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Pontificia Universidad Católica
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Viroporins are virally encoded transmembrane proteins that are essential for viral
pathogenicity and can participate in various stages of the viral life cycle, thereby
promoting viral proliferation. Viroporins have multifaceted effects on host cell biological
functions, including altering cell membrane permeability, triggering inflammasome
formation, inducing apoptosis and autophagy, and evading immune responses, thereby
ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and
their complete or partial deletion often reduces virion release and reduces viral
pathogenicity, highlighting the important role of these proteins in the viral life cycle.
Thus, viroporins represent a common drug-protein target for inhibiting drugs and the
development of antiviral therapies. This article reviews current studies on the functions of
viroporins in the viral life cycle and their regulation of host cell responses, with the aim of
improving the understanding of this growing family of viral proteins.
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1 INTRODUCTION

Viroporins are a class of small-molecule hydrophobic transmembrane proteins encoded by viruses,
generally with 50-120 amino acid residues. A typical feature of viroporins is the presence of at least
one transmembrane helix that anchors the protein into the membrane. Upon insertion into the
membrane, their oligomerization produces hydrophilic channels or pores (1). Viroporins also have
several characteristic structural motifs, including a set of basic residues (Lys or Arg) and an
amphipathic a-helix, these basic amino acids are adjacent to the transmembrane domain and
contribute to membrane binding, which controls the rhythm of viral reproduction for optimal
spread by inducing membrane perforation at the correct cellular locations at different stages of the
viral life cycle (2). Viroporins are essential for viral pathogenicity and replication and are involved in
multiple processes including entry, uncoating, replication, assembly, and release in the viral life
cycle (Table 1 and Figure 2). In addition, the ion channel activity of viroporins can cause the
homeostasis of intracellular ions (e.g., Na+, K+, Ca2+, Cl-) (91). The functional activities of
viroporins will affect the host cells and participate in defensive signaling pathways after virus
org June 2022 | Volume 13 | Article 8905491
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TABLE 1 | Viroporins and their roles in the viral life cycle.

Family Virus Viroporin Amino
Acid

Function in Viral Life
Cycle

Ion
Permeability

TMDs and Transmembrane
Mode

Location References

Picornaviridae FMDV 2B 154 – Ca2+ 2, IIB ER (3, 4)
PV 2B 97 Viral replication

Viral release
– 2, IIB Golgi, ER,

Mitochondrion
(5, 6)

3A 87 Viral replication – 1, IB ER (7, 8)
CVB 2B 99 Viral replication

Viral release
Ca2+, H+ 2, - ER, Golgi,

Mitochondrion
(9–11)

EMCV 2B 151 – Ca2+ 2, - Golgi (12)
EV71 2B 99 Viral replication

Viral release
Cl- 2, - Golgi, Mitochondrion (13, 14)

HRV 2B 97 – Ca2+ – ER, Golgi (12, 15)
DHAV-1 2B 119 – Ca2+ 1, IA – (16)
HAV 2B 251 Viral replication – 2, IIB ER (12, 17, 18)

Coronaviridae MHV E 83 Viral assembly
Viral release

Na+, K+ 1, IA ERGIC, Golgi (19, 20)

SARS-
CoV

E 76 Viral Assembly
Viral release

H+, Na+

K+, Cl-, Ca2+
1, IA ER, ERGIC, Golgi (21–23)

3a 274 Viral assembly
Viral release

K+, Na+ 3, - Golgi, PM (24, 25)

8a 39 – K+ 1, - Mitochondrion (26, 27)
IBV E 108 Viral assembly

Viral release
Na+, K+

H+
1, IA Golgi (28–32)

HCoV-
OC43

ns12.9 109 Viral assembly K+ 1, IB ERGIC (33)

HCoV-
229E

4a 133 Viral assembly
Viral release

K+ 3, - ERGIC (34)

Togaviridae SINV 6K 55 Viral assembly
Viral release

Ca2+ 1, - ER (5, 35)

SFV 6K 60 Viral assembly
Viral release

Na+, K+

Ca2+
1, - ER (36)

RRV 6K 62 Viral release Na+, K+

Ca2+
1, IA ER (36, 37)

Orthomyxoviridae IAV AM2 97 Viral entry
Genome uncoating
Viral release

H+, 1, IA Golgi (38–41)

PB1-F2 87/90 – Ca2+, Na+ – Mitochondrion (42, 43)
IBV BM2 109 Genome uncoating

Viral release
H+, K+, Na+ 1, IA Golgi (44–46)

NB 100 Viral assembly – 1, IA ER-Golgi/Perinucler
region

(47, 48)

ICV CM2 115 Viral assembly
Genome uncoating

Cl- 1, IA ER (49, 50)

IDV DM2 152 – Cl- 1, IA – (51)
Flaviviridae HCV p7 63 Viral assembly

Viral release
H+, Na+

K+
2, IIA ER (52–55)

CSFV p7 67 Viral release Ca2+ 2, IIA ER (56, 57)
DENV NS2A 218 Viral replication

Viral assembly
Viral release

– – ER, Mitochondrion (58–60)

NS2B 127 – – 3, - ER, Mitochondrion (58, 61)
Retroviridae HIV-1 Vpu 81 Viral assembly

Viral release
K+, Na+ 1, IA TGN, PM, ER (62–64)

Paramyxoviridae RSV SH 64/65 – K+, Na+ 1, IB ER, Golgi (65, 66)
HMPV SH 179 Viral entry – – PM (67)

Caliciviridae TV NS1-2 233 – Ca2+ 2, IIB ER (68)
NV NS1-2 341 – – ER (68, 69)

Phycodnaviridae PBCV-1 Kcv 94 – K+ 2, - ER (70, 71)
Reoviridae RV NSP4 175 Viral assembly

Viral replication
Ca2+ 3, - ER (72, 73)

ARV p10 98 Viral release – 1, IA Cell surface (74, 75)
BTV NS3 229 Viral assembly

Viral release
– 2, IIB Golgi, PM (76)

Rhabdoviridae BEFV a1 88 – – 1, IA Golgi (77)

(Continued)
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infection of host cells, including autophagy (Figure 4), apoptosis
(Figure 5), cellular immune responses (Figure 6), ensuring the
completion of virus replication by disrupting the host cell
physiology (Table 2). Viroporins were first identified in several
RNA viruses, such as protein 2B (P2B) in picornaviruses (203)
and matrix protein 2 (M2) in influenza A virus (IAV) (204), and
subsequently more and more viroporins have been studied and
reported. In addition to the well-known viroporins such as
poliovirus 2B, alphavirus 6K, HIV Vpu, hepatitis C virus
(HCV) p7 [reviewed in (1, 205)], human astrovirus (HAstV)
XP (89), dengue virus (DENV) NS2A and NS2B (61), ebola virus
(EBOV) delta peptide (88), Norwalk Viruses (NV) NS1-2 (68),
classical swine fever virus (CSFV) p7 (56), and bluetongue virus
(BTV) NS3 (76) have been reported to have viroporin-like
activity and are proposed to be members of the viroporin family.

Depending on the internal nucleic acids of the viruses
containing viroporins, they can be classified into viroporins
encoded by DNA viruses (e.g., JC virus agnoprotein (83),
human papillomavirus E5 (86), simian virus 40 VP4 (82) and
Frontiers in Immunology | www.frontiersin.org 3
viroporins encoded by RNA viruses (e.g., PV 2B (203, 206), IAV
M2 (204), HCV p7 (54), BTV NS3 (76). According to the
number of hydrophobic transmembrane domains (TMD) of
viroporins, they are divided into two major classes: Class I and
Class II, which can be further divided into subclasses A and B
according to their different transmembrane modes (205)
(Figure 1). Viroporins containing three hydrophobic
transmembrane regions have also been identified in recent
years, such as rotavirus (RV) NSP4 (189), the human
papillomavirus(HPV) E5 protein (85), human coronavirus
229E (HCoV-229E) 4a (R. 34) and SARS-CoV 3a (24), but no
further classification of such proteins has been performed.

Viroporins can form selective ion channels in the host cell
membrane that mediate the transport of physiologically relevant
ions (e.g., Na+, K+, Ca2+, Cl- or H+) (Table 1). For example, the
IAV M2 protein can form a proton channel (41), while the Kcv
protein encoded by paramecium bursaria chlorella virus 1
(PBCV-1) is a K+ selective channel (71). However, most
viroporins generally exhibit weak ion selectivity, and these
TABLE 1 | Continued

Family Virus Viroporin Amino
Acid

Function in Viral Life
Cycle

Ion
Permeability

TMDs and Transmembrane
Mode

Location References

Polyomaviridae SV40 VP2 352 Viral entry
Viral assembly

– – Nucleoplasm (78–80)

VP3 234 Viral entry
Viral assembly

– – Nucleoplasm (78)

VP4 125 Viral release – 1, - Cell nucleus (79, 81, 82)
JCV agnoprotein 71 Viral replication

Viral release
Ca2+ 1, IB ER, PM (83)

HPV E5 83 Viral replication – 3, - ER, Golgi (84–86)
EBOV Delta

Peptide
40 Viral release Cl- – – (87, 88)

Astroviridae HAstV XP 112 Viral assembly
Viral release

– 1, IA TGNPM (89)

Herpesviridae HCMV US21 243 – – 7, - ER (90)
June
 2022 | Volume 13 | A
“-” represents “unidentified.” DHAV-1, duck hepatitis A virus; SFV, semliki forest virus; RRV, ross river virus; BEFV, bovine ephemeral fever virus; HCMV, human cytomegalovirus.
FIGURE 1 | Classification of viroporins according to the number of transmembrane domains and the membrane topology of the constituent monomers. Class I and
Class II viroporins have one and two TMD, respectively. (A) Class I A viroporins have their N-termini facing the lumenal side while Class I B have their N-termini in the
cytosolic side. (B) Class II A viroporins have both the N- and C-termini in the lumenal side while Class II B have them facing the cytosol. (C) Class III viroporin with
three TMDs. HCoV-OC43, human coronavirus OC43; TV, tulane virus. Figure adapted from (205).
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channels generally do not show a preference for specific ions. For
example, IAV PB1-F2 viroporin can generate conductance in the
lipid bilayer without apparent selectivity and conducts both Ca2+

and Cl- (43). The SARS-CoV E protein is more selective for
Frontiers in Immunology | www.frontiersin.org 4
monovalent cations (Na+ and K+) than monovalent anions
(Cl-) (207).

In addition, immunolocalization studies on virus-infected
cells showed that most of the viroporins were localized on
various intracellular organelles (e.g., Golgi, endoplasmic
reticulum), while fewer are detected on the plasma membrane
(Table 1). The names, amino acid sizes, roles in the viral cycle,
and classification of the members of the viroporin family that
have been proposed as a result of the studies are reported in
Table 1. This article discusses the functions of currently reported
viroporins in the viral life cycle and their regulation of host cell
responses, emphasizing their potential as antiviral targets.
2 THE ROLE OF VIROPORINS IN THE
VIRAL LIFE CYCLE

Since viruses are obligate intracellular pathogens, they must
depend on host cells for reproduction and metabolism. The life
cycle of viruses varies greatly depending on the type and class of
virus, but they follow the same basic stages of viral replication,
i.e., adsorption, entry, uncoating, replication, assembly, and
release. Although viroporins are involved in different stages of
the viral life cycle (Table 1 and Figure 2), most viroporins are
mainly involved in the later steps of the viral life cycle, such as
assembly and release, as far as the current study has found.
Viruses cannot complete proper assembly and release when
function of viroporins is disrupted.

2.1 Viral Entry and Uncoating
For infection to occur, the virus must first bind to and penetrate
the host plasma membrane to deliver genetic material to the
FIGURE 2 | The role of viroporins in the viral life cycle. (A, B) Viroporins facilitate viral penetration of host plasma membrane into cells. (C) Viroporins trigger
conformational changes in the virus, releasing the genome. (D) Viroporins-mediated viral replication. (E) Viroporins facilitate the assembly of new viral nucleic acids
with protein capsids. (F) Viroporins promote virus release from host cells by budding or lysis.
FIGURE 3 | Viroporins regulate inflammasome activation. The NACHT, LRR,
and PYD domain-containing protein 3 (NLRP3) inflammasome is an
oligomeric complex composed of the NOD-like receptor NLRP3, the adaptor
protein ASC, and Caspase-1 (229). Mitochondrial damage, protein
aggregation, and abnormal ion concentrations caused by viral infection can
activate the NLRP3 inflammasome leading to the secretion of IL-1b and
IL-18. Most viroporins activate the NLRP3 inflammasome by disturbing
intracellular ion concentrations. Some viroporins can activate NLRP3 through
mitochondrial damage and increased ROS production.
June 2022 | Volume 13 | Article 890549
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cytoplasm for replication. Enveloped and non-enveloped viruses
employ different strategies to achieve the same goal. Viroporins,
which are a structural component in enveloped viruses, actively
facilitate the viral entry process, such as the influenza virus M2
protein. The influenza virus binds to the cell surface and is
internalized into endosomes, and its encoded viroporin M2 is
located in the viral lipid bilayer and is critical for infection. M2
acts as a proton-conducting channel in the viral envelope,
Frontiers in Immunology | www.frontiersin.org June 2022 | Volume 13 | Article 8905495
supporting acidification of the viral interior in the endosome
(208, 209). This process drives a series of conformational changes
in the viral hemagglutinin (HA) protein, leading to the fusion of
the viral envelope with the endosomal membrane and the
delivery of nucleoprotein complexes into the cytoplasm (210).
Acidification of M2 is also thought to promote the structural
rearrangement of viral particles, which is required for the
efficient uncoating of viral RNAs in the cytoplasm (45).
FIGURE 4 | Viroporins regulate autophagy. Autophagy can be regulated by the PI3K-AKT-mTOR signaling pathway and the AMPK-TSC1/2-mTOR signaling
pathway. Viroporins can regulate autophagy by regulating upstream signaling cascades, interfering with the formation of autophagosomes to activate, inhibit
autophagy and fuse with lysosomes, and interact with key molecules of autophagy.
FIGURE 5 | Viroporins regulate apoptosis. Apoptosis can be activated through two major signaling pathways, the death receptor-mediated pathway, and the
mitochondrial pathway. Viroporins can induce apoptosis by changing calcium ion concentration, reducing mitochondrial membrane potential, recruiting apoptosis-
related factors, and activating endoplasmic reticulum stress. Some viroporins can also inhibit apoptosis. Ub, Ubiquitin. Figure adapted from (230).
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Relevant studies have shown that the HMPV SH protein also has
viroporin activity, which can regulate the fusion protein function
during virus infection and may play a role in HMPV entering
cells (67).

Non-envelope virions lack viroporins as structural
components, and the involvement of such proteins in the
process of virus entry into cells has been less well reported. A
study found that antiretroviral (ARV) p10 is shown to play a key
role in its viral fusion process, and the expression of p10 induces
extensive cell-cell fusion in transfected cells. Thus, p10 is not only
the first non-enveloped viral protein capable of promoting fusion
from within, but also the first non-structural viral protein capable
of inducing cell-cell fusion (75). Non-enveloped simian virus 40
(SV40) encodes three proteins with viroporin activity, VP2, VP3,
and VP4, which play an important role in the life cycle of SV40.
During infection, SV40 binds to the cell surface and is endocytosed
into caveolin-coated vesicles (211) and subsequently translocated
to the ER, where capsid reorganization and entry of viral particles
into the cytoplasm occurs. VP2 and VP3 can integrate into the ER
membrane and play an important role in the uncoating stage of
the viral genome (78, 79). In addition to triggering viral particle
infection, several viroporins encoded by influenza virus and SV40
play other roles in the viral life cycle, as will be discussed later.

2.2 Viral Replication and Assembly
After the release of the viral genome, the virus controls cellular
proteins and organelles to achieve replication. Studies have
shown that rearranged membranes are utilized during viral
replication (104), and picornaviruses induce rearrangement of
the host cell inner membrane to create structures that serve as
functional scaffolds for genome replication (212). One of the
most striking morphological changes that can be observed in
enterovirus-infected cells is the massive accumulation of small
ER and Golgi membrane vesicles in the cytoplasm (213). These
vesicles are the site where viral RNA replication occurs. The 2BC
Frontiers in Immunology | www.frontiersin.org 6
protein has been implicated in the accumulation of these vesicles,
where mutations that interfere with the pore formation capacity
of 2B lead to defects in the early stages of viral RNA replication
(213). Suhy et al. found that the poliovirus (PV) 2B protein alters
cell membrane permeability and together with the 3A protein
induces significant rearrangement of the intracellular membrane
(104). PV 2B and 3A viroporins can also inhibit the cellular
protein secretion pathway by disassembling the Golgi complex or
blocking ER-Golgi transport, leading to the accumulation of
membrane vesicles in the cytoplasm (101, 214). In addition,
polioviruses harboring mutations in the 3A protein result in a
marked reduction in positive-strand RNA synthesis (8).
Picornavirus 2B protein also facilitates viral release by
increasing the permeability of the plasma membrane, which
will be discussed in the next section.

Throughout the replication cycle of coronaviruses, viruses use
significant rearrangements of the host membrane for replication,
protein expression, assembly, and release. The coronavirus E
protein may also promote membrane rearrangement. When
expressed alone in BHK-21 cells, mouse hepatitis virus (MHV)
E can drive the intracellular formation of ERGIC-derived
electron-dense membranes (19). The higher oligomers of
infectious bronchitis virus (IBV) E are required for the
production of virus-like particles (VLPs), suggesting that this
form of protein is involved in the assembly of viral particles
(215). Studies have shown that the MHV E protein is
palmitoylated after translation, which contributes to the
assembly of virions (216). The M, E, and N structural proteins
of SARS-CoV are required for efficient assembly, transport, and
release of virus-like particles (23). Recombinant CoVs (rCoVs)
lacking the E gene (DE) exhibit abnormal morphology (217),
suggesting that the E protein is involved in the assembly process.
The function of the E protein is not to coordinate viral assembly
but to induce bending of the viral envelope membrane so that the
CoV particles acquire their characteristic spherical shape and
FIGURE 6 | Viroporins regulate host immune responses. viroporins modulate host cell immune responses by interfering with PRRs recognition, interfering with bridging
molecules, kinases, and downstream effectors in the innate immune signaling pathway, and interfering with IFN-mediated signaling. Figure adapted from (231).
June 2022 | Volume 13 | Article 890549
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TABLE 2 | Regulation of host cell responses by viroporins.

Virus Viroporin Regulation of host cell
responses by Viroporins

Mechanism of host cell response
regulation by viroporins

Viroporin action area Inhibitor References

FMDV 2B Inhibiting protein secretion,
disrupting intracellular Ca2+

homeostasis

– – Amantadine (3, 92)

Activating the NLRP3
inflammasome

Ion outflow 140-145 aa of the
transmembrane region

(93)

Inducing autophagy changes in the Ca2+ content – (3)
Antagonizing the host immune
response

Interacting with CypA 115-118 aa (94)
Inhibiting the expression of RIP2
protein

N-terminal 105-114 and135-144
aa

(95)

Inhibiting RIG-I and MDA5 protein
expression

N-terminal 105 -114 and 135
-144 aa

(96, 97)

Inhibiting phosphorylation of TBK1 and
IRF3

– (96)

Inhibiting LGP2 expression C-terminal 101-154 aa (98)
Inhibiting NOD2 expression N-terminal 105-114 and 135-

144aa
(99)

PV 2B Inhibition of protein transport and
disruption of intracellular Ca2+

homeostasis

Decrease in organelle Ca2+

concentration and increase in
extracellular Ca2+ influx

– enviroxime (6, 12, 100,
101)

Induction of apoptosis – – (102)
3A Inhibition of protein transport – – (103, 104)

Antagonizing the host immune
response

Impairing MHC class 1 antigen
presentation

– (105)

Inducing autophagy Inducing co-localization of LC3 and
LAMP1

– (106)

CVB 2B Inhibition of protein transport and
disruption of intracellular Ca2+

Decrease in organelle Ca2+

concentration and increase in
extracellular Ca2+ influx

Cationic amphiphilic a helix – (107)

Inducing autophagy – 36aa-83aa region, valine 56 is
important

(108)

Inhibition of apoptosis Manipulation of intracellular Ca2+

homeostasis
– (9)

EMCV 2B Disruption of intracellular Ca2+

homeostasis
Reducing Ca2+ concentration in the
endoplasmic reticulum

– (12)

Activating the NLRP3
inflammasome

Disturbing intracellular Ca2+

concentration
– (109)

Stimulating immune response Triggering mtDNA translocation to the
cytoplasm

– (110)

EV71 2B Inducing apoptosis Recruiting Bax, promoting its
redistribution

N-terminal 23- 35 aa DIDS (13, 14,
111)

Antagonizing the host immune
response

Induction of KPNA1 degradation N-Terminal Domain (112)
Inhibiting ILF2 expression, promoting
ILF2 translocation

– (113)

HRV 2B Inhibition of protein transport – – – (12)
Activation of NLRP3 and NLRC5
inflammasomes

Activating PERK and ATF6 – (114)

Induction of apoptosis – (15)
DHAV-
1

2B Disruption of intracellular Ca2+

homeostasis
– – (16)

Inducing incomplete autophagy – – (16)
HAV 2B Disruption of intracellular Ca2+

homeostasis
– – (12)

Antagonizing the host immune
response

Interference with IRF-3 phosphorylation – (115)

MHV-
A59

E Inducing apoptosis – – (116)

SARS-
CoV

E Affecting protein transport – YXXF motif Gliclazide,
Memantine,
Amantadine,
HMA,
Tretinoin,
Rutin, doxycycline

(117–121)
Activating the NLRP3
inflammasome

Disturbing intracellular Ca2+

concentration
Disturbing intracellular Ca2+

concentration
(122)

Triggering an inflammatory
response

Interacting with syntenin to activate
p38 MAPK

C-terminal PDZ-binding motif (123)

Inducing apoptosis Interacting with Bcl-xL – (124)

(Continued)
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TABLE 2 | Continued

Virus Viroporin Regulation of host cell
responses by Viroporins

Mechanism of host cell response
regulation by viroporins

Viroporin action area Inhibitor References

Inhibition of apoptosis Downgrading IRE-1 – (125)
3a Activating the NLRP3

inflammasome
– – Kaempferol

derivatives,
Emodin

(126–128)

Triggering an inflammatory
response

Activation of JNK and NK-kappaB – (129, 130)

Inducing autophagy Triggering lysosomal damage and
dysfunction,

– (Yuan 131)

Inhibiting autophagy Blocking the assembly of SNARE
complexes

Transmembrane region (132)

Inducing apoptosis – K+ channel activity (133, 134)
Activation of p38 MAP kinase – (135)

Antagonizing the host immune
response

Inhibition of IFNAR1
Trigger mtDNA translocation to the
cytoplasm

– (136)

8a Inducing apoptosis Disturbance of Mitochondrion
membrane potential

– – (27)

IBV E Inhibiting protein transport – Hydrophobic domain – (29)
Inducing apoptosis Activation of ER stress – (137)

IAV AM2 Alteration of cell membrane
permeability

– – Amantadine,
Rimantadine,
Tretinoin

(5, 138,
139)

Activating the NLRP3
inflammasome

Disturbance of intracellular ion
concentration

– (140)

Inhibiting autophagy Interacting with LC3 or Beclin-1;
blocking fusion of autophagosomes
and lysosomes

M2 Transmembrane region; LC3
interacting region (LIR); N-
terminal 60 aa

(141–144)

Inducing autophagy Triggering extracellular Ca2+ influx-
dependent ROS production

– (145, 146)

Decreasing AKT phosphorylation – (147)
Inducing apoptosis Blocking autophagosome maturation – (148)

Forming stable complexes with Hsp40
and P58(IPK) to enhance PKR
autophosphorylation

– (149)

Stimulating immune response Triggering mtDNA translocation to the
cytoplasm

– (110)

Interacting with MAVS His37 (145)
PB1-F2 Regulation of RLRP3

inflammasome activation
– C-terminal 40 aa (located to

62nd, 75th, 79th, and 82nd aa)
– (150–155)

Inducing apoptosis Interacting with ANT3 and VDAC1 to
reduce Mitochondrion membrane
potential

Interaction of C-terminus with
ANT3, N-terminus and C-
terminus with VDAC1

(152, 155,
156)

Exacerbating innate immune
response

Induction of IFN-b, leading to cytokine
dysregulation

62-70 aa
(LSLRNPILV)

(157, 158)

Antagonizing the host immune
response

Combine with MAVS and reduce MMP C-terminal (159)
Interference with the RIG-I/MAVS
complex

– (160)

Blocking K63-polyubiquitination and
MAVS aggregation and promoting
MAVS degradation

– (161)

Inhibition of MAVS protein expression C-terminal 38-87 aa (162)
Degradation of MAVS C-terminal LIR motif (163)
Decrease Dym – (155)

IBV BM2 Inhibition of apoptosis Inhibiting p53 activity Cytoplasmic domain (164)
Inducing apoptosis Forming stable complexes with Hsp40

and P58(IPK) to enhance PKR
autophosphorylation

(149)

HCV P7 Inhibition of pro-inflammatory
response

Activating STAT3 and ERK – Amantadine,
Rimantadine,
HMA, BIT225

(165–167)

Activating the NLRP3
inflammasome

– – (168)

CSFV p7 Disruption of intracellular Ca2+

homeostasis
– – Amantadine,

Verapamil
(56, 57)

(Continued)
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morphology. Another important role of the coronavirus E protein
is to regulate the pH within the lumen of intracellular organelles
(e.g., the Golgi apparatus). For example, expression of the E protein
of infectious bronchitis virus increases the pH within the organelle,
induces neutralization of the Golgi pH, which results in a protective
effect, allows isolation of the IBV spike-in protein from protein
hydrolysis, and promotes viral assembly and release (32).
Furthermore, the colocalization of ORF 3a with the M and E
proteins essential for viral assembly suggests that ORF3a is
important in the assembly or budding of SARS-CoV (25).
Frontiers in Immunology | www.frontiersin.org 9
The rotavirus (RV) NSP4 protein also plays an important role
in the viral assembly process. NSP4 manipulates the autophagic
membrane trafficking process to take viral protein-containing
membranes and transport them to viral replication sites for
infectious particle assembly (191). The increase in cytoplasmic
Ca2+ concentration mediated by NSP4 viroporin activates
specific Ca2+-inducible signaling pathways to initiate
autophagy, which allows the transport of the NSP4 and VP7
proteins to the virion for subsequent viral assembly (192). NSP4
binds to immature particles in the virion and triggers particle
TABLE 2 | Continued

Virus Viroporin Regulation of host cell
responses by Viroporins

Mechanism of host cell response
regulation by viroporins

Viroporin action area Inhibitor References

DENV NS2A Activating the NLRP3
inflammasome

Disturbing intracellular Ca2+

concentration
– – (58)

Antagonizing the host immune
response

Blocking STAT1 phosphorylation – (169)
Blocking TBK1/IRF3 phosphorylation – (170)
Cutting STING – (171)

NS2B Activating the NLRP3
inflammasome

Disturbing intracellular Ca2+

concentration
– (58)

Antagonizing the host immune
response

Degradation of cGAS – (172)
Cutting STING – (173)

HIV-1 Vpu Inducing apoptosis Inhibition of p53 ubiquitination b-TrcP binding motif BIT225 (174–176)
Antagonizing the host immune
response

Downregulating BST-2 Conserved serine in the
cytoplasmic domain

(63, 64)

Downregulation of CD4 and BST-2 Cytoplasmic domain (177)
Degradation of CD47 Transmembrane region (62)
Inhibiting MAVS expression – (178)
Inhibiting STAT1 phosphorylation – (179)
Inhibition of NF-kB transcription Arginine residues in the

cytoplasmic domain
(180)

RSV SH Activating the NLRP3
inflammasome

Disturbance of intracellular ion
concentration

– pyrnin B (66, 181)

Inhibition of apoptosis – – (182)
Antagonizing the host immune
response

Inhibiting p65 phosphorylation – (183)

HMPV SH Antagonizing the host immune
response

Inhibition of NF-kB transcription – – (184)

Antagonizing the host immune
response

Inhibition of STAT1 expression and
phosphorylation

– (185)

TV NS1-2 Disruption of intracellular Ca2+

homeostasis
– – - (68)

NV NS1-2 Antagonizing the host immune
response

Decreasing TLR-4, -7, -8 and -9
expression

– – (186)

Interaction with VAP-A NS1 structure domain (187, 188)
RV NSP4 Disruption of intracellular Ca2+

homeostasis
– – (189, 190)

Inducing autophagy Activating CaMKK-b signaling pathway;
targeting IGF1R; blocking PI3K/Akt
pathway

– (191–193)

BTV NS3 Antagonizing the host immune
response

Interacting with BRAF to enhance the
MAPK/ERK pathway

– – (194)

Targeting STAT1 – (195)
Targeting STAT2 PPRY structure domain (196)

JCV agnoprotein Promoting apoptosis – – – (197)
HPV E5 Inhibit endosomal acidification – – Rimantadine (86, 198,

199)
Inhibition of apoptosis Decreasing Bax protein expression – (200)
Antagonizing the host immune
response

Down-regulation of surface MHC class
I activity

TMD1(LL1-LL4) motif (201)

Inhibiting IFN-k transcription – – (202)
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budding through these membranes to facilitate the assembly of
capsid proteins on the particles to form mature infectious viral
particles. Lopez et al. showed that small interfering RNAs that
inhibit NSP4 expression in rotavirus-infected cells affect the
distribution of other viral proteins, mRNA synthesis, and
virion formation for viral RNA replication, suggesting a
previously unrecognized function for NSP4 in RV
replication (72).

The M2 protein is required for influenza virus assembly and
budding. When viral budding begins, M2 is located at the edge of
the budozone and induces a negative membrane curvature (218),
thereby stabilizing the HA and M-induced positive membrane
curvature in the budozone. Experimental results suggest that
targeting M2 away from the apical plasma membrane may
disrupt influenza virus assembly, budding, and replication
(219). Phosphorylation of influenza virus CM2 promotes
efficient virus replication (50). Deletion of CM2 results in
impaired packaging and uncoating of virus-like particles
(VLPs) and recombinant influenza viruses (49). The
cytoplasmic structural domain of the BM2 protein performs
the function of M1 binding to the viral ribonucleoprotein
complex alone at the viral particle budding site (44, 220) and
plays an important role in viral assembly. IAVM2 ubiquitination
plays an important role in the production of infectious viruses by
coordinating the efficient packaging of the viral genome into viral
particles and the timing of virus-induced cell death (221). In
addition, HCV p7 protein and HIV Vpu protein have also been
shown to be involved in their viral assembly and release
processes (52, 55, 62–64). The positively charged residue R84
in the dengue virus NS2A protein is essential for both viral RNA
synthesis and intracellular viral particle assembly and maturation
(60). Lulla et al. explored the role of the human astrovirus X
protein in the viral life cycle by knocking it out and showed that
the X protein may play a role in viral particle formation and viral
release (89).

2.3 Viral Release
After assembly into infectious viral particles, viruses are released
from host cells by budding (e.g., IAV, coronaviruses) or lysis
(e.g., picornavirus, SV40). Alterations in plasma membrane
permeability are important for cell lysis and the release of viral
progeny (203). Enteroviruses are non-enveloped viruses that
require the lysis of host cells to release newly formed virions.
The expression of Enterovirus 2B protein disrupts intracellular
Ca2+ homeostasis by progressively enhancing membrane
permeability, leading to increased plasma membrane
permeability and ultimately to membrane damage and release
of the virus (6). For other viruses that are non-enveloped or are
enveloped only by a protein coat, viral release often involves cell
membrane perforation. For example, SV40 VP4 facilitates virus
release by forming pores of approximately 3 nm in diameter in
the host cell membrane to penetrate the membrane (82).

For enveloped viruses, budding and division are typically used
to release virus from infected cells, and the mechanisms involved
in the release process vary from virus to virus. During influenza
virus release, the M2 protein is located at the neck of the budding
virion, and the amphiphilic helix inserts into the membrane,
Frontiers in Immunology | www.frontiersin.org 10
inducing bending of the positive membrane, and finally pinching
off the budding virion (218, 222). Mutations or deletions in the
M2 cytoplasmic tail structural domain (CTD) significantly
impair the assembly of viral proteins and genomic fragments
into viral particles and viral particle release (218, 223, 224). A
recent study found that the reduced hydrophobicity of the 91-94
motif of the IAV M2 protein significantly affected the budding
ability of the M2 protein and compromised the bilayer
membrane integrity of mutant viruses. It was suggested that
the hydrophobic residues of the intracellular domain of the M2
protein play an important role in the release and membrane
integrity of influenza virus (225). Several studies have shown that
the coronavirus E protein is important for viral particle release.
IBV E proteins have been shown to function in the secretory
pathway, altering the luminal environment and rearranging
secretory organelles, ultimately facilitating the efficient
transport of viral particles (29–32). The E protein targets the
Golgi apparatus and directs the release of virus-like particles
(28). Mutations introduced into the HD of MHV or IBV affect
the release of infectious particles from the cell (20, 29, 31). These
findings suggest that IBV and MHV E viroporins may mediate
viral release through their ion channel activity. In addition, Lu
et al. found a significant reduction in viral release in cells
transfected with ORF3a-specific siRNA (24), suggesting that
the 3a protein may act as an ion channel promoting the viral
release, but the mechanism by which the 3a protein affects virus
release requires further study.

Unlike other viruses that mature in the lumen of the ER, RV is
not released via the classical cytosolic pathway. Instead, recent
data suggest that this virus may be transported from the ER
directly through vesicles to the apical plasma membrane of
polarized epithelial cells without passing through the Golgi
complex. RV NSP4 interacts with immature particles to trigger
outgrowth and synthesis into ER transmembrane proteins, and
this rotavirus “budding” maturation process occurs through
autophagy-hijacked COPII vesicle membranes (226). BTV NS3
protein of the same family as rotaviruses may function as the
membrane protein of enveloped viruses, responsible for
intracellular trafficking and budding of viral particles.
Therefore, the NS3 protein is considered to act as a bridge
between mature virions and cellular proteins during viral
shedding (227). Recent studies have found that filovirus delta
peptides function as viroporin to enhance the release of viral
particles across host cell membranes (88). In addition, other
viroporins such as alphavirus 6K protein, HCV p7 protein, HIV
Vpu protein also play an important role in the virus release
process (36, 55, 228) (Table 1 and Figure 2).
3 REGULATION OF HOST CELL
RESPONSES BY VIROPORINS

Viroporins encoded by viruses can affect a variety of host cell
responses (Table 2), such as altering cell membrane
permeability, activation of the NLRP3 inflammasome
(Figure 3), regulating apoptosis (Figure 4) and autophagy
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(Figure 5), and affecting host immune responses (Figure 6).
Viroporins promote their replication and proliferation by
regulating these responses.

3.1 Alteration of Host Cell Membrane
Permeability and Disruption of Intracellular
Ion Concentration Balance
Induction of changes in cell membrane permeability is a key
function of viroporins (57, 83, 206, 207, 232). In addition to this,
many virus-encoded viroporins can allow different ions (e.g., H+

and K+) across the cell membrane, affecting the concentration of
ions inside and outside the cell as well as the membrane
permeability to these ions. After infection of cells by
picornavirus, increased membrane permeability leads to
disruption of the extracellular ion gradient and thus disrupts
the host intracellular ion concentration balance, in which 2B
viroporin plays an irreplaceable role. 2B proteins such as foot-
and-mouth disease virus (FMDV), PV, and Coxsackievirus B
(CVB) can increase intracellular Ca2+ ion concentration, but by
different mechanisms. The expression of CVB3 and PV 2B
proteins leads to a decrease in Ca2+ concentration in the ER
and Golgi complex as well as in Ca2+ uptake by mitochondria. At
the same time, an increased influx of extracellular Ca2+ leads to
increased cytoplasmic Ca2+ levels (9, 12). Similarly, the
expression of human rhinovirus (HRV) 2B protein showed a
decrease in Ca2+ concentration in the ER and Golgi apparatus,
while encephalomyocarditis virus (EMCV) 2B protein only
significantly decreased Ca2+ concentration in the ER (12). In
contrast, other studies have shown that the expression of
hepatitis A virus (HAV) and FMDV 2B proteins increased
cytoplasmic Ca2+ levels but did not alter the levels of Ca2+

stored in organelles (3, 12). Specifically, the experimental
results of Xie et al. suggest that the enterovirus (EV) 71 2B
protein may mediate Cl- dependent currents in African Xenopus
oocytes (14). The reason for this 2B-induced ion concentration
variation among different small ribonucleic acid viruses may
stem from differences in the proteins themselves and
experimental settings and systems, and no studies are showing
the permeability of other 2B proteins to Cl-. Therefore, further
analysis of 2B protein-mediated ion permeability under viral
infection and separate expression is required. Also significant for
Ca2+ homeostasis is the RV NSP4 protein, whose effect on Ca2+

levels, along with that of the enterovirus 2B protein, has been
characterized using fluorescent Ca2+ imaging (233). NSP4 is an
ER transmembrane glycoprotein that activates ER calcium
sensor matrix interaction molecule 1 (STIM1), leading to the
plasma membrane (PM) Ca2+ inward flow (190). NSP4 also
elevates cellular Ca2+ levels through a phospholipase C (PLC)-
independent pathway, suggesting that it disrupts Ca2+

homeostasis and releases Ca2+ channels (189).
Experimental results suggest that viroporin E protein may

play an important role in regulating ion homeostasis and the
microenvironment of host cells (234, 235). Westerbeck et al.
found that IBV E protein transient overexpression alters Golgi
pH, providing the first evidence of a coronavirus-mediated
alteration of the secretory pathway tubular microenvironment
Frontiers in Immunology | www.frontiersin.org 11
to facilitate infectious virus production (32). A recent study
showed that the intracellular expression of SARS-CoV-2 E
protein increases intra-Golgi PH (21). IAV M2 also
downregulates the expression and function of two host ion
channels, the amiloride-sensitive epithelial sodium channel
(ENaC) (236) and the cystic fibrosis transmembrane
conductance regulator (CFTR) (237) chloride channel, which
promotes influenza pathogenesis.

In addition to altering the permeability of the invading cells
themselves, cell permeabilization by PV 2B viroporin triggers
bystander permeabilization in neighboring cells through a
mechanism involving gap junctions, and proteins from MHV
E, sindbis virus (SINV) 6K, and HCV NS4A are also able to
penetrate neighboring cells to varying degrees (238). Some
viroporins (e.g., PV 2B (5)and 3A (103, 104), IBV E (29)) are
also able to target intracellular compartments that affect pH or
Ca2+ homeostasis, thereby blocking protein secretion.

3.2 Regulation of the Activation of
the Inflammasome
The inflammasome is a molecular platform activated upon cellular
infection or stress, triggering the maturation of pro-inflammatory
cytokines such as IL-1b, and participating in innate immune
defense. The NACHT, LRR, and PYD domain-containing
protein 3 (NLRP3) inflammasome is an oligomeric complex
composed of the NOD-like receptor NLRP3, the adaptor protein
ASC, and Caspase-1 (229). This complex is critical in the host
antiviral immune response as it promotes IL-1b and IL-18
secretion and induces pyroptosis (239). Increasing evidence
suggests that the effect of viroporins on membrane permeability
and the subsequent disruption of ion homeostasis in cellular
compartments may be the activation signal required to activate
the NLRP3 inflammasome and produce IL-1b and IL-18
(Figure 3). This highlights the important role of ion
concentration imbalance caused by the ion channel activity of
viroporin in activating the NLRP3 inflammasome. Viroporins
such as FMDV and HRV 2B protein (93, 114), respiratory
syncytial virus (RSV) SH protein (66), IAV M2 protein (140),
EMCV 2B protein (109), SARS-CoV E protein (122), SARS 3a
protein (126), and HCV p7 protein (168) was reported to activate
the NLRP3 inflammasome by disturbing intracellular ion
concentrations (K+, Ca2+, Na+). The 2B protein from a variety
of picornaviruses (including EMCV, PV, and EV 71), the DNEV
NS2A protein and the SARS-Cov E protein were shown to induce
NLRP3 cytoplasmic relocalization and inflammasome activation
in an intracellular Ca2+-mediated manner (58, 109, 122). Other
experimental results have shown that influenza virus M2 proton
channel activates the NLRP3 inflammasome pathway by
regulating intracellular K+, Na+, and Ca2+ concentrations (140).

In addition to disrupting intracellular ion concentrations,
viroporins activate the inflammasome in other ways, resulting
in an inflammatory response. DNEV NS2A and NS2B protein
expression increase apoptosis-associated speck-like protein-
containing caspase recruitment domain (ASC) oligomerization
and secretion of IL-1b through caspase 1 activation (58). SARS
3a activates NLRP3 inflammasome by inducing disruption of
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intracellular ion concentration, mitochondrial damage, and TNF
receptor-associated factor 3 (TRAF3)-mediated ubiquitination of
ASC (126, 128, 131). Paradoxically, Siu et al. found that the
oligomerization of ORF 3a was dispensable for the activation of
NF-kB or NLRP3 inflammasome, indicating how the viral ion
channel protein works in an ion channel-independent manner
(128). In contrast, results from another related study showed that
SARS-CoV 3a activates the NLRP3 inflammasome in an ion
channel-dependent manner (126). This discrepancy may require
further studies in the same experimental system to resolve. In
addition to this, 3a upregulates the production of pro-
inflammatory cytokines and chemokines by activating C-Jun
N-terminal kinase (JNK) and the transcription factor nuclear
factor-kappa B (NF-kappaB) (129). In contrast, human
metapneumovirus (hMPV) SH has been reported to inhibit
NF-kB transcriptional activity in airway epithelial cells (184).
Other studies have shown that RSV SH viroporin accumulates in
the Golgi apparatus within lipid raft structures and may form ion
channels that trigger NLRP3 translocation from the cytoplasm to
the Golgi apparatus and activate NLRP3 inflammasome (66).
HCV-p7 induces the molecular mechanism of SOCS3 through
STAT3 and ERK activation and has been shown to inhibit p7 in
response to TNF-a pro-inflammatory response (165).

The IAV PB1-F2 protein has a special performance in
regulating inflammatory response, exhibiting two distinct roles
in promoting and inhibiting NLRP3 inflammasome. On the one
hand, PB1-F2 can be integrated into the phagocytic lysosomal
compartment triggering NLRP3 inflammasome activation,
inducing the secretion of the IL-1b, which leads to severe
pathophysiology (153). Several experimental results have
shown that PB1-F2 activates NLRP3 inflammasomes and
NLRP3-dependent cell recruitment (154), inducing lung
inflammation (152). On the other hand, the PB1-F2 protein
inhibits the activation of the RLRP3 inflammasome under
certain conditions (155). The highly pathogenic H7N9 PB1-F2
protein selectively inhibits RNA-induced NLRP3 inflammasome
activation by inhibiting MAVS-NLRP3 interactions in infected
cells, but intracellular PB1-F2 does not affect extracellular PB1-
F2-induced NLRP3 inflammasome maturation (151). H5N1 and
H3N2 PB1-F2 expression reduced IL-1b levels secreted by
infected macrophages (150). The intrinsic link between the
activation and inhibition of the RLRP3 inflammasome by
viroporin PB1-F2 is unclear, but ultimately it is for the better
survival and reproduction of the virus in the host cell.

3.3 Regulation of Autophagy
Autophagy is a physiological catabolic process in which cells
degrade internalized pathogens or worn organelles by forming
membrane-enclosed autophagosomes. Although viruses must
escape autophagic destruction, some viruses can also disrupt
autophagy for their benefit. Studies have shown that viroporins
can manipulate autophagy (Figure 4) and thus promote viral
replication, and among the viroporins that have a strong effect on
cellular autophagy are mainly the small ribonucleic acid virus 2B
protein, coronavirus 3a protein, influenza virus M2 protein, and
rotavirus NSP4 protein. FMDV and CVB3 2B proteins induce
robust autophagy in host cells (3, 108). Simultaneous expression of
Frontiers in Immunology | www.frontiersin.org 12
PV 2BC and 3A proteins induces the co-localization of LC3 and
LAMP1, which induces autophagy to promote viral replication
(106). According to reports, NSP4 can induce autophagy by
activating the Ca2+/calmodulin-dependent kinase kinase-b
(CaMKK-b) signaling pathway or targeting IGF1R (191, 192),
and further studies revealed that COPII vesicle transport plays an
important role in this (226). Furthermore, early in viral infection,
the miRNA encoded by the NSP4 gene targets IGF1R, blocking the
PI3K/Akt pathway and triggering autophagy, but ultimately
inhibiting autophagic maturation (193).

SARS-CoV 3a proteins can both induce autophagy by inserting
into the lysosomal membrane, causing lysosomal damage and
dysfunction (Yuan 131), and inhibit autophagosome degradation
and thus cellular autophagy by preventing the assembly of the
SNARE complex required for HOPS complex-mediated
autolysosome formation (132). By comparison, it is found that
3a needs its viroporin activity to promote autophagy, while
whether preventing autophagy also needs to be further studied.
Similarly, the influenza virus M2 protein also exhibits both
autophagy-promoting and autophagy-inhibiting aspects. IAV
M2 inhibits autophagy by directly interacting with the
autophagy proteins LC3 or Beclin-1, blocking the fusion of
autophagosomes and lysosomes (141–143). In contrast, Wang
et al. showed that M2 triggers extracellular Ca2+ influx-dependent
ROS production, which subsequently leads to activation of ATG5
and inhibition of AKT/PKB and MTOR activities via the class I
phosphatidylinositol 3-kinase (PI3K)-AKT-MTOR signaling
pathway, ultimately triggering activation of autophagy (145).
The inhibition of autophagy by 3a and M2 proteins may be a
strategy employed by viruses during the pre-infection phase to
survive in the host cell while releasing daughter viral particles from
the cell by promoting autophagy after the maturation of their viral
particles. At present, further studies on the regulation of host cell
autophagy by viroporins other than the above-mentioned proteins
are underway.

3.4 Regulation of Apoptosis
Apoptosis is a genetically programmedmechanism used by the host
to eliminate damaged or unwanted cells by activating the caspases
cascade and can be activated through twomajor signaling pathways:
the extrinsic or death receptor-mediated pathway and the intrinsic
or mitochondrial pathway. In addition, excessive Ca2+ loading in
mitochondria can induce apoptosis by causing the opening of
permeability transition pores, permeability swelling of
mitochondria, and rupture of the outer mitochondrial membrane,
which leads to the release of pro-apoptotic factors such as
cytochrome C (230). Some virus-encoded viroporins can promote
their propagation by affecting host cell apoptosis (Figure 5).

Accumulating evidence suggests that picornavirus 2B
proteins can regulate host cell apoptotic responses in multiple
ways. HRV16 2B protein activates PERK and ATF6 but not IRE1
to trigger ER stress (15). EV 71 2B protein induces apoptosis by
recruiting and directly interacting with the pro-apoptotic protein
Bax or by regulating the redistribution and activation of Bax (13,
111). Furthermore, PV 2B protein induces permeabilization of
the plasma membrane, triggering apoptosis through the
mitochondrial pathway (102). CVB 2B proteins play a major
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role in inhibiting apoptotic host cell responses by manipulating
intracellular Ca2+ homeostasis (9). Other viroporins also regulate
host cell apoptosis in different ways. Studies have shown that
overexpression of the E protein of the family Coronaviridae can
induce apoptosis (124, 137) and the SARS-CoV E protein can
interact with Bcl-xL, making the anti-apoptotic protein Bcl-xL
unable to function normally (124). SARS-CoV E activates ER
stress and induces pro-inflammatory cytokines to promote
apoptosis during late infection (137). In contrast, DeDiego
et al. used a microarray-based approach to show that SARS-
CoV E may also have anti-apoptotic effects during infection
(125). The 3a and 8a proteins of SARS-CoV also induce
apoptosis (27, 134). The 8a protein is located in mitochondria,
where it can perturb mitochondrial membrane potential and
induce apoptosis through a caspase-3-dependent pathway (27).

In addition, the influenza virus M2 protein induces host cell
apoptosis by blocking autophagosome maturation (148). It has
been reported that Hsp40 acts as a regulator of PKR signaling by
interacting with the PKR cytostatic p58IPK. Guan et al. found that
M2 protein interacts with Hsp40 both in vitro and in vivo,
speculating that it may enhance PKR autophosphorylation by
forming a stable complex with Hsp40 and P58IPK, thereby
inducing cell death (149). Another viroporin PB1-F2 encoded
by the influenza virus interacts with two mitochondrial proteins,
adenine nucleotide transporter (ANT3) and voltage-dependent
anion channel 1 (VDAC1), which are present in the inner and
outer mitochondrial membranes, respectively, leading to
dissipation of mitochondrial membrane potential, inducing cell
death (156). In addition, the PB1-F2 protein can also translocate
to the inner mitochondrial membrane space via the TOMM40
channel, resulting in a decrease in mitochondrial membrane
potential (MMP) and induction of apoptosis (155). In contrast,
the BM2 protein interacts with p53 and inhibits its
transcriptional and apoptotic activities (164). Some other
viroporins (e.g., human respiratory syncytial virus SH protein,
HPV E5 protein) have also been reported to have anti-apoptotic
activity (174, 176, 182, 200).

3.5 Regulation of the Host Cellular
Immune Response
The innate immune response is the first line of defense against
viral infection, and to break through this line of defense and
replicate effectively in vivo, many virus-encoded viroporins
disrupt host immune defenses in a variety of ways (Figure 6).
The regulation of host cell immune response by viroporins is
mainly manifested as antagonism.

3.5.1 Identification of Interfering PRRs
Recognition of pathogens is mainly mediated by pattern
recognition receptors (PRRs), including Toll-like receptors
(TLRs), nucleotide oligomerization domain-like receptors
(NLRs), cyclic GMP-AMP synthase (cGAS), and retinoic acid-
inducible gene-1-like receptors (RLRs), which recognize
pathogenic microbial infections and form the corresponding
signal transduction to generate an immune response. RIG-I-
l ike receptors (RLRs) , including RIG-I , melanoma
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differentiation-associated protein (MDA)-5, and LGP2, are a
series of cytoplasmic RNA unwinds that detect multiple viral
RNAs accumulated during viral infection or replication.
Activation of RIG-I is responsible for the induction of type I
interferons (IFNs) and the expression of many cytokines and
chemokines (240). To survive and multiply in host cells,
viroporins can interfere with their viral recognition by PRRs.

It was shown that FMDV 2B protein interacts with and
inhibits the expression of RIG-I and MDA5 to antagonize their
mediated antiviral effects (97). In 2019, Liu H et al. found that
FMDV infection triggered NOD2 transcription and reduced
NOD2 protein expression. Further experimental results showed
that 2B protein was one of the reasons for this phenomenon (95).
Similarly, the IAV PB1-F2 protein exhibited type I IFN
antagonism by interfering with the RIG-I/MAVS complex
(160). The work of Lateef et al. showed that Toll-like receptors
were targets of norovirus (NV) NS1/2, which decreased the
expression of TLR-4, -7, -8, and -9 and increased the
expression of several pro-inflammatory cytokines/chemokines
(186). To avoid detection of mitochondrial DNA during
infection, the dengue virus NS2B protein targets the DNA
sensor cyclic GMP-AMP synthase (cGAS) for lysosomal
degradation and results in the inhibition of type I interferon
production in infected cells (172). Whether other viroporins are
also involved in regulating host cell immune responses by
interfering with PRRs recognition is currently under
further investigation.

3.5.2 Interference With Adaptor Molecules, Kinases,
and Downstream Effectors in Innate Immune
Signaling Pathways
Virus-encoded viroporins have developed multiple mechanisms
to disrupt the recruitment process or degrade linker molecules,
as well as related kinases critical for signal transduction, to block
subsequent signal transduction and antagonize the host antiviral
response. It has been reported that phosphorylation of RIP2 was
identified as a marker for activation of the NOD2-mediated
NF-kB pathway (241). In 2021, Liu H et al. found that FMDV
infection triggered the transcription of RIP2, and its 2B protein
could reduce the expression of RIP2 protein (95). Both FMDV
2B and DENV NS2A inhibit the phosphorylation of TBK1 and
IRF3 in the RLR signaling pathway (96, 170). Furthermore,
DENV NS2A and NS2B proteins inhibit the production of type I
IFN by cleaving STING (171, 173). According to literature
reports, influenza virus-encoded viroporin PB1-F2 is a
particularly potent inhibitor of antiviral signaling, inhibiting
the expression of mitochondrial antiviral signaling protein
(MAVS) and it is signaling through various means. PB1-F2
can degrade MAVS by inducing mitophagy and lead to the
inhibition of type I interferon production (162, 163). Cheung
et al. found that PB1-F2 protein interacts with TRIM31-MAVS
by forming protein aggregates on mitochondria, thereby
preventing K63-polyubiquitination and MAVS aggregation
and promoting MAVS degradation, ultimately inhibiting host
antiviral defense (161). In addition to this, an increasing number
of studies have shown that the reduction of mitochondrial inner
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membrane potential is also an important way in which PB1-F2
protein inhibits MAVS signaling (155, 159). Several other
studies have reported that HIV-1 Vpu effectively inhibits NF-
kB-induced antiviral immune responses at the transcriptional
level (180). HAV 2B is able to interfere with IRF-3
phosphorylation and inhibit IFNb gene transcription (115).

In addition, some other viroporins (e.g., BTV NS3, RSV SH)
resist the host defense response by interacting with BRAF or
inhibiting p65 phosphorylation (183, 194). In particular, the
influenza virus M2 protein antagonizes autophagy and interacts
with MAVS, thereby increasing MAVS aggregation, positively
regulating MAVS-mediated antiviral innate immune responses
(145), however, overactivation of MAVS signaling could lead to
detrimental levels of inflammation or other immunopathological
consequences that are harmful to the host.

3.5.3 Interference With IFN-Mediated Signaling
Interferons play a crucial role in regulating and activating the host
innate immune response to viral infection and limiting viral
replication and spread and are also important targets for
viroporins. Experimental results have shown that HMPV SH
proteins downregulate type I IFN pathway signaling by affecting
STAT1 expression and phosphorylation (185). Similarly, DENV
NS2A, NS4A, and NS4B proteins complex together to block STAT1
phosphorylation and inhibit ISG production (169). BTV NS3 and
NS4 synergistically antagonize type I interferon signaling by
targeting STAT1 (195). In addition, BTV NS3 blocks IFN
signaling by binding STAT2 to induce its degradation through an
autophagy-dependent mechanism (196). Karyopherins (KPNAs)
are cytoplasmic proteins essential for nuclear transport of p-STAT1/
2 and translocation of ISGF complexes, and enterovirus A71 2B
inhibits interferon-activated JAK/STAT signaling by inducing
Caspase-3-dependent KPNA1 degradation (112). Whether other
viroporins can also antagonize the host antiviral response by
blocking the JAK/STAT pathway is unknown and requires
further experimental investigation.

3.5.4 Other Ways to Resist the Host
Immune Response
Major histocompatibility complex (MHC) class 1 is also an
important player in the antiviral response. Studies have shown
that PV 3A proteins can impair MHC class I antigen presentation
(105). CVB3, which encodes 2B and 2BC proteins in the same
family as PV, upregulates the endocytosis of MHC class I by
focusing endocytic vesicles on the Golgi complex and rapidly
removes proteins from the cell surface. This may render CD8+ T
cells unrecognizable to CVB3-infected cells and therefore
inaccessible to many antiviral effector molecules, which is
important for immune evasion by CVB3 (242). Similarly, PB1-F2
induces IFNb through the NF-kB pathway independently of the
AP-1 and IRF3 pathways, and overexpression of the MHC-I gene is
involved in suppressing antiviral immunity (157, 158). The
interaction between NV NS1/2 and the vesicle-associated
membrane protein VAP-A suggests that calicivirus manipulate
intracellular trafficking, thereby inhibiting or blocking key innate
immune proteins (TLR, IFN, MHC, etc.) to the cell surface
(187, 188).
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Vpu downregulates bone stromal cell antigen 2 (BST-2)
protein from the cell surface, which protects HIV-infected CD4+

T cells from antibody-mediated cell lysis in addition to promoting
self-release (63, 64), it also protects HIV-infected CD4+ T cells
from antibody-mediated cell lysis (177). It should be noted that
mutants that impair Vpu ion channels do not affect the
downregulation of BST-2, suggesting that the downregulation of
BST-2 is independent of the ion channel activity of Vpu (243). In
addition, Vpu promotes phagocytosis of infected CD4+ T cells by
macrophages through downregulation of CD47 to facilitate viral
dissemination and promote immune evasion (62).

Cytoplasmic mitochondrial DNA (mtDNA) activates cGAS-
mediated antiviral immune responses, and the viroporin activity of
influenza virus M2 or EMCV 2B proteins triggers mtDNA
translocation into the cytoplasm in a MAVS-dependent manner.
Although influenza virus-induced cytoplasmic mtDNA stimulates
cGAS and DDX41-dependent innate immune responses,
influenza virus nonstructural protein 1 (NS1) binds to mtDNA
to evade STING-dependent antiviral immunity (110). A recent
study demonstrated that Cyclophilin A (CypA) plays a role in
promoting RIG-I-mediated antiviral immune responses by
controlling the ubiquitination of RIG-I and mitochondrial
antiviral signaling protein (MAVS) (244). FMDV 2B attenuates
CypA during FMDV infection by interacting with CypA mediated
antiviral effects during FMDV infection, and further studies have
shown that this interaction is specific to FMDV 2B in picornavirus
viroporins (94). In addition to this, some other viroporins evade
the host antiviral response by some other means (Table 2).
4 VIROPORINS INTERACT WITH OTHER
HOST OR VIRAL PROTEINS TO PROMOTE
THEIR OWN PROLIFERATION

Viruses lack the necessary machinery for self-replication and
therefore rely on host cell machinery for reproduction. Many
viruses utilize the host cell replication machinery to establish
infection through host-virus protein-protein interactions (PPIs)
(245). Some viruses encode viroporins that interact with host
proteins to ensure the successful completion of their life
cycle (Table 3).

Current research data suggest that viroporins interact with
host proteins and are mainly involved in regulating the later
stages of the viral life cycle. Relevant studies have shown that
viroporins such as Picornavirus 2B and 3A proteins, IAVM2 and
PB1-F2 proteins, and coronavirus E protein can regulate the
replication stage of the virus by interacting with different host
proteins, of which influenza virus AM2 and PB1-F2 proteins are
good examples. The M2 protein has been reported to interact
with the G protein pathway repressor protein 1 (GPS1), which is
involved in the transcription and replication of influenza virus
genomic RNA by activating the NF-kB signaling pathway (248).
Mazur et al. found that the PB1-F2 protein co-localizes and
directly interacts with the viral PB1 polymerase protein, thereby
determining the localization of the PB1 protein and enhancing
viral polymerase activity, which ultimately leads to enhanced
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accumulation of viral RNA (254). Recent experimental results
identified HCLS1-associated protein X1 (HAX-1) as a functional
restriction factor of IAV polymerase that binds to PA subunits,
and PB1-F2 protein promotes its efficient replication by binding
to HAX-1 and relieving HAX-1-mediated restriction of avian
Frontiers in Immunology | www.frontiersin.org 15
viral polymerase PA (255). In addition, FMDV 2B and PV 3A
proteins interact with eukaryotic translation elongation factor 1g
(eEF1G) and acyl-CoA-binding domain protein 3 (ACBD3),
respectively, to promote self-replication. Further studies revealed
that eEF1G may play a potential role in assisting protein 2B to
TABLE 3 | The role of viroporins interacting with other host or viral proteins in the viral life cycle.

The role of viroporin interacting with host protein/viral
protein in the viral life cycle

Virus or host protein Virus-
viroporin

Regions of viroporin required
for interaction

Is it related to
viroporin activity

References

Virus uncoating Transportin-3 IAV-M2 – – (246)
Viral replication EEF1G FMDV -2B – – (247)

GPS1 IAV-M2 – – (248)
ACBD3 PV-3A C-terminus of the cytoplasmic

domain
– (249, 250)

PV-2C PV-2B – – (251)
PV-3A – – (251)

Microtubules RV-NSP4 C-terminal 129 -175aa NO (252)
Caveolin-1 IAV-M2 Cytoplasmic domain NO (253)
PB1 IAV-PB1-F2 – – (254)
HAX-1 IAV-PB1-F2 C-terminal 1 - 50 aa Yes (255)
VAPA NV- NS1/2 FFAT motif NO (188)
JCV-T antigen JCV

-gnoprotein
N-terminal Yes (256)

Viral replication,
Viral release

SARS-CoV -nsp3 SARS-CoV
E

– – (257)

Viral assembly TRAPPC6A,
TRAPPC6AD

IAV- M2 Leucine residue at position 96 NO (258)

Caveolin-1 RV-NSP4 114-135aa – (259)
Cyclin D3 IAV-M2 CTD – (260)
BAP31 HPV-E5 C-terminal NO (261)
IBV -M IBV E 37-57aa NO (262)
SARS-CoV-S SARS-CoV-

E
– – (263)

Viral assembly,
Viral release

Caveolin-1 SARS-CoV-
3a

Cytoplasmic domain NO (264)

Cyclin D3 IAV-M2 Cytoplasmic domain NO (260)
Viral release Tetherin HIV-Vpu CTD Yes (265)

LIS1 PV-3A – – (266)
UBR4 IAV-M2 TMD and C-terminal Yes (267)
AnxA6 IAV-M2 CTD NO (268)
Tetherin IAV-M2 Extracellular and

transmembrane structural
domains

Yes (269)

MARCH 8 IAV-M2 K63 NO (270)
Tsg101 BTV-NS3 PSAP motif NO (271)
S100A10/p11 BTV-NS3 N-terminal 13 residues NO (272)
Viperin RV-NSP4 C-terminal – (273)
Heterochromatin
Protein-1a(HP-1a)

JCPyV
-gnoprotein

N-terminal 24 aa – (274)

FEZ1 JCPyV
-gnoprotein

– – (275)

PARP SV40-VP3 N-terminal 35 aa – (276)
Not Determined PALS1 SARS-CoV

E
C-terminal NO (277)

SARS-CoV-7a SARS-CoV
E

– – (278)

ATP1A1 and
Stomatin

SARS-CoV
E

– – (22)

ATP1B1 IAV-M2 Cytoplasmic domain 28-48aa NO (46)
IBV-M2 NO

BAP31 RSV-SH N-terminal a-helix – (279)
Importin b1, Importin
7

BEFV-a1 C-terminal NO (77)
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produce virus-induced vesicles and induce cell lysis (247). ACBD3 is
a Golgi-resident protein involved in maintaining Golgi structure
and regulating intracellular trafficking between the ER and the Golgi
(280). PV 3A interacts with it and counteracts the inhibitory effect of
ACBD3 on viral replication (250). Several other studies have shown
that 3A proteins can utilize ACBD3 to recruit PI4KIIIb to viral
replication sites to facilitate self-replication (249, 281). Furthermore,
NVNS1/2 interacts with the host protein VAMP-associated protein
A (VAPA) to promote self-replication (188).

After virus replication is completed and enters the assembly
stage, viroporins such as influenza virus M2 protein and RV
NSP4 protein play an important regulatory role by binding to
host factors. Cyclin D3 is a key cell cycle regulator in the G0/G1
phase, and the M2 protein binds to it, inducing its redistribution
from the nucleus to the cytoplasm and subsequent degradation
by the proteasome, a process that facilitates the correct assembly
of progeny virions (260). Caveolae are known to serve as a site for
signal transduction, viral entry into cells, and viral assembly.
Experimental results found that NSP4 interacts directly with
caveolin-1 to facilitate the intracellular transport of NSP4 from
the ER to the cell surface (259), and Sapin et al. suggested that
this interaction may contribute to the final step in RV
morphogenesis (282). Similarly, the coronavirus 3a protein
plays an important role in assembly and release by interacting
with the caveolin-1 protein (264). In addition, the HPV E5
protein can interact with BAP31 and can mediate post-
transcriptional effects or promote viral particle assembly (261).

After the virus matures, its encoded viroporins can release the
mature particles extracellularly by binding to host proteins.
Currently, influenza virus M2 protein, BTV NS3 protein and JCV
gnoprotein protein are more studied in this regard. It has been
found that the influenza virus M2 protein binds to the ubiquitin-
protein ligase E3 component N-recognition protein 4 (UBR4) or
Tetherin (BST-2) protein and facilitates the release of the virus
outside the cell by promoting apical translocation of viral proteins
or by downregulating Tetherin through the proteasomal pathway
(267, 269). BTV NS3 assists in the viral release by recruiting the
ESCRT-I protein Tsg101 or interacting with the S100A10/p11
protein (271, 272). JCV gnoprotein promotes the release of
progeny viruses by interacting with heterochromatin protein-1a
(HP-1a) or fiber bundle and elongation protein zeta1 (FEZ1) (275).
Furthermore, studies have reported that Vpu counteracts the viral
release-limiting effect of tetherin by interacting with tetherin and
downregulating tetherin in the plasmamembrane (265). In contrast,
some studies have found that host proteins inhibit viral release by
binding to viroporins. The human protein annexin A6 (AnxA6)
interacts with M2 and negatively regulates influenza virus infection
by affecting viral budding (268). The membrane-associated RING-
CH8 (MARCH 8) protein inhibits IAV release by redirecting the
viral M2 protein from the plasma membrane to the lysosome for
degradation (270). Similarly, the IFN-stimulating protein Viperin
delays rotavirus release by inhibiting NSP4-induced intrinsic
apoptosis (273). This negative regulation of viral release mediated
by host proteins through interaction with viroporins may be a
strategy for the host to combat viral infection, but the detailed
molecular mechanisms need to be further investigated.
Frontiers in Immunology | www.frontiersin.org 16
In addition to interacting with host proteins, viroporins have
also been reported to bind to their other viral proteins to
promote the completion of the viral life cycle. For example,
both mammalian and yeast two-hybrid systems have shown that
PV 3A multimerizes and interacts with 2B and 2C ATPases to
promote viral replication (251). IBV E and M proteins interact
through their cytoplasmic tails leading to the assembly of
coronavirus-like particles (262). Recent studies have shown
that the SARS-CoV E protein induces the retention of the S
protein in the ERGIC by regulating the cellular secretory
pathway, preventing the formation of syncytia, and promoting
the assembly of SARS-CoV viral particles (263). The current
growing family of viroporin and consequently the increasing
number of host proteins interacting with them have been
reported, and such interactions play an important role in
regulating the viral life cycle and promoting viral proliferation,
but the specific stages of the viral life cycle at which they act, and
the mechanisms remain to be further investigated.
5 CONCLUSIONS

Viroporins are potential targets for antiviral therapy because of
their significant impact on the viral life cycle and host and have
become targets for inhibitory drug development and antiviral
therapy. AM2, the first viroporin discovered, has a well-
established biological role in viral pathogenesis and is a proven
drug target (283). Amantadine is the first drug to inhibit
influenza virus replication by inhibiting the ion channel
activity of M2, which can mediate the conversion of
hemagglutinin (HA) to its low pH conformation by interacting
with the AM2 protein, thereby preventing proton conduction
and inhibits viral entry (284). Amantadine has also been reported
to have a targeted inhibitory effect on viroporins such as FMDV
2B, SARS-CoV E, HCV p7 (3, 54, 121), however, drug resistance
limits its clinical application. The identification and application
of tauroursodeoxycholic acid (TUDCA) as an M2 proton
channel inhibitor will expand our understanding of IAV
biology and complement the current anti-IAV arsenal (285).
Subsequent experimental results showed that drugs such as
hexamethylene amiloride (HMA) (286), gliclazide (120),
memantine (120), and emodin (127) have inhibitory effects on
the channel activity of some viroporins (Table 2). Recent studies
have demonstrated synergistic antiviral effects achieved by the
combination of adamantanes and novel compounds (287), which
provides directions for the development of viroporins inhibitory
drugs. Currently, some other pharmacological inhibitors against
viroporins (e.g., pyrin B, BIT225, DIDS, and divalent copper
complexes) have been reported (14, 166, 181, 288). However,
none of these drugs has an effective inhibitory effect against most
viroporin activity at this stage, and therefore, new anti-viroporins
drugs are urgently needed to be developed. In addition to
antiviral drug research, attenuated viruses lacking viroporins
are increasingly being suggested as vaccine candidates (289–291).

Although viroporins are increasingly studied, their protein
families are expanding, and their functions are better
June 2022 | Volume 13 | Article 890549
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understood, many aspects remain unclear, and future studies on
this area should continue to elucidate the structure, function, and
mechanism of such viral proteins to develop a library of antiviral
targets across multiple virus families.
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5. Madan V, Castelló A, Carrasco L. Viroporins From RNA Viruses Induce
Caspase-Dependent Apoptosis. Cell Microbiol (2008) 10(2):437–51.
doi: 10.1111/j.1462-5822.2007.01057.x
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91. Nieto-Torres JL, Verdiá-Báguena C, Castaño-Rodriguez C, Aguilella VM,
Enjuanes L. Relevance of Viroporin Ion Channel Activity on Viral Replication
and Pathogenesis. Viruses (2015) 7(7):3552–73. doi: 10.3390/v7072786

92. Moffat K, Knox C, Howell G, Clark SJ, Yang H, Belsham GJ, et al. Inhibition of
the Secretory Pathway by Foot-and-Mouth Disease Virus 2BC Protein is
Reproduced by Coexpression of 2B With 2C, and the Site of Inhibition is
Determined by the Subcellular Location of 2C. J Virol (2007) 81(3):1129–39.
doi: 10.1128/jvi.00393-06

93. Zhi X, Zhang Y, Sun S, Zhang Z, Dong H, Luo X, et al. NLRP3 Inflammasome
Activation by Foot-And-Mouth Disease Virus Infection Mainly Induced by
Viral RNA and non-Structural Protein 2B. RNA Biol (2020) 17(3):335–49.
doi: 10.1080/15476286.2019.1700058

94. Liu H, Xue Q, Cao W, Yang F, Ma L, Liu W, et al. Foot-And-Mouth Disease
Virus Nonstructural Protein 2B Interacts With Cyclophilin A, Modulating
Virus Replication. FASEB J (2018) 32(12):fj201701351. doi: 10.1096/
fj.201701351

95. Liu H, Xue Q, Zhu Z, Yang F, Cao W, Liu X, et al. Foot-And-Mouth Disease
Virus Inhibits RIP2 Protein Expression to Promote Viral Replication. Virol
Sin (2021) 36(4):608–22. doi: 10.1007/s12250-020-00322-2

96. Li M, Xin T, Gao X, Wu J, Wang X, Fang L, et al. Foot-And-Mouth Disease
Virus non-Structural Protein 2B Negatively Regulates the RLR-Mediated IFN-
b Induction. Biochem Biophys Res Commun (2018) 504(1):238–44.
doi: 10.1016/j.bbrc.2018.08.161

97. Zhu Z, Wang G, Yang F, CaoW, Mao R, Du X, et al. Foot-And-Mouth Disease
Virus Viroporin 2b Antagonizes RIG-I-Mediated Antiviral Effects by
Inhibition of Its Protein Expression. J Virol (2016) 90(24):11106–21.
doi: 10.1128/jvi.01310-16

98. Zhu Z, Li C, Du X, Wang G, Cao W, Yang F, et al. Foot-And-Mouth Disease
Virus Infection Inhibits LGP2 Protein Expression to Exaggerate Inflammatory
Response and Promote Viral Replication. Cell Death Dis (2017) 8(4):e2747.
doi: 10.1038/cddis.2017.170

99. Liu H, Zhu Z, Xue Q, Yang F, Cao W, Zhang K, et al. Foot-And-Mouth
Disease Virus Antagonizes NOD2-Mediated Antiviral Effects by Inhibiting
NOD2 Protein Expression. J Virol (2019) 93(11):e00124–19. doi: 10.1128/
jvi.00124-19

100. Heinz BA, Vance LM. The Antiviral Compound Enviroxime Targets the 3A
Coding Region of Rhinovirus and Poliovirus. J Virol (1995) 69(7):4189–97.
doi: 10.1128/jvi.69.7.4189-4197.1995

101. Sandoval IV, Carrasco L. Poliovirus Infection and Expression of the
Poliovirus Protein 2B Provoke the Disassembly of the Golgi Complex, the
Organelle Target for the Antipoliovirus Drug Ro-090179. J Virol (1997) 71
(6):4679–93. doi: 10.1128/jvi.71.6.4679-4693.1997
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156. Zamarin D, Garcıá-Sastre A, Xiao X, Wang R, Palese P. Influenza Virus PB1-
F2 Protein Induces Cell Death Through Mitochondrial ANT3 and VDAC1.
PloS Pathog (2005) 1(1):e4. doi: 10.1371/journal.ppat.0010004

157. La Gruta NL, Thomas PG, Webb AI, Dunstone MA, Cukalac T, Doherty PC,
et al. Epitope-Specific TCRbeta Repertoire Diversity Imparts No Functional
Advantage on the CD8+ T Cell Response to Cognate Viral Peptides. Proc
Natl Acad Sci U.S.A. (2008) 105(6):2034–9. doi: 10.1073/pnas.0711682102

158. Le Goffic R, Bouguyon E, Chevalier C, Vidic J, Da Costa B, Leymarie O, et al.
Influenza A Virus Protein PB1-F2 Exacerbates IFN-Beta Expression of
Human Respiratory Epithelial Cells. J Immunol (2010) 185(8):4812–23.
doi: 10.4049/jimmunol.0903952

159. Varga ZT, Grant A, Manicassamy B, Palese P. Influenza Virus Protein PB1-
F2 Inhibits the Induction of Type I Interferon by Binding to MAVS and
Decreasing Mitochondrial Membrane Potential. J Virol (2012) 86(16):8359–
66. doi: 10.1128/jvi.01122-12

160. Dudek SE, Wixler L, Nordhoff C, Nordmann A, Anhlan D, Wixler V, et al.
The Influenza Virus PB1-F2 Protein has Interferon Antagonistic Activity.
Biol Chem (2011) 392(12):1135–44. doi: 10.1515/bc.2011.174

161. Cheung PH, Lee TT, Kew C, Chen H, Yuen KY, Chan CP, et al. Virus
Subtype-Specific Suppression of MAVS Aggregation and Activation by PB1-
F2 Protein of Influenza A (H7N9) Virus. PloS Pathog (2020) 16(6):e1008611.
doi: 10.1371/journal.ppat.1008611

162. Varga ZT, Ramos I, Hai R, Schmolke M, Garcıá-Sastre A, Fernandez-Sesma
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