequencies (such as in the case of our stochastic
sequences), there will be a relatively larger error in
the estimation of the slope (speed) at higher speeds
(Figure 7). Because there is a limit on our perception
of spatial and temporal frequencies, higher temporal
frequencies are not available to compensate for the lack
of low spatial frequency for estimating higher speeds
(temporal limit [Nakayama, 1990]).

One high-level task potentially relevant to this
work is driving behavior in people with reduced VA.
By exploring the relationship between speed and
spatial frequency content of the scene using a motion
perception model (and supported by human subject
experiments), we could determine the importance of
different spatial frequency bands for motion estimation.
Particularly, this work tried to address questions related
to whether reduced VA affects perception of motion in
natural stimuli. Using a computational model allows
us to isolate separate high and low frequency bands
and study the speed estimation for different speed
values.

The speed perception model and the simulations of
LV conditions used for evaluation in this work have
some limitations. First, extremely low VAs (below
20/200) were not simulated, as they required a very
high spatiotemporal resolutions and large filter sizes in
order to satisfy the Nyquist rate. At very low spatial
frequencies, we expect motion sensitivity to be impaired
for very slow speeds (Yang & Stevenson, 1997), which
means that people with very low VAs will not be able to
perceive slow motion speeds. Due to the limits of the
Nyquist sampling rate, we were not able to simulate
ultra-low VA cases to try and reproduce this result. In
addition, the assumption that LV conditions correspond
to the inability in perceiving higher spatial frequencies
is somewhat simplistic, and, in the real world, LV
corresponds to a variety of conditions where the
perception of a very wide range of spatial frequencies
can be impaired in a nonuniform manner (Chung &
Legge, 2016). Thus, our simulation of LV conditions
is only an approximate representation of real-world
cases. The model presented here is an implementation
of a spatiotemporal motion energy based model and
the speed estimation error may not generalize to other
kinds of motion estimation models (such as Bowns,
2011; Bowns, 2018). Speed processing in humans is
not completely understood and this work explores
only certain specific aspects of speed processing and
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Figure 7. An explanation of why speed perception at higher speeds is erroneous in the absence of low spatial frequencies. (a)
According to the model proposed by Simoncelli and Heeger (Simoncelli & Heeger, 2001), directionally sensitive V1 neurons that are
not speed tuned (shown as blue blobs) are pooled together to arrive at an estimate of speed given by the slope of the oriented ellipse
(red curve) in the spatiotemporal space. The speed tuned MT neuron has oriented spectral receptive field (SRF), with higher slope
corresponding to higher speed. (b) Due to the limits on perception, when the band containing low spatial frequencies are not
available (for example, as is the case in the complementary vision conditions), results in an error in speed estimation that increases
with increasing motion speed of the stimuli.

its relationship to spatial frequency content, using a
computational model of speed estimation. Further
human subject studies are warranted.

Keywords: motion perception, spatial frequency,
biologically inspired speed perception model, simulation
of vision conditions
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