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Abstract
Background: Traumatic brain injury (TBI) with its associated morbidity is a major area of unmet
medical need that lacks effective therapies. TBI initiates a neuroinflammatory cascade characterized
by activation of astrocytes and microglia, and increased production of immune mediators including
proinflammatory cytokines and chemokines. This inflammatory response contributes both to the
acute pathologic processes following TBI including cerebral edema, in addition to longer-term
neuronal damage and cognitive impairment. However, activated glia also play a neuroprotective and
reparative role in recovery from injury. Thus, potential therapeutic strategies targeting the
neuroinflammatory cascade must use careful dosing considerations, such as amount of drug and
timing of administration post injury, in order not to interfere with the reparative contribution of
activated glia.

Methods: We tested the hypothesis that attenuation of the acute increase in proinflammatory
cytokines and chemokines following TBI would decrease neurologic injury and improve functional
neurologic outcome. We used the small molecule experimental therapeutic, Minozac (Mzc), to
suppress TBI-induced up-regulation of glial activation and proinflammatory cytokines back towards
basal levels. Mzc was administered in a clinically relevant time window post-injury in a murine
closed-skull, cortical impact model of TBI. Mzc effects on the acute increase in brain cytokine and
chemokine levels were measured as well as the effect on neuronal injury and neurobehavioral
function.

Results: Administration of Mzc (5 mg/kg) at 3 h and 9 h post-TBI attenuates the acute increase in
proinflammatory cytokine and chemokine levels, reduces astrocyte activation, and the longer term
neurologic injury, and neurobehavioral deficits measured by Y maze performance over a 28-day
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recovery period. Mzc-treated animals also have no significant increase in brain water content
(edema), a major cause of the neurologic morbidity associated with TBI.

Conclusion: These results support the hypothesis that proinflammatory cytokines contribute to
a glial activation cycle that produces neuronal dysfunction or injury following TBI. The
improvement in long-term functional neurologic outcome following suppression of cytokine
upregulation in a clinically relevant therapeutic window indicates that selective targeting of
neuroinflammation may lead to novel therapies for the major neurologic morbidities resulting from
head injury, and indicates the potential of Mzc as a future therapeutic for TBI.

Background
Traumatic brain injury (TBI) is a leading cause of death in
Western industrialized nations [1,2], with an estimated
50,000 deaths annually in the United States [3]. The
causes of TBI vary with age but the medical and financial
impact of these injuries is substantial [4,5]. In the United
States alone, an estimated 1.6 million cases of TBI occur
annually, with approximately 300,000 cases of sufficient
severity to require hospitalization [6,7]. The mortality
with severe TBI can reach 40% and neurologic morbidity
among survivors is high [8,9]. The neurologic sequelae in
survivors of TBI include cognitive impairment, dementia,
epilepsy, depression and neurodegenerative disease [10].
Current standards of care for TBI focus largely on support-
ive measures [11]. There is a major unmet need for TBI
therapies that attenuate long-term, functional neurologic
deficits [12-14].

Insults to the central nervous system (CNS) induce a neu-
roinflammatory response characterized by activation of
microglia and astrocytes, damage to the blood-brain-bar-
rier (BBB), and acute up-regulation of proinflammatory
cytokines such as interleukin (IL)-1β, tumor necrosis fac-
tor (TNF)α, and IL-6. In the case of TBI, this complex neu-
roinflammatory cascade can lead to opposing effects [15]:
beneficial outcomes through production of reparative and
protective factors, or detrimental outcomes when the pro-
duction of proinflammatory mediators is prolonged,
excessive, or temporally inappropriate [for review, see
[16]]. There is increasing recognition that suppression of
the CNS proinflammatory cytokine cascade should be
explored as a therapeutic approach to TBI because of its
contribution to secondary injury that includes cerebral
edema, neuronal damage and cytotoxicity.

A variety of studies using pharmacological or genetic
methods have demonstrated beneficial effects of sup-
pressing the CNS proinflammatory cytokine cascade
induced by TBI [17-22]. For example, treatment of rats
with IL-1 receptor antagonist (IL-1ra), a protein that
antagonizes IL-1 activity, administered either by intracer-
ebroventricular administration [23], or by implantation
of IL-1ra-expressing fibroblasts into the wound cavity [22]
reduced the extent of neurologic injury after experimental

head injury. Similar protection was found in transgenic
mice with CNS-selective over-expression of IL1ra [24].
Other studies showed that suppression of TNFα produc-
tion or activity by administration of small molecules (HU-
211, pentoxifylline) or a TNFα binding protein reduced
neurologic injury [25-27].

Taken together, preclinical data indicate that targeting glia
proinflammatory cytokine overproduction may represent
an effective new therapeutic intervention for TBI. How-
ever, many current cytokine-modulating drugs are macro-
molecules, and using macromolecules as a therapeutic
approach has a number of disadvantages, such as instabil-
ity, high cost and potential for immune responses to the
therapy. There is an unmet clinical need for a small mole-
cule therapeutic that attenuates the acute cytokine and
chemokine surge with resultant improvement in longer
term neurologic outcomes when the drug is administered
in a clinically relevant time window following the injury
[28].

In the present studies, we tested the hypothesis that sup-
pression of the acute increase in proinflammatory
cytokines following TBI would attenuate neurologic
injury and neurobehavioral impairment. As a step toward
addressing the need for novel therapeutics, we explored
the potential utility of Minozac (Mzc) administered hours
post-injury in a murine closed-skull, cortical impact
model of TBI. Mzc [29] is a bioavailable, brain-penetrant,
small molecule experimental therapeutic that improves
synaptic dysfunction and neurobehavioral impairment
when administered after the initiation of the injury stim-
ulus in animal models of epilepsy [30] and Alzheimer's
disease [29]. The mechanism of Mzc action is selective
reduction of excessive proinflammatory cytokine produc-
tion by activated glia back towards basal levels. We report
here that administration of Mzc at 3 h and 9 h following
TBI attenuates the acute increase in proinflammatory
cytokine and chemokine levels and reduces the longer
term astrocyte activation, neurologic injury and neurobe-
havioral deficits observed over a 28-day recovery period.
Mzc-treated animals also have no significant increase in
brain water content (edema), a major cause of the neuro-
logic morbidity associated with clinical TBI [11]. These
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data lend support both to the potential of glial activation
as a therapeutic target in acute brain injury and the utility
of Mzc for the treatment of TBI.

Methods
Animal care and housing
All experiments were performed in accordance with the
National Institutes of Health Guide for Care and Use of
Laboratory Animals. All experimental procedures were
approved by Children's Memorial Research Center Insti-
tutional Animal Care and Use Committee. Adult male
CD-1 mice weighing between 20–30 gm were used for
these experiments.

Mouse model of closed head injury
Mice were subjected to closed head injury using a stereo-
tactically guided pneumatic compression device with
minor modification of published methods [20,31-33].
Mice were anesthetized with isoflurane (4% induction,
1.5% maintenance) in 100% oxygen. Endotracheal intu-
bation was performed using an otoscope as a laryngo-
scope and 18 gauge angiocatheter as an endotracheal
tube. Mice were mechanically ventilated (Hugo Sachs
Electronik, March-Hugstetten, Germany), using a protec-
tive ventilation strategy (3 cm H2O positive end-expira-
tory pressure; tidal volume 5 cc/kg) as previously
described [34,35]. Core temperature was monitored using
a rectal probe (IT-18 Physitemp, NJ) and maintained at
37.0 ± 0.1°C by surface heating and cooling. Mice were
secured in prone position in a customized resin mold, the
scalp shaved and prepared with betadine. A midline sagit-
tal scalp incision was made using sterile technique, and
the periosteum reflected to reveal the appropriate land-
marks. A concave 3 mm metallic disk was affixed in the
midline, immediately caudal to Bregma. A single control-
led midline skull impact was delivered using a pneumatic
impactor (Air-Power Inc., High Point, NC) using a 2.0
mm steel tip impounder at a controlled velocity (6.0 ± 0.2
m/s) and impact depth (3.0 mm). Mice with depressed
skull fracture or visible hemorrhage were excluded from
the study. After impact, the scalp incision was sutured,
and mice were allowed to achieve spontaneous respira-
tory effort prior to extubation. Sham-injured animals
underwent identical surgical procedures as the trauma
group, but no impact was delivered.

Minozac production and treatment protocol
Mzc was synthesized by the production scheme previously
described [29], dissolved in sterile saline, and adminis-
tered to mice by intraperitoneal (i.p.) injection at 3 h and
9 h after TBI (5 mg/kg Mzc per dose). Controls were TBI-
treated or sham-treated mice administered an equivalent
volume of saline vehicle.

Collection of brain tissue
At selected survival times, mice were anesthetized under
isoflurane, sacrificed and perfused via the left ventricle
with 15 ml of chilled phosphate buffered saline (PBS),
followed by a second 15 ml perfusion with either PBS
(Western blotting and ELISA) or 4% paraformaldehyde in
PBS (immunohistochemistry). For immunohistochemis-
try, the brains were manually dissected from the calvar-
ium with both cerebral hemispheres intact minus the
cerebellum, and immersed in 4% paraformadelyde over-
night at 4°C before embedding in paraffin.

Brain extract preparation and determination of protein 
concentration
For recovery up to 12 hours, hippocampal and cortex
extracts were prepared from both hemispheres by sonica-
tion in protease inhibitor cocktail comprising 1 μg leu-
peptin (Sigma, St. Louis, MO), 0.001 M 4-dithio-L-
threitol (DTT, Sigma), 0.002 M sodium orthovanadate
(Sigma) and 0.001 M phenylmethanesulfonyl fluoride
(PMSF, FLUKA, Switzerland) in 1 ml PBS as previously
described [30]. The impact zone was defined as a region
0.5 mm anterior to Bregma and extending 3 mm caudal to
Bregma, encompassing the region covered by the diameter
(3 mm) of the disk affixed to the skull. The extracted
region comprised the cortex covered by the disk in addi-
tion to the hippocampi. Briefly, tissue was centrifuged at
4°C for 10 minutes, the supernatant collected and total
protein concentration was measured in the supernatant
using commercially available reagents (BCA, Pierce, Rock-
ford, IL).

Measurement of proinflammatory cytokines and 
chemokines
Levels of IL-1β, IL-6, TNF-α and CCL2 were measured in
hippocampal and cortical supernatants by sandwich
immunoassay methods using commercially available
electrochemiluminescent detection system, plates, and
reagents (Meso-Scale Discovery (MSD), Gaithersburg,
Maryland) [30]. For each assay, samples were analyzed in
duplicate and compared with known concentrations of
protein standard. Plates were analyzed using the SECTOR
Imager 2400.

Immunohistochemistry
Immunohistochemical detection of hippocampal neuro-
nal injury was performed in 5 μm paraffin-embedded sec-
tions using Vectastain Elite ABC immunodetection kits
and diaminobenzidine substrate (DAB) (Vector Laborato-
ries, Burlingame CA). Astrocyte activation was measured
using an antibody to the glial-derived protein S100B
(1:1500, rabbit polyclonal, DAKO Cytomation, Carpinte-
ria, CA). Neuronal injury was assessed using the neuronal
nuclei marker NeuN (mouse monoclonal, 1:25, Chemi-
con International, Temecula, CA). Control sections were
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incubated in normal serum or PBS in place of primary
antibody. In order to determine the specificity of the anti-
bodies, selected slides were incubated with preadsorbed
IgG in place of primary antibody. Sections were incubated
with primary antibody or controls overnight in a sealed
humidity chamber at 4°C, washed, and then incubated
for one hour at 38°C with the appropriate biotinylated
secondary antibody at 1:400 dilution (Vector).

Image acquisition and quantification of immunoreactive 
cells
For each animal, 12 non-consecutive sections were immu-
nostained, representing the extent of the hippocampus
(approximately Bregma 0.50 mm to Bregma -3.0) and
quantified. Hippocampal sections were examined under
brightfield microscopy by two blinded observers (Nikon
Eclipse E800). Regions CA1, CA2, CA3, dentate gyrus
(DG) and polymorph dentate gyrus (PoDG) of the hip-
pocampus were photographed at 20× magnification. For
S100B, digitized images were converted to grayscale for
quantification of immunoreactive cells. The percentage of
positive cells in the hippocampal regions was measured
by thresholding for dark objects indicative of immunore-
active cells (Metamorph, Universal Imaging Corporation,
Sunnyvale, CA). The total hippocampal immunoreactivity
was obtained for each sample as previously described
[30]. Neuronal injury in NeuN stained sections was scored
by region (CA1-3, DG, PoDG) in the hippocampus for
each section by a blinded observer. Each region was
assigned a score as 1 (normal), 2 (moderate injury) and 3
(severe injury) based on the morphologic appearance of
neurons. The criteria for determining the presence of neu-
ronal injury were the presence of areas of condensed or
pale neurons. The injury was defined as moderate if
present in only one region examined and severe if present
in more than one region.

Hippocampal-linked task behavioral testing
The Y-maze test of spontaneous alternation was used to
evaluate hippocampus-dependent spatial learning
[30,36]. Testing began on recovery day 7 to diminish the
effects of motor impairment produced by TBI [31]. Test-
ing was performed by a blinded observer daily until day
28 of recovery. Each animal started in the vertical arm of
the Y-maze. If the animal selected a different arm on the
second run in the maze, it was scored as alternating. The
percent alternation over the duration of testing was calcu-
lated for each animal.

Wet-to-dry method of assessing brain water content
To quantify cerebral edema following TBI, brain water
content was measured using published methods [32,37].
Briefly, brains were removed 24 hours after TBI or sham
procedure and cerebellum and hindbrain removed. Using
a mouse brain slicer (Harvard Apparatus) a 6 mm coronal

section was dissected from the impact site and immedi-
ately weighed. To determine water content, samples were
placed on aluminum foil, dried at 105°C for 48 hr and
reweighed. Brain water content was calculated as the dif-
ference in weights between wet and dry weight.

Statistical analysis
Values are expressed as mean ± SEM for each group. For
neuronal injury, data are expressed as median score ± IQR.
Test for normality was performed for each data set. For
comparisons of three or more groups, One-way analysis
of variance (ANOVA) was performed, followed by Tukey's
Multiple Comparison Test. Two groups were compared
using Student's t-test. Significance was defined as p < 0.05.
Prism 4.0 (GraphPad Software, Inc., San Diego, CA) was
used for statistical analyses.

Results
Mice were subjected to a closed-skull cortical impact (TBI)
or sham procedure, and the time course (Fig. 1) of the
acute increase in levels of proinflammatory cytokines (IL-
1β, IL6 and TNF-α) and the chemokine CCL2 was deter-
mined. Levels of the cytokines/chemokine in pooled hip-
pocampus and cortex extracts were measured at 0-, 1-, 4-,
and 12-hr after TBI or sham procedure (n = 4 per group).
There was a trend toward an increase at 4-hr post injury
but this did not reach significance. By 12 hours after
injury, levels of IL-1β, IL6, TNF-α, and CCL2 were signifi-
cantly increased compared to sham controls. To confirm
that the cytokine and chemokine response to injury was
transient, we measured cytokine levels at 7 and 14 days
after TBI or sham procedure (Fig. 2). There were no differ-
ences between Sham and TBI groups at either of these later
timepoints for any of the cytokines examined.

We used Mzc, a brain-penetrant, small molecule inhibitor
of proinflammatory cytokine upregulation [29,30] to
attenuate the increase in proinflammatory cytokines after
TBI. We selected a time window of treatment based on
two major considerations. First, the results of the previous
experiments showed increases in cytokines levels by 12
hours after TBI, reflecting an earlier increase in cytokine
biosynthesis, processing and release. Second, a realistic
clinical therapeutic window for time from injury to
trauma center would be approximately three hours or less.
Mice were treated with Mzc or diluent (Saline) at 3 and 9
hr after TBI. Cytokine levels were measured in hippocam-
pal and cortical extracts at 12 hr following TBI or sham
procedure. In hippocampal extracts (Fig. 3) of injured ani-
mals, those treated with Mzc showed a significant reduc-
tion in IL-1β (A), IL6 (C), TNF-α (C), and CCL2 (D)
compared to saline-treated animals. Indeed, Mzc treat-
ment of injured animals reduced cytokine levels such that
they were not significantly different from sham-injured
animals. A similar pattern was present in cortex (Fig. 4),
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with Mzc treatment reducing the cytokine levels back
toward basal.

To determine whether glia remained activated following
TBI, we used immunohistochemical methods to measures
changes in the expression of the astrocyte protein S100B

over 28 day recovery after TBI or sham procedure (Fig. 5).
To determine whether attenuation of the acute increase in
proinflammatory cytokines prevented long-term astrocyte
activation, we treated mice with Mzc under the same con-
ditions as the previous experiment. Following TBI, there
was a significant increase in the hippocampus in the

Time course of acute changes in proinflammatory cytokines following TBIFigure 1
Time course of acute changes in proinflammatory cytokines following TBI. Levels of the cytokines IL-1β (A), IL6 (B), 
TNFα (C) and the chemokine CCL2 (D) in pooled hippocampus and cortex extracts following sham procedure (open bars) or 
closed head TBI (filled bars) were measured by ELISA. Animals were sacrificed at 0-, 1-, 4-, and 12-hr recovery. Data are 
expressed as mean ± S.E.M of n = 6–8 animals per group. Significantly different from sham: *P < 0.05 vs Sham control; **P < 
0.01 vs Sham; #P < 0.001 vs Sham by ANOVA.
Page 5 of 14
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number of S100B immunoreactive cells after 28 day
recovery compared to sham controls. In the Mzc-treated
group following TBI, this increase was prevented.

To determine whether the effects of Mzc on suppression of
the acute TBI-induced cytokine increases resulted in
reduction in longer-term neurologic injury, we used
immunohistochemical methods to measure changes in
the expression of the neuronal protein NeuN (Fig. 6). The
morphology of the NeuN-labeled cells in the TBI group
treated with vehicle (Fig. 6B) was highly abnormal, man-
ifesting small and dystrophic-appearing cell bodies, com-
pared to sham controls (Fig. 6A). In contrast, the majority
of neurons in the hippocampi of mice subjected to TBI
and treated with Mzc appeared normal (Fig. 6C). Analysis
of hippocampal sections (Fig. 6D) showed a significant
increase in neuronal injury in the mice subjected to TBI
compared to saline controls, and the injury was prevented
by Mzc treatment. These results demonstrate that Mzc
treatment at 3 and 9 hr after TBI reduces the neuronal
damage seen at 28 days after injury.

To determine whether the protection against hippocam-
pal neuropathologic injury afforded by Mzc resulted in
improvement in behavioral function, we measured per-
formance in the Y-maze (Fig. 7), a test of hippocampal-
linked behavior [29,30]. We performed daily testing for
alternation over days 7 to 28 of recovery after TBI or sham
operation. Following TBI, there was a significant reduc-
tion in Y-maze performance compared to sham controls.
However, treatment with Mzc following TBI prevented the
Y-maze behavioral deficit.

The protection afforded by treatment with Mzc occurred
during the period after TBI in which cerebral edema is
starting to evolve, which is a major cause of the neurologic
morbidity associated with TBI [11]. To determine whether
there also was a reduction in cerebral edema over this
period, we measured brain water content after 24 hr after
TBI (Fig. 8). There was a significant increase in water con-
tent (data expressed as mg ± SEM; n) following TBI (213.0
± 2.1; 13) compared to sham controls (203.1 ± 2.0; 9)(p
< 0.05 by ANOVA). Brain water content in animals treated

Time course of long-term changes in proinflammatory cytokines following TBIFigure 2
Time course of long-term changes in proinflammatory cytokines following TBI. Levels of the cytokines IL-1β, IL6, 
TNFα, and the chemokine CCL2 in pooled hippocampus and cortex extracts following sham procedure (open bars) or closed 
head TBI (filled bars) were measured by ELISA. Animals were sacrificed at 7 (A) and 14 (B) day recovery. Data are expressed 
as mean ± S.E.M of n = 6–8 animals per group. There were no significant differences between groups at either time point.
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Minozac suppresses proinflammatory cytokine upregulation in hippocampus following TBIFigure 3
Minozac suppresses proinflammatory cytokine upregulation in hippocampus following TBI. Mice were subjected 
to TBI or sham procedure. At 3 hr and 9 hr following TBI, mice were injected with Mzc (5 mg/kg/dose) or saline diluent (VEH). 
Mice were sacrificed at 12 hr post-injury, and levels of the proinflammatory cytokines IL-1β (A), IL6 (B), TNFα (C) and the 
chemokine CCL2 (D) in hippocampal extracts were measured by ELISA. Mzc treatment resulted in significant attenuation of 
the increase in cytokines measured in the TBI group treated with saline vehicle. Cytokine levels in the Mzc-treated TBI mice 
were not significantly different from the sham controls. Data are expressed as mean ± S.E.M of n = 5–7 animals per group. #P 
< 0.001 vs Sham control; **P < 0.01 vs TBI-VEH by ANOVA.
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Minozac suppresses proinflammatory cytokine upregulation in cortex following TBIFigure 4
Minozac suppresses proinflammatory cytokine upregulation in cortex following TBI. Mice were subjected to TBI 
or sham procedure. At 3 hr and 9 hr following TBI, mice were injected with Mzc (5 mg/kg/dose) or saline diluent (VEH). Mice 
were sacrificed at 12 hr post-injury, and levels of the proinflammatory cytokines IL-1β (A), IL6 (B), TNFα (C) and the chemok-
ine CCL2 (D) in cortical extracts were measured by ELISA. Mzc treatment resulted in significant attenuation of the increase in 
cytokines measured in the TBI group treated with saline vehicle. Cytokine levels in the Mzc-treated TBI mice were not signifi-
cantly different from the sham controls. Data are expressed as mean ± S.E.M of n = 5–7 animals per group. #P < 0.001 vs Sham 
control; **P < 0.01 vs TBI-VEH by ANOVA.
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with Mzc after TBI (209.1 ± 2.7; 13) was not significantly
different from the sham group.

Discussion
The key findings of this study are that delayed administra-
tion of a small molecule inhibitor of proinflammatory
cytokine upregulation, Mzc, attenuates the acute increase
of brain proinflammatory cytokines and chemokines after
TBI in a mouse model and that this suppression results in
a longer term reduction in neuropathologic injury and
neurobehavioral impairment. These findings, and the effi-
cacy of Mzc in a clinically relevant therapeutic window (3
h and 9 h post-injury), are consistent with glial activation
as a therapeutic target in both acute [30] and chronic
[29,38,39,56,62] neurologic injury models.

The astrocyte-derived protein S100B is increased after TBI
[16] as was found in this study by immunohistochemical
staining, demonstrating a persistent glial activation after
the acute insult. S100B is a pleiotropic protein that exhib-
its neurotrophic and neuroprotective activities at low
nanomolar concentrations, but causes excessive glial acti-
vation and neuronal injury at high nanomolar to low
micromolar concentrations [63,66]. Clinical and pre-clin-
ical studies have suggested that elevated S100B levels in
serum or CSF are inversely related to outcome after TBI
while other studies have identified a restorative role for
S100B after TBI (for review, see 16). The attenuation of the
increase in S100B immunoreactivity in the Mzc-treated
animals indicates a potential role for activated glia in the
mechanisms of neuronal dysfunction after TBI. This is

Quantification of S100B immunoreactive cells after 28 day recovery following TBIFigure 5
Quantification of S100B immunoreactive cells after 28 day recovery following TBI. Mice were subjected to TBI or 
sham procedure. At 3 hr and 9 hr following TBI, mice were injected with Mzc (5 mg/kg/dose) or saline diluent (VEH). After 28 
day recovery, S100B immunoreactive cells in the hippocampus were quantified in sham controls (A), TBI treated with saline 
vehicle (B) and TBI treated with Mzc (C). Representative sections show an increase in the injured animals (B) which was pre-
vented by treatment with Mzc (C). Insets (A-C) show high power image of hippocampal neuronal layer. Quantification of the 
digitized images (D) shows a reduction in astrocyte activation in the Mzc-treated group. Data are expressed as mean ± S.E.M of 
n = 5–7 animals per group. #P < 0.001 vs TBI-Veh by ANOVA. Bar = 100 μm.
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consistent with our previous findings in a rodent model of
early-life seizures [30] in which suppression of early
cytokine elevation after seizures prevented long-term
increases in S100B and was associated with improved
neurobehavioral function.

Current standards of care for TBI are primarily supportive
and focus on the reduction of secondary injury [11,38].
Therapies which prevent the long-term neurologic seque-
lae of TBI, including cognitive impairment [39,40] and
the resulting decline in psychosocial functioning [9,41],
are currently lacking. Recently, an apoE mimetic peptide
has been shown to reduce microglial activation and neu-
ronal death, and improve short-term sensorimotor func-
tion when administered two hours after TBI [42]. In the
present study, the small molecule, Mzc, restored mouse
brain proinflammatory cytokine levels back towards nor-
mal and resulted in later improvement in synaptic dys-
function and behavioral outcomes. Taken together, these

results add to the preclinical evidence in support of target-
ing the upregulation of proinflammatory cytokines and
chemokines as a therapeutic approach in TBI, and extend
the therapeutic window for such intervention.

A secondary finding of this study is the small, but poten-
tially clinically significant, lessening of TBI-induced
increase in brain water content in the Mzc-treated ani-
mals. Neuroinflammation has been implicated as a con-
tributor to cerebral edema, a major factor in the
neurologic morbidity associated with TBI [11]. Although
the mechanisms of such blood-brain-barrier (BBB) dys-
function are not fully elucidated, the chemokine CCL2
[43] and the proinflammatory cytokine TNFα modulate
BBB function via regulation of angiotensin II [44]. Our
finding that Mzc treatment attenuates the TBI-induced
increases in both CCL2 and TNFα raises one of several
possible mechanisms contributing to this aspect of the
clinical presentation.

Minozac attenuates neuronal injury after 28 day recovery following TBIFigure 6
Minozac attenuates neuronal injury after 28 day recovery following TBI. Mice were subjected to TBI or sham proce-
dure. At 3 hr and 9 hr following TBI, mice were injected with Mzc (5 mg/kg/dose) or saline diluent (VEH). After 28-day recov-
ery, neuronal injury was quantified in each region of the hippocampus based on the morphologic appearance of the NeuN-
labeled neurons and a score (1 = normal; 2= moderate injury; 3= severe injury) assigned for each region. Representative sec-
tions are shown for sham controls (A), TBI treated with saline vehicle (B) and TBI treated with Mzc (C). Neurons in injured 
animals treated with saline were shrunken and dystrophic (B) compared to both the injured animals treated with Mzc (C) and 
sham controls (A). (D) Quantification of the regional injury scores between groups. Data are expressed as median injury score 
± IQR of n = 5–7 animals per group. *P < 0.05 vs TBI-VEH by ANOVA. Bar = 100 μm.
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The rapid increase in proinflammatory cytokines and
chemokines after TBI in the mouse closed head injury
model described here is consistent with previous brain
injury studies and congruent with clinical findings. For
example, TNF increases within hours of trauma [45], and
clinical studies of TBI patients show increases of TNF lev-
els in serum and cerebrospinal fluid [46]. Elevated levels
of the chemokine CCL2 occur in response to mechanical
[47,48] and other forms [49] of brain injury. This increase
occurs within hours after the insult [50]. Similarly, the IL-
1 family of cytokines increase within hours [51] after
brain injury and may act synergistically with TNF to
increase injury [52]. It should be noted that the sham pro-
cedure itself, as expected, does cause some increases in
cytokine levels that vary with the cytokine measured. For
example, the levels of IL6 and TNFα in the sham controls

at the early time points may reflect an acute response to
the sham procedure. However, only TNFα levels in the
sham controls remain increased at the later time points,
with other cytokine and chemokine levels measured by a
multiplex procedure from the same biological specimen
returning toward basal levels. The reason for the higher
levels in shams for this single cytokine is not known.
Regardless, these results do not alter the significance of the
findings reported here as there is a clear increase above
sham controls in the animals receiving the calibrated
brain injury.

A causal linkage between changes in proinflammatory
cytokine levels and neurologic outcomes is indicated by
the improvement in neurologic endpoints after suppres-
sion of proinflammatory cytokine levels back towards
control by Mzc treatment. This is consistent with previous
reports demonstrating the potential for targeting selective
aspects of glial activation in a variety of injury models
[29,30,53-56]. The small molecule used in this report,
Mzc, is a bioavailable, water-soluble, CNS-penetrant,
compound that restores hippocampal pro-inflammatory
cytokine up-regulation back towards basal when adminis-
tered at comparatively low doses. Previous studies of post-
injury treatment with Mzc in other rodent injury models,
including kainic acid-induced seizures [30] and human
Abeta-induced neuronal toxicity [29], have shown that
the restoration of the proinflammatory cytokine increases
back towards basal is linked to a reduction in long-term
neuronal injury and attenuation of hippocampal-depend-
ent behavioral deficits. Here, we extend the evidence iden-
tifying proinflammatory cytokine modulation as a
therapeutic approach to TBI by showing that the treat-
ment window can be extended to three hours for an acute
closed-head injury, and showing sustained preservation
of hippocampal-dependent function over an extended
recovery period well after cessation of Mzc administra-
tion. Although the results reported here provide a prece-
dent for altering neurologic outcomes observed well after
Mzc intervention, it will be important in future studies to
examine longer-term recovery for periods greater than one
month.

Major determinants of efficacy, lack of efficacy, or toxicity
in a therapeutic intervention study include the therapeutic
compound's properties, the dose administered, the timing
of therapeutic intervention, the particular form of injury,
and the therapeutic target. These are critical considera-
tions for neuroinflammatory responses to CNS injury as
these processes can be both beneficial and injurious. In
the case of TBI, the neuroinflammatory response can
potentially be reparative and neuroprotective [15,57,58].
A relevant example for the clinical trial of immune modu-
lation for treatment of TBI is the CRASH study [58] in
which the efficacy of steroid treatment was examined. The

Minozac attenuates hippocampal-dependent Y-maze behavio-ral impairment following TBIFigure 7
Minozac attenuates hippocampal-dependent Y-maze 
behavioral impairment following TBI. Mice were sub-
jected to TBI or sham procedure. At 3 hr and 9 hr following 
TBI, mice were injected with Mzc (5 mg/kg/dose) or saline 
diluent (VEH) via intraperitoneal injection. On days 7 
through 28 of recovery, hippocampal function was assessed 
by alternation in the Y-maze. Treatment with Mzc prevented 
neurobehavioral impairment resulting from TBI. Data are 
expressed as mean ± S.E.M of n = 5–7 animals per group. *P 
< 0.05 vs TBI-VEH by ANOVA.
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relative risk of dying from all causes in the first 2 weeks
after TBI was increased by treatment with steroids com-
pared to the placebo-treated group. However, steroids
used as drugs are well known for their diverse and some-
times divergent outcomes that can vary with the type of
injury as well as drug dosing [59,60]. Similarly, chronic
dosing over a prolonged therapeutic time window or use
of drugs with broad pan-suppression of inflammatory
responses can lead to unexpected or deleterious effects. An
example is the detrimental effect observed with chronic
administration of ibuprofen in a rat fluid percussion
injury model [57].

A number of lines of evidence indicate that brief, selective
suppression of the glial activation response to neurologic
insults may improve outcomes without compromising
the contribution of activated glia to the mechanisms
involved in recovery or causing immunosuppression in
peripheral tissues [61]. Our data are consistent with this,
and support the hypothesis that early interventions to
modulate glial activation using a low drug dose may alter
disease progression without compromising glial contribu-
tions to the mechanisms of neurologic recovery.

Conclusion
These data add to the evidence identifying glial activation
as a therapeutic target in numerous forms of neurologic
disease and support two interrelated hypotheses. First, an
injury-initiated, self-propagating cytokine cycle can cul-
minate in neurodegeneration [62,63]. Second, this cycle
can be targeted therapeutically to alter progression of CNS
disorders [29,30,64,65]. The improvements in long-term
functional neurologic outcome following suppression of
cytokine upregulation in a clinically relevant therapeutic
window indicate that selective targeting of neuroinflam-
mation may lead to novel therapies for the major neuro-
logic morbidities resulting from head injury, and indicate
the potential of Mzc as a future therapeutic for TBI.

Abbreviations
AD: Alzheimer's disease; BBB: Blood brain barrier; DG:
Dentate Gyrus; IL-1ra: Interleukin receptor antagonist ; IL-
1β: Interleukin-1β; IL-6: Interleukin-6; IP: Intraperitoneal;
Mzc: Minozac; PoDG: Polymorph Dentate Gyrus; TBI:
Traumatic brain injury; TNFα: Tumor necrosis factor α.

Competing interests
Northwestern University's technology transfer office has
licensed Minozac to industry where it is currently under
clinical development.

Authors' contributions
EL carried out the in vivo experiments, immunohisto-
chemical analyses and participated in the design of the
study. KSM carried out the biochemical and immunohis-
tochemical analyses and participated in the design of the
study. LVE and DMW participated in the design and coor-
dination of the study and assisted with the preparation of
the manuscript. MSW directed the study, evaluated the
data and prepared the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This work was supported by NIH grants KO8 NS044998 (MSW), 
AG013939 (LVE), and NS056051 (DMW). KSM is a former pre-doctoral 
trainee in the Center for Drug Discovery and Chemical Biology training 
program and was supported by NIH T32 AG000260. We thank Kristen 
Erickson for technical assistance.

Minozac treated animals have attenuated increase in brain water content following TBIFigure 8
Minozac treated animals have attenuated increase in 
brain water content following TBI. Mice were subjected 
to TBI or sham procedure. At 3 hr and 9 hr following TBI, 
mice were injected with Mzc (5 mg/kg/dose) or saline diluent 
(VEH) via intraperitoneal injection. Mice were sacrificed 24 
hr post-injury, and brain water content was measured in 
coronal sections by wet dry methods. Water content 
increased significantly following TBI in mice treated with 
saline but not when treated with Mzc. Data are expressed as 
mean ± S.E.M of n = 9–13 animals per group. *P < 0.05 vs 
sham control by ANOVA.
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