
Li et al. Acta Neuropathologica Communications 2014, 2:93
http://www.actaneurocomms.org/content/2/1/93
RESEARCH Open Access
Integrated multi-cohort transcriptional
meta-analysis of neurodegenerative diseases
Matthew D Li1*†, Terry C Burns1,2†, Alexander A Morgan1 and Purvesh Khatri1,3*
Abstract

Introduction: Neurodegenerative diseases share common pathologic features including neuroinflammation,
mitochondrial dysfunction and protein aggregation, suggesting common underlying mechanisms of
neurodegeneration. We undertook a meta-analysis of public gene expression data for neurodegenerative diseases
to identify a common transcriptional signature of neurodegeneration.

Results: Using 1,270 post-mortem central nervous system tissue samples from 13 patient cohorts covering four
neurodegenerative diseases, we identified 243 differentially expressed genes, which were similarly dysregulated in
15 additional patient cohorts of 205 samples including seven neurodegenerative diseases. This gene signature
correlated with histologic disease severity. Metallothioneins featured prominently among differentially expressed
genes, and functional pathway analysis identified specific convergent themes of dysregulation. MetaCore network
analyses revealed various novel candidate hub genes (e.g. STAU2). Genes associated with M1-polarized macrophages
and reactive astrocytes were strongly enriched in the meta-analysis data. Evaluation of genes enriched in neurons
revealed 70 down-regulated genes, over half not previously associated with neurodegeneration. Comparison with
aging brain data (3 patient cohorts, 221 samples) revealed 53 of these to be unique to neurodegenerative disease,
many of which are strong candidates to be important in neuropathogenesis (e.g. NDN, NAP1L2). ENCODE ChIP-seq
analysis predicted common upstream transcriptional regulators not associated with normal aging (REST, RBBP5,
SIN3A, SP2, YY1, ZNF143, IKZF1). Finally, we removed genes common to neurodegeneration from disease-specific
gene signatures, revealing uniquely robust immune response and JAK-STAT signaling in amyotrophic lateral sclerosis.

Conclusions: Our results implicate pervasive bioenergetic deficits, M1-type microglial activation and gliosis as unifying
themes of neurodegeneration, and identify numerous novel genes associated with neurodegenerative processes.
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Introduction
Neurodegenerative diseases promise to exert an increas-
ingly onerous toll on society’s aging population in the com-
ing years [1]. However, despite decades of research and
hundreds of unique animal models, no therapy has yet
emerged to overcome the insidious loss of neurons in
neurodegenerative diseases such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s disease (HD),
amyotrophic lateral sclerosis (ALS), or frontotemporal lobar
dementia (FTLD). The diversity of identified contributors
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to neurodegeneration, including vascular pathology [2],
excitotoxicity [3], oxidative stress [4], prior traumatic brain
injury [5], environmental exposures [6], and genetic
mutations in mitochondrial [7], RNA processing [8],
proteasomal and autophagy-related genes [9], points to a
multiple-hit hypothesis of neurodegeneration. In contrast
to deterministic animal models wherein neurodegenera-
tion may be induced through a single mutation and cured
with a single compound [10], most human neurodegener-
ation occurs sporadically and may therefore reflect the
cumulative effects of numerous low penetrance risk
factors and stressors.
Despite the challenges posed in identifying the individ-

ual causes of neurodegeneration, common themes of
mitochondrial dysfunction, protein aggregation, oxidative
stress and neuroinflammation have emerged in most
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neurodegenerative diseases [11,12]. Increasing numbers
of transcriptome studies have addressed individual neuro-
degenerative diseases, including those focused on under-
standing regional susceptibility [13], disease progression
[14], cell type-specific signals [15], and disease-specific
meta-analysis [16]. However, these studies are usually
limited by relatively small sample sizes and significant
heterogeneity between experiments, particularly in the tis-
sue sampled, expression analysis platform, sample procure-
ment method, and background of the investigated patient
populations. Availability of large amounts of expression
profiling data in public repositories such as the NCBI Gene
Expression Omnibus (GEO) and EBI ArrayExpress presents
novel opportunities to carry out an integrated multi-cohort
analysis of diseases, and such data has been used to identify
common transcriptional signatures in cancer and infections
[17,18]. There are approximately 40 publicly available gene
expression microarray studies that profiled brain tissue in
neurodegenerative diseases. Collectively these studies better
represent the heterogeneity of neurodegeneration observed
in the real world as different research groups carried out
these experiments independently using different tissue sam-
ples and microarray technologies. However, this inherent
heterogeneity in public data also presents challenges in
terms of how to integrate these independent studies
cohesively into a single analysis. We recently proposed a
meta-analysis approach that leverages the heterogeneity
across different data sets to identify robust, reproducible
disease gene signatures. We have successfully used this
meta-analysis approach to reveal novel insights into lung
cancer [19] and to predict FDA-approved drugs that can be
repurposed to treat organ transplant patients [20].
No systematic multi-cohort analysis has yet evaluated

transcriptional alterations that are conserved across neu-
rodegenerative diseases. We applied our meta-analysis
approach to analyze publicly available gene expression
datasets of post-mortem central nervous system (CNS)
tissue for AD, HD, PD, and ALS. We hypothesized that
such an analysis would identify the transcriptional alter-
ations that define neurodegeneration, regardless of the
specific neurodegenerative disease. Our results identified
a conserved signature of neurodegeneration, applicable
even to variants of FTLD, which were not included in
the original meta-analysis. We analyzed this signature
with respect to normal aging brain gene expression data,
cell type specificity, microglial polarization and gliosis,
revealing novel insights into the neurodegenerative
process. Finally, we identified patterns of gene dysregula-
tion unique to each neurodegenerative disease relative to
the others.

Materials and methods
All analyses were completed in R/Bioconductor unless
otherwise noted. Heat maps were generated using the R
package pheatmap [21]. The analysis workflow is shown
in Figure 1.

Data collection and pre-processing
We searched the public data repository ArrayExpress
(search date: March 15, 2014) for gene expression
microarray data sets from neurodegenerative disease
experiments using the search terms “neurodegeneration,”
“dementia”, “Alzheimer”, “Parkinson”, “Huntington”,
“amyotrophic lateral sclerosis”, “frontotemporal”, “motor
neurone disease”, “spinocerebellar ataxia”, “spinal muscu-
lar atrophy” and “prion”. We first identified data sets that
satisfied the following criteria: (1) samples were from hu-
man post-mortem CNS tissue samples, (2) the data was
originally acquired using a genome-wide gene expression
microarray platform, (3) the microarray platform had rea-
sonably accessible and clear probe-to-gene mapping anno-
tations and (4) there were ≥5 cases and ≥5 controls total
for the relevant patient cohort in each data set. We identi-
fied a total of 28 patient cohorts containing 1475 samples
from 19 independent data sets that satisfied these criteria.
Note that some data sets included more than one disease:
we refer to each disease-specific group and its respective
control group as a patient cohort.
Next, we divided these patient cohorts into two groups

based on their sample sizes. We chose smaller patient co-
horts (<100 samples) for the initial meta-analysis (Discov-
ery cohorts), and we reserved larger patient cohorts (>100
samples) for validation analysis (Validation cohorts). For
the discovery cohorts, we ensured that there were at least
two patient cohorts for each disease that met our selection
criteria. We then identified up to three different CNS re-
gions affected by the disease process at the transcriptional
level in each specific neurodegenerative disease, as identi-
fied in the included studies [16,22-37] (e.g. AD pathology
involves the entorhinal cortex, hippocampus and frontal
cortex; see Table 1 for all CNS regions used). We sepa-
rated the patient cohorts by these CNS regions, and we se-
lected the largest independent cohort by sample size for
each region. Thus, in the discovery cohorts, we used two
to three different disease-affected brain regions for each
disease. If a patient cohort contained samples from mul-
tiple CNS regions in the same individuals, we used that
data set only once, selecting samples from a single CNS
region. This approach ensured that every sample in the
analysis came from a different individual. When possible,
for data sets including multiple CNS regions, we took ad-
vantage of the opportunity to use disease-affected regions
not represented in other data sets to ensure regional
generalizability. Based on these criteria, we chose 10 pa-
tient cohorts containing 285 samples to include in the dis-
covery cohorts.
For the validation cohorts, we used three patient co-

horts containing 985 samples from AD and HD patients.



Figure 1 Meta-analysis workflow schematic. See Materials and Methods for details. GSEA, Gene Set Enrichment Analysis; TF, transcription factor.
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We performed a secondary validation meta-analysis on
the 15 remaining patient cohorts (205 samples) that met
our inclusion criteria, which included several smaller
studies of PD and AD as well as five variants of FTLD.
The GEO accession numbers of the data sets used in
our analysis are summarized in Table 1 [16,22-37].
Because the available data sets use many different

microarray platforms, we downloaded the processed
gene expression data for each data set, most of which
were associated with peer-reviewed publications analyz-
ing the data. Phenotypic data for each sample were also
extracted where available. We log2 transformed and
quantile normalized gene expression signal intensities
within each data set, if not already processed as such.

Gene expression meta-analysis
We conducted gene expression meta-analysis by com-
bining effect sizes (standardized mean differences) as
previously described in detail [20]. This approach deter-
mines a meta-effect size for each gene, which estimates
the change in gene expression across all data sets given
a common two-class comparison (i.e. disease vs. con-
trol). Microarray probes from each data set were
mapped onto HUGO gene symbols. If a probe matched
more than one gene, an additional record was added for
each mapped gene. The effect size for each gene in each
data set was estimated as Hedge’s adjusted g. If multiple
probes matched to a gene, that gene’s effect size was
summarized using the fixed effects inverse-variance
model. Study-specific effect sizes were then combined to
determine the pooled effect size and its standard error
using the random effects inverse-variance technique.
Nominal p-values were determined by comparing a
Z-statistic (ratio of the pooled effect size to its standard
error for each gene) to a standard normal distribution.
The p-values were corrected for multiple hypotheses
testing using Benjamini-Hochberg false discovery rate
(FDR) correction [39]. In the discovery meta-analysis,
genes were deemed to be significantly differentially
expressed if FDR ≤ 5% and the gene was measured in all
10 patient cohorts.

Leave-one-disease-out analysis
In order to ensure that our meta-analysis was not influ-
enced by or biased towards a specific neurodegenerative
disease, we repeated our meta-analysis four times by re-
moving data sets corresponding to one disease at a time
(e.g. in the first iteration, HD data sets were removed,
and the meta-analysis was completed on the combined
AD, PD, and ALS data sets). At each iteration, we iden-
tified significantly differentially expressed genes (FDR ≤
5%). Genes that were significant, irrespective of which
subset of neurodegenerative diseases were analyzed,
formed the pre-validation common neurodegeneration



Table 1 Summary of public gene expression data sets used in the discovery, validation, and secondary validation data
set meta-analyses

Disease Accession # Study first
author

Year Citation Cases Controls Total
samples

Tissue source

Discovery ALS GSE4595 Lederer 2007 [22] 11 9 20 Motor cortex

ALS GSE26927 Durrenberger 2012 [23] 10 10 20 Cervical spinal cord

HD GSE3790 Hodges 2006 [24] 19 16 35 Motor cortex

HD GSE26927 Durrenberger 2012 [23] 10 10 20 Ventral head of caudate nucleus

PD GSE7621 Lesnick 2007 [25] 16 9 25 Substantia nigra

PD E-MTAB812 Dumitriu 2012 [26] 27 26 53 Dorsolateral prefrontal cortex

PD GSE20291 Zhang 2005 [27] 15 20 35 Putamen

AD GSE29378 Miller 2013 [28] 16 16 32 Hippocampus (CA1)

AD GSE36980 Hokama 2013 [29] 15 12 27 Frontal cortex

AD GSE26927 Durrenberger 2012 [23] 11 7 18 Entorhinal cortex

TOTAL 150 135 285

Validation HD GSE33000 Zhu 2013 a 157 155 312 Dorsolateral prefrontal cortex

AD GSE33000 Zhu 2013 b 310 c 310 Dorsolateral prefrontal cortex

AD GSE15222 Webster 2009 [30] 176 187 363 Various cortical regions

TOTAL 643 342 985

Secondary validation PD GSE26927 Durrenberger 2012 [23] 12 8 20 Substantia nigra

PD GSE20333 Grunblatt 2004 [31] 6 6 12 Substantia nigra

PD GSE20164 Hauser 2005 [32] 6 5 11 Substantia nigra

PD GSE20163 Zheng 2010 [16] 8 9 17 Substantia nigra

PD GSE8397 Moran 2006 [33] 9 7 16 Lateral substantia nigra

PD GSE7307 Roth 2008 a 5 13 18 Putamen

PD GSE19587 Lewandowski 2010 [34] 6 5 11 Dorsal motor nucleus of
Vagus nerve

PD GSE20146 Zheng 2010 [16] 10 10 20 Globus pallidus interna

AD GSE1297 Blalock 2004 [35] 22 9 31 Hippocampus

AD E-MEXP2280 Bronner 2009 [36] 5 5 10 Medial temporal lobe

PiD E-MEXP2280 Bronner 2009 [36] 5 d 5 Medial temporal lobe

PSP E-MEXP2280 Bronner 2009 [36] 5 d 5 Medial temporal lobe

FTLD (C) E-MEXP2280 Bronner 2009 [36] 5 d 5 Medial temporal lobe

FTLD-U (GRN+) GSE13162 Chen-Plotkin 2008 [37] 6 8 14 Frontal cortex

FTLD-U (GRN-) GSE13162 Chen-Plotkin 2008 [37] 10 e 10 Frontal cortex

TOTAL 120 85 205

See Additional file 1: Table S1 for individual sample accession numbers. ALS, amyotrophic lateral sclerosis; HD, Huntington’s disease; PD, Parkinson’s disease; AD,
Alzheimer’s disease; PiD, classical Pick’s disease; PSP, progressive supranuclear palsy; FTLD, frontotemporal lobar dementia; FTLD (C), FTLD Constantinidis type C;
FTLD-U, FTLD with ubiquitin- and TDP-43-positive inclusions; GRN+/−, progranulin mutation positive/negative. anot published yet; bpublished in part in [38]; csame
control samples as the GSE33000 HD data; dsame control samples as the E-MEXP-2280 PiD data; esame control samples as the GSE13162 FTLD-U (GRN+) data.
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module (CNM). We have previously shown the utility of
the leave-one-disease-out approach in identifying a ro-
bust gene expression signature during acute rejection
across different transplanted solid organs [20].

Validation analyses
We first validated each of the genes in the CNM in the
three large patient cohorts, including two AD data sets
[30,38] and a HD data set (not yet published) (Table 1).
We used the meta-analysis approach described above to
identify significantly differentially expressed genes across
the three validation data sets (FDR ≤ 5%). Genes that were
significantly differentially expressed in the same direction
in both the discovery and validation analyses were consid-
ered validated. We removed the genes from the CNM that
were not validated in the independent cohorts.



Table 2 Summary of public gene expression data from
normal aging human brain studies used in analysis

Accession # Sample tissue
source

Citation Total
samples

Age range

GSE11882 Hippocampus [44] 43 20 to 99 years

GSE1572 Frontal Cortex [45] 30 26 to 106 years

GSE30272 Dorsolateral
Prefrontal Cortex

[46] 148a 20 to 78 years

TOTAL 221
adata set restricted to individuals > 20 years old, lowering the sample size
to 148.
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We further validated the CNM in 15 additional patient
cohorts containing 205 samples from 10 studies of PD,
AD, and variants of frontotemporal dementia (Table 1).

Analysis of the CNM association with histologic disease
severity
Some of the data sets used provided neuropathological
annotations. In three data sets from the discovery co-
horts, there were Braak stage and Huntington grade in-
formation for each sample [24,28,29]. To assess the
CNM’s association with histologic disease severity, we
calculated the geometric mean of the gene expression
intensity for the up-regulated and down-regulated com-
ponents of the CNM separately within each sample.
The geometric mean of the CNM was centered and
standardized across all samples in a given experiment,
giving a z-score. We also calculated the difference be-
tween the up-regulated CNM z-score and the down-
regulated CNM z-score in each sample. Jonckheere
trend test was used to evaluate the significance of trends
(two-tailed test). We generated bar plots using the R
package ggplot2 [40].

Gene ontology, pathway, and network analysis
We used Gene Set Enrichment Analysis (GSEA) [41] to
identify the enrichment of pre-established gene sets
across neurodegenerative diseases. We used the GSEA
PreRank option to input the complete list of genes with
their corresponding meta-effect sizes from the discov-
ery meta-analysis, regardless of significance. This ap-
proach allowed us to first assess pathway enrichment
without arbitrary thresholds for significance. We used
the curated gene sets for Gene Ontology (GO) terms
from the Broad Institute’s Molecular Signature Database
(MSigDB). We set the false discovery rate q-value ≤ 0.05
as the threshold for significance. We constructed net-
works of overlapping significantly enriched gene sets
using the EnrichmentMap plugin in the Cytoscape
software [42,43].
The MetaCore software suite (Thomson Reuters) was

used to functionally analyze the CNM and generate gene
networks. We set the background gene list in MetaCore
to all of the genes assessed in all 10 discovery cohorts.
We conducted enrichment analysis of the CNM for
MetaCore’s curated pathways. We then generated a net-
work from CNM genes using only the direct interactions
between network objects. We generated additional net-
works using the default “analyze network” algorithm in
MetaCore (50 nodes per sub-network).
The MetaCore “Interactions by Protein Functions”

tool was used to identify proteins that are functionally
over-connected with proteins corresponding to genes in
the CNM. We opted to include protein complexes in
this analysis.
Correlation with normal aging
We investigated the correlation of each gene in the
CNM with normal brain aging. We searched the EBI
ArrayExpress for aging CNS microarray data sets. We
identified three independent normal aging human CNS
data sets (221 samples) from various tissues that had a
minimum of 30 samples per experiment covering a
broad age range (Table 2) [44-46]. For a data set that
used samples from multiple CNS areas, we only used
samples from the hippocampus because it has been re-
ported to vary the least based on gender [44]. For each
CNM gene in each data set, we determined Kendall’s tau
coefficient between log2 transformed gene signal inten-
sity and age using the “Kendall” R package [47]. In this
package, when ties are present in the data, a normal ap-
proximation with continuity correction is made. If more
than one probe existed for each gene, the geometric
mean of the signal intensity of the multiple probes was
used. Genes that were positively (negatively) correlated
with a p-value ≤ 0.05 in ≥2 out of 3 of the normal aging
CNS data sets were deemed to be significantly positively
(negatively) correlated with aging.
We used the Database for Annotation, Visualization

and Integrated Discovery (DAVID) [48] tool to assess
the enrichment for GO terms in the aging correlated
and non-correlated components of the CNM.

Assessment of cell type specificity in differentially
expressed genes
To evaluate whether the CNM may reflect changes in
cell-type composition, we assessed the overlap between
our module and genes enriched in isolated neurons, as-
trocytes, oligodendrocytes [49,50], microglia or periph-
eral macrophages [51,52] from normal mice, as well as
genes enriched in astrocytes isolated from mice follow-
ing stroke or LPS treatment [53]. While these data sets
were derived from multiple experiments and could not
be compared directly, they all used the same platform,
the Affymetrix Mouse Genome 430 2.0 Array. This
permitted us to use the Gene Expression Commons
(GEXC) tool [52] to evaluate gene expression activity in
these cell type specific data sets relative to 11,939 public
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gene array data sets, which allows for the classification
of genes as “active” or “inactive”. We used the “Expression
Pattern Search” function in GEXC to identify genes from
the CNM that were “active” in the cell type of interest
and “inactive” in all others. We then performed manual
visualization of differential gene expression in GEXC to
confirm and finalize the assigned cell-type enrichment cat-
egory for each gene in the CNM. For genes only modestly
differentially expressed between neurons, oligodendro-
cytes and astrocytes, we deferred to the directly compared
cell type-specific gene lists from [49]. Genes not enriched
in a single given cell type based on these criteria were
regarded as not being cell-type specific.

Assessment of enrichment for microglia polarization
states and gliosis
We created custom gene sets from published gene lists
generated from transcriptome analyses of human M1
and M2-polarized macrophages [54], microglia from the
end stage of a mouse model of ALS [55], and astrocytes
from mice 24 hours following treatment with lipopoly-
saccharide (LPS) or middle cerebral artery occlusion
(MCAO) [53]. For the mouse data, we downloaded the
gene lists and converted mouse gene symbols to human
HUGO gene symbols prior to inputting the custom gene
sets into GSEA [41]. We used the GSEA PreRank option
to assess the enrichment for these custom gene sets
in the complete list of discovery meta-analysis genes
with their corresponding meta-effect sizes, regardless of
significance.

Identification of enriched transcription factors using
ENCODE data
We used the ENCODE ChIP-Seq Significance Tool [56]
to identify transcription factors enriched in the up-
regulated and down-regulated components of the CNM.
We used the following parameters: organism, human
(hg19); regulatory element type, protein-coding genes;
ID type, symbol; background regions, a list of all genes
assessed across all 10 discovery data sets; analysis win-
dow center, TSS/5′ end (transcription start site); up-
stream and downstream window size relative to TSS,
500 bp; and cell lines, all. We repeated this analysis for
genes positively and negatively correlated with aging and
for published gene lists where indicated.

Identification of unique disease-specific patterns of gene
expression changes
To identify patterns in gene expression changes that are
unique to each of the neurodegenerative diseases evalu-
ated, for each specific disease, we repeated the afore-
mentioned gene expression meta-analysis on the disease
by itself, as well as separately on the other three diseases
together. We then removed genes from the individual
disease meta-analysis output gene list that were signifi-
cantly differentially expressed from the three-disease
meta-analysis (FDR ≤ 0.05), thereby omitting common
differentially expressed genes in neurodegeneration from
disease-specific gene lists. We restricted the gene lists to
genes that were measured in all 10 data sets. The result-
ing individual disease meta-analysis gene list was then
input into GSEA PreRank for assessment of GO term
enrichment as described earlier.

Results
Meta-analysis identifies a common gene signature of
neurodegeneration
For our discovery meta-analysis of neurodegenerative
diseases, we collected microarray data sets containing
10 independent patient cohorts that profiled human
post-mortem CNS tissues in 285 samples (150 cases, 135
controls) (Table 1, Additional file 1: Table S1) [22-29].
These samples were obtained from various cortical re-
gions, hippocampus, basal ganglia, and spinal cord in
four neurodegenerative diseases (AD, PD, HD, and ALS).
These experiments used seven different gene expression
microarray platforms. As some data sets do not provide
raw data and optimal microarray pre-processing tech-
niques differ across platforms, we downloaded processed
signal intensities, and checked that all data were log2
transformed and quantile normalized across all samples
in the specific experiment. If not, we log2 transformed
and quantile normalized the data. We used disease phe-
notypes as defined in the original publications for dis-
ease versus control tissue comparisons. The included
studies also generally showed an effort to age-match
cases and controls.
To identify the most robust and consistently differen-

tially expressed genes across neurodegenerative diseases,
we used a gene expression meta-analysis approach [20].
Briefly, this approach combines the effect sizes, calcu-
lated as Hedges’ adjusted g, for each gene from each data
set to estimate a standardized mean difference in gene
expression (see Materials and Methods for details). For a
gene to be considered differentially expressed in the
meta-analysis, we required it to be measured in all 10
patient cohorts and for its effect size to have a signifi-
cant false discovery rate (FDR ≤ 5%). This analysis
yielded lists of 3,078 and 3,565 significantly up-regulated
and down-regulated genes, respectively (Additional file 1:
Table S2).
However, because of the heterogeneity in effect sizes,

it is possible that some of the genes may be differentially
expressed in one or more neurodegenerative diseases,
but not all. Because our goal is to identify a set of com-
mon genes that are differentially expressed in the same
direction across all neurodegenerative diseases, we car-
ried out “leave-one-disease-out” analysis. In this analysis,
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we repeated the meta-analysis four additional times,
each time removing patient cohorts corresponding to
one disease prior to analysis of the remaining patient co-
horts for the other three diseases. Genes that remained
significantly differentially expressed (FDR ≤ 5%) in all
four iterations of the “leave-one-disease-out” analysis
were considered to represent the common genes dysreg-
ulated across neurodegenerative diseases. We identified
322 such consistently differentially expressed genes (95
up-regulated, 227 down-regulated) irrespective of which
subset of neurodegenerative diseases were analyzed
(Additional file 1: Table S3). It is possible that there may
still be significant heterogeneity in the effect sizes of
these genes between different neurodegenerative dis-
eases; however, this heterogeneity may indicate that the
same pathway is expressed at different levels between
neurodegenerative diseases, but in the same direction.
Therefore, we did not further consider this heterogeneity
for the 322 genes.
Next, we validated these genes in three additional patient

cohorts of neurodegenerative disease consisting of 985
samples (643 cases, 342 controls) (Table 1, Additional file
1: Table S1) [30,38]. These data sets profiled human post-
mortem CNS tissue samples from patients with AD or
HD. Large validation data sets were not publicly available
for PD and ALS. We found 73/95 (76.8%) up-regulated
genes and 170/227 (74.9%) down-regulated genes (total of
243 genes) were also significantly differentially expressed
in the validation cohorts (Figure 2 and Additional file 2:
Figure S1). Henceforth, these 243 validated genes are re-
ferred to as a common neurodegeneration module (CNM)
(Table 3 and Additional file 1: Table S4).
Finally, we extended our analysis to include data sets

and neurodegenerative diseases that were not part of
the discovery or validation cohorts in order to test the
generalizability of the CNM. This secondary validation in-
cluded 205 samples from 15 patient cohorts from 10 inde-
pendent experiments, including PD, AD, and five variants
of FTLD (Table 1, Additional file 1: Table S1). Restricting
our analysis to the 243 CNM genes, 42/72 (65.3%) and
156/170 (91.7%) of the up- and down-regulated CNM
genes were differentially expressed in this secondary valid-
ation meta-analysis (because some data sets did not assess
all 243 CNM genes, we only required the gene to be
assessed in half the experiments to be included in the ana-
lysis, but one of the 73 up-regulated CNM genes did not
meet this criteria). Since these data sets were small and
inherently noisy, we did not further alter our CNM gene
list based on the results of this secondary validation
meta-analysis. Nevertheless, visual inspection of a heat
map of the CNM genes (Figure 2 and Additional file 2:
Figure S2) show that the CNM pattern of expression
is generally highly consistent between the discovery, val-
idation and secondary validation meta-analyses, further
supporting the generalizability of the CNM to neurode-
generative diseases.
Two PD data sets (GSE19587 and GSE20146) in the sec-

ondary validation analysis did not show the CNM pattern
of expression. In GSE19587, tissue was sampled from the
dorsal motor nucleus of the Vagus nerve [34], which
showed uniquely decreased cerebral blood volume in PD
on MRI relative to other brainstem regions. The impact of
vascular perfusion on gene expression in neurodegenera-
tion requires further evaluation. GSE20146 used samples
from the globus pallidus interna [57] a region not typically
associated with the neurodegenerative aspect of PD.
In addition, we assessed the association of the CNM

with histologic disease severity in individual patient
samples. Three of the discovery cohorts categorized pa-
tients based upon histologic criteria of disease severity,
including “HD grade” [24] and AD Braak stage [28,29].
It should be noted that disease severity was not considered
during meta-analysis, and every sample was classified as
either “control” or “case.” We calculated the geometric
mean of up-regulated and down-regulated CNM genes
separately for each sample, as well as the difference. We
found that the geometric mean of the up-regulated CNM
genes increases with disease severity, while that of the
down-regulated CNM genes decreases with disease sever-
ity (Figure 3). Furthermore, the difference in each sample
between the geometric mean of the upregulated CNM
genes and down-regulated CNM genes increases with dis-
ease severity. This trend was statistically significant (two-
sided p < 0.05, Jonckheere’s trend test) in five of the six
cases where the up-regulated and down-regulated compo-
nents were analyzed separately and in all three cases when
the difference was analyzed. In summary, the CNM repre-
sents a shared core signature of neurodegeneration and is
associated with disease severity.

Meta-analysis highlights common mechanisms of
neurodegenerative diseases
We hypothesized that the results of our meta-analysis
would enable us to identify conserved pathways dysregu-
lated across neurodegenerative diseases. We used Gene
Set Enrichment Analysis (GSEA) [41] to evaluate the en-
richment of Gene Ontology (GO) terms in the complete
ranked gene list from the discovery meta-analysis, prior
to “leave-one-disease-out” analysis and validation ana-
lysis (Figure 1). Using the GSEA PreRank option and the
discovery meta-analysis gene list, we found that 10 and
48 GO terms were significantly enriched (FDR ≤ 5%) in
neurodegeneration and normal control tissue, respect-
ively (Additional file 1: Table S5). We further generated
networks connecting overlapping GO gene sets to aid
in the interpretation of these results (Figure 4A and
Additional file 2: Figure S3). We found that gene sets
enriched in neurodegeneration relative to control tissue



Figure 2 Meta-analysis and leave-one-disease-out analysis reveal common differentially expressed genes across neurodegenerative
diseases. Heat map shows consistent differential expression in the discovery, validation, and secondary validation data sets. Columns denote CNM
genes ranked from highest to lowest standardized mean difference (Hedges’ g in log2 scale), from left to right. Rows denote data sets used in each
stage of meta-analysis. Heat map colors indicate Hedges’ g in log2 scale. Refer to Table 1 for data set information. ALS, amyotrophic lateral sclerosis;
HD, Huntington’s disease; PD, Parkinson’s disease; AD, Alzheimer’s disease; PiD, classical Pick’s disease; FTLD, frontotemporal lobar dementia (Constantinidis
type C); PSP, progressive supranuclear palsy; FTLD-GRNpos, frontotemporal lobar dementia with ubiquitin- and TDP-43-positive inclusions, progranulin
mutation positive; FTLD-GRNneg, frontotemporal lobar dementia with ubiquitin- and TDP-43-positive inclusions, progranulin mutation negative.
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formed clusters relating to NFκB signaling, immune re-
sponse and cytokine binding, whereas gene sets enriched
in control tissue relative to neurodegeneration included
clusters relating to mitochondrial and oxidative metabol-
ism, cation channel activity, synaptic transmission, protein
channel regulation, and nucleotide metabolism. Although
not clustered together, the proteasome complex and ubi-
quitin cycle, which are both related to protein degrad-
ation, were both enriched in control tissue. Collectively,
these findings are consistent with established literature re-
garding common pathways in neurodegenerative diseases,
including chronic neuroinflammation, oxidative stress,
mitochondrial dysfunction, altered synaptic transmission,
and disrupted protein degradation [12].

Network analyses reveal shared pathways and hub genes
in neurodegeneration
To gain insight into the functional characteristics of
the CNM specifically, we used MetaCore, an integrated
functional analysis tool based on a manually curated
database of published molecular biology data. Enrich-
ment analysis in MetaCore for disease biomarkers,
process networks, and pathway maps largely reiterated
what we found in the Gene Ontology analysis, with the
additional identification of gene sets related to altered
cell adhesion, cytoskeletal changes, and endocrine sig-
naling (Additional file 1: Table S6).
We then used MetaCore to generate a network, which

was restricted to direct interactions between the protein
products of input genes to conservatively avoid poten-
tially spurious interactions. From the 243 CNM genes, a
network of 43 directly connected proteins was identified
(Figure 4B) centered on the hub gene CEBPB. CEBPB
(CCAAT-enhancer binding protein beta), which is up-
regulated in the CNM (Additional file 2: Figure S4), is
a transcription factor known to be involved in regulating
inflammatory responses. It has recently been shown to
be up-regulated in AD and ALS microglia [58,59].



Table 3 Common neurodegeneration module (CNM) genes

Up-regulated Down-regulated

NUPR1 CXCR4 RGS4 PSMC3 OXCT1 ATP5C1 DLG3

NXT1 ELF1 DCLK1 PDHB ATP6V1A PPEF1 RPL15

MT2A CEBPB PCP4 PLCB1 HARS RTN3 COQ7

ITPKB RAB7L1 INA GABRA1 RFK TUBG2 ACSL6

MT1X THOC1 ATP6V1G2 HMP19 NEDD8 AP3B2 RFC3

MT1H IFITM3 TAC1 TAGLN3 RNMT CEP170B COPS8

AEBP1 IFITM2 REEP1 NDN CACNB1 FIS1 API5

MT1F SLCO4A1 SCG3 G3BP2 LANCL1 MKKS GLYR1

HSPB1 TIPARP CHGB UBE2N TCEAL4 ACP1 CLASP2

TNFRSF1A LRP10 SST CDK5 NLK TIMM17A LRRC8B

FAM107A NPC2 PCSK1 RPA3 RTCA PSMD1

NFKBIA TREM2 HIGD1A KIFAP3 PPP3CB CHN1

BCL6 IFI30 MOAP1 PEX11B RNF11 RAB3B

KCNE4 EFNA1 PTS SLC30A9 BBS7 MICAL2

ACP5 CASP6 GNG3 SLC4A1AP LRPPRC NRXN1

FSTL1 ITPKC MLLT11 STMN2 NDUFAB1 PGRMC1

CHSY1 CD37 ATXN10 PFDN1 GABRG3 DYNC1LI1

PTBP1 YBX1 PIN1 NRIP3 PTPRN2 TOR1A

HSPB8 LHFPL2 DYNC1I1 CDK5R2 TXNDC9 ACLY

MSN YBX3 GOT1 ATP6V0E2 TUBA4A PDE2A

CCL2 TMBIM1 CNIH3 MAGED1 STXBP1 IMMT

SERPINA3 CTBP2 TM7SF2 FAM188A GHITM ASMTL

PHF10 CFI RAP1GDS1 ITFG1 RAB6A NAP1L2

TNIP2 DRAM1 ATP5B HLF BPGM STAU2

PALLD VAMP8 SCG5 TBC1D9 ALDH1A3 SERINC3

BAG3 CDKN1A TCEB1 NDUFA9 CALM1 FEN1

MID1IP1 MS4A6A COX8A TMEFF1 SERPINI1 CXADR

EMP3 RBBP6 FGF12 SNX4 FIBP ARHGAP44

CLIC1 CSF1 TSPYL5 DIRAS2 ATP5A1 EIF4H

INHBB TGM2 FAM216A MRPS33 PEX19 CD200

DDAH2 SLA SYT1 OAT LARGE PTP4A1

HMOX1 TRAF3IP2 COPS3 LANCL2 CYCS RTN1

MTHFD2 FBLN1 POP4 ISCA1 GRIK1 MAGI1

SYNM NEFL PAK6 ARL4D KHDRBS1

ERBB2IP B4GALT6 MTCH2 PPP1R2 CNTNAP2

CMTM6 NDRG3 CAP2 MPC2 TCEA2

PIM1 NBEA GABRD SLC1A1 TNFRSF21

BTG1 TASP1 ENO2 C11orf24 SNAPC5

CTDSP2 DLD SAMM50 AP3M2 ELAVL4

TNFRSF12A ARHGEF9 FGF13 PJA2 MEAF6

Genes are listed from largest absolute meta-effect size to smallest, top-to-bottom, left-to-right. Genes NOT correlated with age shown in bold. See Additional
file 1: Table S4 for details.
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Figure 3 CNM significantly associates with histologic disease severity. Boxplots of the CNM z-score (standardized geometric mean of the
up-regulated or down-regulated CNM) and the difference between the up- and down-regulated z-scores for samples in each disease neuropath-
ology category in three independent data sets (GSE3790, GSE29378, GSE36980). Blue dots correspond to individual samples. The up-regulated
CNM trends upward with increasing disease severity, while the down-regulated CNM trends downwards with increasing disease severity. The
difference between the z-scores increases with disease progression. Jonckheere's trend test shows significant association (two-tailed p≤ 0.05) in 8
out of 9 plots (left to right, HD-GSE3790: p = 0.00356, p = 0.00003, p = 0.00022; AD-GSE29378: p = 0.00758, p = 0.04707, p = 0.01460; AD-GSE36980:
p = 0.07324, p = 0.00874, p = 0.01815). HD, Huntington’s disease; AD, Alzheimer’s disease.
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CEBPB is also enriched in astrocytes, relative to neurons
and oligodendrocytes [49], and has been found to be
up-regulated in reactive astrocytes responding to stroke
or LPS [53]. Additional hub proteins included CDK5,
CALM1 (part of the calmodulin protein complex), and
BCL6. While aberrant CDK5 and calmodulin activity
have been associated with neurodegenerative diseases
through tau hyperphosphorylation and calcium signaling
respectively [57,60], BCL6 has not been previously asso-
ciated with neurodegeneration. However, BCL6 does play
a role in inflammatory signaling in macrophages [61].
Three secreted proteins also appear in this network:
CSF1, CCL2, and Substance P—proteins all associated
with inflammatory signaling [62-64]. In summary, the



Figure 4 Network and pathway analyses reveal common pathways and hubs in neurodegeneration. (A) EnrichmentMap [42] network for
overlapping enriched Gene Ontology gene sets identified by GSEA. Each node represents a significantly enriched gene set (FDR q-value≤ 0.05),
and more significant nodes are proportionally larger. Red nodes denote gene sets enriched in neurodegenerative disease tissue, while blue
nodes denote those enriched in control tissue. Green lines appear between any gene sets with > 50% overlap, and are proportionally thicker
given greater overlap. See Additional file 2: Figure S3 for full annotations of nodes. (B and C) MetaCore analyses generated, inputting all 243
CNM genes. (B) Network generated using only direct interactions between CNM genes. Smaller red and blue circles denote up-regulated and
down-regulated genes respectively. Refer to MetaCore website for detailed network symbol legend. (C) MetaCore “Interactions by Protein
Function” analysis identification of proteins, not necessarily within the CNM or differentially expressed at all, that are highly functionally connected
with proteins corresponding to genes in the CNM. Z-score, standardized connectivity ratio (higher ratios denote greater connectivity).
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CNM direct interaction network reveals a common net-
work of inflammation-related protein interactions
underlying neurodegenerative disease.
Removing the direct interaction restriction from the

MetaCore network-building algorithm, we built add-
itional networks using the default “analyze network”
algorithm, which generates a comprehensive network of
interactions based on CNM genes prior to fragmenting
it into smaller, more manageable sub-networks. This
analysis yielded 28 sub-networks. The top sub-network
(p = 3.41 × 10−20) contained 19 CNM genes, and was
centered on the SP1 transcription factor (Additional file
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2: Figure S5A). Although SP1 is not a CNM gene, it was
significantly up-regulated in the discovery meta-analysis
list (FDR = 0.001) (Additional file 2: Figure S4). More-
over, it is elevated in AD [65], responds to oxidative
stress [66], regulates expression of APP and tau [67],
and is a proposed hub gene common to both AD and
PD pathogenesis [12]. Other hub proteins in this net-
work include GRP78, NFKBIA, ATM, and YB-1. The
network is also enriched for Gene Ontology terms re-
lated to apoptosis and contains a MetaCore canonical
pathway pertaining to heat shock protein and prote-
asome signaling that includes the proteins Parkin and
Huntingtin (Additional file 2: Figure S5A). The second
sub-network (p = 4.37 × 10−12) is centered on NR3C1
(GCR-alpha), the glucocorticoid receptor (Additional file
2: Figure S5B). Although not differentially expressed in
our meta-analysis (Additional file 2: Figure S4), GCR-
alpha signaling has been implicated in neuroinflamma-
tion, particularly in relation to stress [68]. The third
sub-network (p = 3.40 × 10−12) is centered on c-Myc
(Additional file 2: Figure S5C), and appears to be related
to ephrin signaling, which is implicated in aberrant
synaptic function [69]. Our MetaCore network analysis
identified additional common core networks of genes
dysregulated across neurodegenerative diseases (Additional
file 1: Table S7).

Novel common neurodegenerative hub proteins
Next, we used the MetaCore “Interactions by Protein
Function” analysis tool to identify proteins, not necessar-
ily within the CNM or differentially expressed at all, that
are highly functionally connected with proteins corre-
sponding to genes in the CNM. This analysis allows
for the identification of hub proteins that may not
be dysregulated at the gene expression level, but are in-
fluencing the CNM, possibly through altered protein
translation, post-translational modification or molecular
interactions. We identified 24 candidate hub proteins
(Figure 4C and Additional file 1: Table S8). Among these
hub proteins are many that have a well-established role
in neurodegeneration. SOD1, SNCA, and APP are cen-
tral to current hypotheses around ALS, PD, and AD
pathogenesis respectively [70]. As such, the hub proteins
identified here may represent different disease patholo-
gies that converge on the CNM. In addition, the top
three most highly connected genes NLGN1, GPHN, and
DLG4, as well as PPP1R9B, are all associated with synap-
tic function [71]. Not surprisingly, many other identified
hub proteins have known associations with aspects
of neurodegeneration. NR3C1, the glucocorticoid recep-
tor, is associated with elevated stress signaling in neuro-
degeneration. IKBKG is a part of the NFκB cascade,
which is associated with neuroinflammation [72]. Ubi-
quitin is central in protein degradation [73]. c-Myc and
dysregulated cell cycling are associated with AD [74].
14-3-3 beta/alpha is associated with Creutzfeldt-Jakob
disease. CASK and calmodulin are associated with dys-
regulated calcium signaling in neurodegeneration [60].
Chromogranin A is a pro-inflammatory peptide impli-
cated in AD and ALS [75].
In addition to providing further evidence supporting

the role of these proteins in neurodegenerative pro-
cesses, our analysis identified 9 hub proteins (gene sym-
bols in parentheses if different from protein) that have
not previously been implicated in neurodegenerative dis-
ease. C2orf18 (SLC35F6) is a protein localized to mito-
chondrial that is involved in apoptosis [76]. HSP20
(HSPB6) is a heat shock protein that may be involved in
excitoxicity [77]. PLAP-like (ALPPL2), a germ cell alka-
line phosphatase, is aberrantly expressed in seminoma
[78]. CLIP170 (CLIP1) regulates microtubule dynamics
[79]. STAU2 is a hub gene involved in neuronal RNA
transport [80] and is also down-regulated in the CNM
(FDR = 7.83×10−5). NUDEL (NDEL1) is a neurodevelop-
ment protein involved in assembly, transport and neur-
onal integrity [81]. EPB41, also known as protein 4.1R,
is a part of the red cell membrane cytoskeletal network,
but has been implicated in post-synaptic molecule
organization [82]. ERR3 (ESRRG) is a nuclear estrogen
receptor-related protein highly expressed in the brain
[83]. MaxiK alpha subunit (KCNMA1) is associated with
synaptic transmission [84]. These novel hub proteins
may serve as candidate genes for further investigation
into disease mechanisms and the development of novel
therapies for neurodegenerative diseases.

Characterizing the association of CNM genes with normal
aging
Aging is an important risk factor for neurodegenerative
diseases and is associated with altered microglial activity
[85], synaptic plasticity [86] and a component of “normal”
cognitive decline [87]. However, normal healthy aging does
not involve the severe progressive loss of function observed
across neurodegenerative diseases. It is known that aging is
associated with increased inflammation and oxidative
stress [85], but the healthy brain has adaptive strategies to
maintain “normal” function in spite of the normal stresses
of aging. This relentless destructive process is only ob-
served in neurodegenerative diseases. Therefore, we hy-
pothesized that the CNM genes that are down-regulated
with neurodegeneration, but not with aging may be par-
ticularly critical to maintenance of the “healthy aging”
process. Conversely, the CNM genes up-regulated specific-
ally in neurodegeneration, but not in normal aging, may be
specific drivers of progressive neurodegeneration and could
be biomarkers of the degenerative process.
We identified and analyzed three independent post-

mortem human microarray data sets investigating the
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normal aging cortex from age 20 to 106 years (Table 2).
We removed samples from patients younger than
20 years of age to avoid developmental changes in gene
expression. These data sets included 221 independent
samples from the hippocampus, frontal cortex, and
dorsolateral prefrontal cortex, all areas associated with
changes in aging [44-46]. Heat map visualization of these
data sets suggests that some genes in the CNM are
correlated with aging, and these changes may be the lar-
gest in the hippocampus (Additional file 2: Figure S6).
For each gene in the CNM, we determined the non-

parametric Kendall rank correlation coefficient (τ) be-
tween the gene’s log2 transformed signal intensity and
age, and we calculated the two-tailed p-value for each
coefficient. Genes that were significantly correlated with
age (p ≤ 0.05) in the same direction in at least two out of
the three independent data sets were considered corre-
lated with age. Genes that did not meet this criterion
were considered to be unchanged in aging. Among all
genes evaluated in the discovery meta-analysis, 545 were
positively correlated with aging, while 499 were nega-
tively correlated with aging (Additional file 1: Table S9).
Of these, we identified 126 genes that were down in the
CNM and unchanged in aging (i.e., candidate genes
required to prevent neurodegeneration), 48 genes
that were up in the CNM and unchanged in aging (can-
didate neurodegeneration biomarkers), 25 genes that
were up in both the CNM and aging, and 44 genes that
were down in both the CNM and aging (Table 3 and
Additional file 2: Figure S6 and Additional file 1: Table
S10 and Additional file 1: Table S11). No genes were
detected that were up in the CNM and down in aging or
down in the CNM and up in aging. The overlap between
CNM genes and genes correlated with aging was highly
significant (p < 2.2 × 10−16, Fisher’s exact test).
We used the DAVID [48] bioinformatics tool to assess

the functional enrichment of the these aging-related sub-
groups of CNM genes with GO terms. None of the groups
were significantly enriched for any terms (Benjamini-
Hochberg corrected p-value ≤ 0.05), except for the GO
cellular component term “mitochondrion” for the CNM
genes that were down-regulated in neurodegeneration and
unchanged in aging, which suggests that impaired mito-
chondrial function might be the most consistent specific
feature of neurodegeneration, when compared to aging.
This finding is consistent with mitochondria-related gene
sets being the most significantly dysregulated process in
our GSEA (Figure 4A and Additional file 1: Table S4).

Assessment of CNS tissue composition and cell
type-specific changes
Because neurodegenerative diseases involve the loss of
neurons, the proportion of CNS cells in a CNS tissue
sample may change. As such, genes up-regulated in the
CNM may reflect increased glial cell density, while
genes that are down-regulated in the CNM may reflect
decreased neuronal density. To test this hypothesis, we
determined whether or not each gene in the CNM dem-
onstrated a cell type-specific expression pattern based
on public data sets for purified cell types, including neu-
rons, astrocytes, reactive astrocytes, oligodendrocytes,
and microglia/macrophages [49,50,52,53] (Additional
file 1: Table S12). We used the Gene Expression Com-
mons to allow for comparison of gene expression be-
tween these data sets (see Materials and Methods for
details) [52]. Although some astrocyte-associated genes
were present in both the up and down-regulated compo-
nents of the CNM, the up-regulated component of the
CNM was comprised predominantly of genes enriched
in reactive astrocytes, monocytes, or both—groups that
were largely absent from the down-regulated portion of
the CNM. Conversely, 70 of the 170 down-regulated
CNM genes were enriched in neurons, whereas no
neuron-specific genes were present in the up-regulated
portion of the CNM (Figure 5A). These results suggest
that the decrease in expression of the neuron-specific
CNM genes in part could be either due to reduction in
neuronal cell density in neurodegenerative disease or
due to decrease in expression in neurons without any
change in neuronal cell density.
Furthermore, we found that approximately half of the

neuron-enriched genes have never previously been asso-
ciated with neurodegeneration, despite in many cases
having a variety of potentially important roles, including
in neural development (Additional file 1: Table S12).

Enrichment for activated microglial and reactive astrocyte
states
Microglial activation, monocyte infiltration and gliosis
are common features of neurodegenerative disease. To
date, no human transcriptome data are available for
microglia or reactive astrocytes from neurodegenerative
disease. In order to gain insights into the transcriptional
contributions of microglia/macrophages and gliosis to
neurodegenerative disease, we performed GSEA [41]
using custom gene sets for various defined populations of
microglia/monocytes and astrocytes (Figure 5B) [53-55].
We observed significant enrichment in the complete
discovery meta-analysis ranked gene list for genes up-
regulated in mouse astrocytes responding to stroke or
LPS, relative to controls (p < 0.001), as well as for genes
up-regulated in human M1 polarized, relative to M2 po-
larized macrophages (p < 0.001). We also observed enrich-
ment for genes up-regulated in microglia isolated from a
mouse SOD1 model of ALS (p < 0.001). Of note, the dis-
covery meta-analysis gene list was depleted (i.e. normal
controls were enriched) of genes differentially expressed in
human M2 macrophages (p = 0.005).



Figure 5 Cell type and activation state analysis of CNM genes. (A) Cell type-specificity of the CNM genes. CNM genes were categorized by
cell type enrichment based on analysis of public data (see Materials and Methods). The distribution of genes in the categories is shown for CNM
genes up-regulated (left) and down-regulated (right). (B) Assessment of microglia/monocyte activation and reactive astrocyte states in the discov-
ery meta-analysis gene list. GSEA for custom gene sets for glial cell polarization states from isolated cell transcriptome analyses in the literature.
Positive normalized enrichment scores indicate enrichment in neurodegeneration, while negative score indicate enrichment in control tissue. All
enrichments are significant (p < 0.005), except for ALS microglia (down). ALS (up or down), amyotrophic lateral sclerosis, up-regulated or down-
regulated genes (mouse model); LPS, lipopolysaccharide treated mouse, up-regulated genes; MCAO, middle cerebral artery occlusion mouse,
up-regulated genes.
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Transcription factors associated with the CNM versus
normal aging
Next, we carried out enrichment analysis of transcrip-
tion factor (TF) targets using the ENCODE ChIP-Seq
Significance Tool [56], which integrates data from hun-
dreds of public ChIP-Seq data sets, to evaluate potential
transcriptional regulators of the differentially expressed
genes in the CNM. The 170 down-regulated CNM genes
were significantly enriched (q-value < 0.05) for targets of
six transcription factors: REST, RBBP5, YY1, SIN3A,
ZNF143 and SP2. The 73 up-regulated genes were sig-
nificantly enriched (q-value < 0.05) for targets of three
transcription factors: IKZF1, STAT3 (in cells exposed to
ethanol or tamoxifen), and FOS (in cells exposed to tam-
oxifen) (Figure 6A and 6B). As a significant portion of
the CNM genes have expression levels correlated with
normal aging, we repeated this analysis on the 545
and 449 genes positively and negatively correlated
with aging, respectively. Unlike the CNM, no transcription
factors were predicted for the genes negatively correlated
with aging; however, the genes positively correlated
with aging yielded an almost identical set of predicted
transcription factors as the up-regulated component of
the CNM, only including POLR2A instead of IKZF1.
These findings suggest that genes up-regulated in both
aging and neurodegeneration may share similar regulatory
mechanisms, while those genes down-regulated in the
CNM may be transcriptionally regulated in a manner
unique to neurodegeneration.
Of the six transcription factors predicted to be upstream

of the down-regulated CNM, REST and YY1 have previ-
ously been implicated in neurodegeneration [88-92]. REST
is a master regulator of neuronal genes, whose protein
abundance increases with stress and aging, but decreases
with AD, frontotemporal dementia and dementia with
Lewy bodies [88]. YY1 is a ubiquitous transcription factor
previously noted to regulate several genes associated with
neurodegenerative diseases including BACE1 and APP
[89], SNCA [90], EAAT2 [91], MTOR and PPARGC1A
[92].

Assessment of disease-specific changes
As many elements of differential gene expression are shared
across neurodegenerative diseases, we hypothesized that by



Figure 6 ENCODE ChIP-seq significance analysis identifies transcription factors upstream of CNM genes. (A) Heat map shows genes in
CNM bound by transcription factors across discovery, validation, and secondary validation analyses. Heat map colors correspond to log2
standardized mean difference (Hedges’ g). Up and down-regulated CNM were analyzed separately. (B) Bar plot shows –log(q-value) for predicted
transcription factors. All shown are significant (q < 0.05). Refer to Table 1 for data set information. ALS, amyotrophic lateral sclerosis; HD, Huntington’s
disease; PD, Parkinson’s disease; AD, Alzheimer’s disease; PiD, classical Pick’s disease; FTLD, frontotemporal lobar dementia (Constantinidis
type C); PSP, progressive supranuclear palsy; FTLD-GRNpos, frontotemporal lobar dementia with ubiquitin- and TDP-43-positive inclusions,
progranulin mutation positive; FTLD-GRNneg, frontotemporal lobar dementia with ubiquitin- and TDP-43-positive inclusions, progranulin
mutation negative.
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removing elements common to other neurodegenerative
diseases from a disease-specific gene signature and then
functionally analyzing the remaining genes, we would
be able to gain insights into the unique pathogenic
mechanisms underlying each individual disease. Thus,
for each disease, we used the meta-analysis approach to
generate a rank ordered list of up- and down-regulated
genes relative to controls. Examining where the CNM
genes fall in this ordered list of genes for each individual
disease validates that the CNM genes are similarly dys-
regulated in each neurodegenerative disease (Figure 7A).
We then utilized the “leave-one-disease-out” meta-
analyses previously generated (Figure 1), comprising the
other 3 diseases (e.g. meta-analysis on HD alone vs.
meta-analysis on AD, PD, and ALS together). These two
analyses yielded ranked gene lists. We then removed



Figure 7 Disease-specific meta-analysis. (A) Distribution of the 243 CNM genes among individual disease meta-analysis gene lists. Each line
represents the presence of a CNM gene among the 11,564 genes generated from disease-specific meta-analysis, ranked from most positive
standardized mean difference (left) to most negative standardized mean difference (right). (B) Disease-specific meta-analysis, after removing genes
differentially expressed across the other three diseases, identifies genes more strongly expressed in a single disease. Top 10 up-regulated and top
10 down-regulated genes shown. ALS, amyotrophic lateral sclerosis; HD, Huntington’s disease; PD, Parkinson’s disease; AD, Alzheimer’s disease.
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significantly differentially expressed genes (FDR ≤ 0.05)
identified from the 3-disease analysis gene list from the
complete 1-disease analysis ranked gene list. We re-
moved 1524, 780, 786 and 1019 genes from ALS, HD,
PD, and AD-specific meta-analysis gene lists respect-
ively. The shortened disease-specific gene lists represent
genes that are expressed more strongly in a specific neu-
rodegenerative disease (Figure 7B). As these genes rep-
resent disease-specific pathways, we then input these
lists into GSEA PreRank for GO term enrichment ana-
lysis, as described earlier.
This analysis demonstrated significant unique up-

regulation of immune and inflammatory genes in ALS
specifically, including genes in the JAK-STAT cascade,
suggesting additional inflammation over and above that
shared by other neurodegenerative diseases. JAK-STAT
genes have been found to be enriched in an independent
gene expression analysis of ALS [93]. ALS and PD dem-
onstrated down-regulation of additional proteasomal
gene sets, and ALS showed down-regulation of genes in-
volved in chomatin assembly suggestive of potentially
unique epigenetic alterations. Notably, each of the 4 dis-
eases, even after subtraction of genes significant in the
other 3 disease, revealed persistently significant down-
regulation of mitochondria-related genes, and all but
ALS additionally revealed down-regulation of genes re-
lated to synaptic transmission—changes that were par-
ticularly prominent in AD (Additional file 1: Table S13).
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Discussion
Although each neurodegenerative disease has been stud-
ied in detail individually, no integrated analysis has
previously determined what genes and pathways are
consistently conserved across all neurodegenerative dis-
eases (Figure 8A). In total, in this study we examined 31
separate patient cohorts consisting of 1,696 independent
patient samples collected using various microarray plat-
forms from diverse institutions in different countries to
identify a robust and reproducible signature. Key find-
ings from our analysis include: (1) a common signature
of neurodegeneration that correlates with histologic dis-
ease severity and (2) identification of novel candidate
convergent networks, hub proteins, and transcription
factors for neurodegenerative diseases. We further ana-
lyzed expression of the CNM genes in normal aging
Figure 8 Conserved elements of neurodegeneration. (A) Schematic dia
of interest are shown in black text. Predicted hub genes and upstream tran
candidate novel genes of interest. Forest plot x-axes show standardized me
Blue box sizes are inversely proportional to the SEM difference of the gene
diamonds represent combined mean difference for each gene. Yellow diam
brain to identify CNM genes that are altered in both
aging and neurodegeneration, versus those altered in
neurodegeneration alone. We also analyzed expression
of the CNM genes enriched in specific cell types to better
understand whether the changes in expression are due to
changes in the number of specific functional transcripts or
due to reduction in neuronal density. Our results identify
down-regulation of genes important for neuronal main-
tenance and synaptic transmission, but relative preserva-
tion of most constitutively expressed neuronal genes.
Finally, we performed disease-specific meta-analysis rela-
tive to common signatures of neurodegeneration. Al-
though there are diverse genetic and environmental
causes of different neurodegenerative disease processes,
our results show that the CNM represents the most repro-
ducibly convergent pathways. Furthermore, our unbiased
gram of conserved elements of neurodegeneration. Select CNM genes
scription factors shown in green text. (B) Forest plots for highlighted
an difference (Hedges’ g in log2 scale) for genes in multiple data sets.
in each data set. Whiskers denote 95% confidence interval. Yellow
ond width denotes 95% confidence interval.
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approach validates that neurodegeneration commonly in-
volves elements beyond neuroinflammation. As such, our
data provide a valuable resource for interpreting disease
mechanisms, connecting findings from one neurodegener-
ative disease to another, and driving novel hypotheses.

Novel insights into mechanisms of neuronal degeneration
We identified 70 genes enriched in neurons that are de-
creased in the CNM, 53 of which are not altered with
normal aging. Fewer than half of these 70 genes have pre-
viously been investigated for a specific role in neurodegen-
eration, despite substantial evidence in the literature
suggesting that many of them could be of significant inter-
est. We describe three examples, each of which is de-
creased in the CNM, but unchanged in aging, implying
specificity to the neurodegenerative process (Figure 8B).
First, STAU2, a hub gene also identified in the Meta-

Core protein interaction analysis, is involved in neuronal
RNA transport [80]. STAU2 regulates the balance of
neural stem cell maintenance versus differentiation dur-
ing development [94], modulates long term depression
by directing dendritic localization of protein synthesis in
hippocampal neurons [95], and stabilizes the RNA of
dendritic and synaptic proteins including RGS4 (regula-
tor of G protein signaling 4) [80]. Indeed RGS4 itself was
the second-most highly down-regulated gene in our en-
tire meta-analysis (Figure 2) and has previously been as-
sociated with diseases ranging from AD [96] and HD
[97], to schizophrenia [98] and depression [99]. Hence,
given the role of STAU2 in maintaining the fundamental
structure of neuronal projections and synapses, patho-
logic decrease of STAU2 expression could exacerbate
neurodegeneration.
Second, necdin (NDN) is expressed predominantly in

post-mitotic neurons where it forms a stable complex with
p53 and sirtuin1 to down-regulate p53 acetylation and
protect neurons from DNA damage-induced apoptosis
[100]. Though an association with neurodegenerative dis-
ease has not previously been established, one study
showed that necdin ablation in mice led to exacerbated
dopaminergic cell loss after MPTP exposure, while over-
expression of an AAV-necdin construct almost completely
abrogated MPTP-induced dopaminergic cell loss [101].
These data suggest that NDN could be critical for main-
taining neuronal resilience against exogenous stressors.
Third, NAP1L2 promotes histone acetylation activity

during neuronal differentiation [102]; NAP1L2 mutants
are embryonic lethal due to neural tube defects [103].
The importance of chromatin regulation in neurodegen-
erative disease was recently highlighted in experiments
showing that Tau-induced heterochromatin loss results
in aberrant gene expression in tauopathies [104]. How-
ever, it has previously been reported that brains with AD
have a lower percentage of euchromatin than control
brains [105]. Therefore, down-regulated NAP1L2 would
be consistent with the idea that neurodegeneration may
additionally result from loss of essential regions of eu-
chromatin, secondary to dysregulation of neuron-
specific epigenetic regulators such as NAP1L2. If true,
loss of NAP1L2 could help to explain the diverse panel
of down-regulated neuron-specific genes across neuro-
degenerative diseases.
These three genes are only a few from the list of

neuron-associated CNM genes not previously associated
with neurodegeneration. However, this list also contains
numerous other potentially interesting candidates, in-
cluding FGF12, a regulator of NFκB signaling in neurons
[106]; FGF13, a microtubule stabilizing protein regulat-
ing neuronal polarization [107]; MOAP1, a modulator of
apoptosis [108]; and REEP1, a gene involved in endo-
plasmic reticulum maintenance that is mutated in her-
editary spastic paraplegia [109], among others. While
several of these genes have established neurologic phe-
notypes in mutants, others are entirely unstudied.

Common transcriptional regulators of neurodegenerative
disease
We used the ENCODE ChIP-Seq significance tool to pre-
dict six transcription factors upstream of the 170 down-
regulated CNM genes. These transcription factors were
not identified by our analysis of normal aging brain gene
expression changes. Four of these have not previously
been implicated in neurodegenerative diseases. SIN3A is a
multifunctional scaffolding protein that forms part of a
large co-repressor transcriptional regulatory complex. It
recruits a wide variety of epigenetic modifiers that collect-
ively repress gene expression in non-neuronal cells by
regulating histone deacetylation and DNA methylation. In
neurons, SIN3A works in concert with calcium-sensitive
transcription factors to facilitate plasticity and activity-
dependent gene regulation—processes fundamental to
learning and memory [110]. RBBP5 is a ubiquitously
expressed transcriptional activator with histone methy-
transferase activity [111]. RBBP5 co-purifies with the non-
coding RNA 116HG, paternal deletion of which leads to
Prader-Willi syndrome, a disease characterized in part by
intellectual disability [112]. Furthermore, RBBP5 has been
implicated as a potential oncogene in glioblastoma [113].
SP2 is a cell cycle regulator, deletion of which disrupts
neurogenesis in embryonic and postnatal brain [114].
Interestingly, SP2 was the only predicted TF from the
down-regulated CNM list whose mRNA level was de-
creased with aging. This suggests a potential dose-
dependent effect of SP2 activity, with decreases in aging,
and more severe decreases in neurodegeneration—both of
which are associated with decreased neurogenesis. Finally,
ZNF143 plays roles in response to oxidative stress [115]
and cell cycle regulation [116]. Collectively, these data
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identify potential transcriptional regulators of the core set
of genes downregulated in neurodegeneration.

Shared insights across neurodegenerative diseases
An important implication of our work is that prior in-
sights gained regarding any of the genes in the CNM
may prove broadly relevant across neurodegenerative
diseases. For many genes in the CNM that have been as-
sociated with neurodegeneration previously, such a role
has typically only been investigated for one or two dis-
eases. However, such insights, when considering the
convergent pathways revealed by our analysis, may bene-
fit research in other diseases. For example, RNF11 is a
regulator of NF-κB signaling previously associated with
only PD [117]. Low levels of axonal NEFL mRNA have
previously been linked to ALS [118]. RAB3B, originally
identified in a screen for genes enriched in MPTP-
resistant A10 dopaminergic neurons relative to MPTP-
susceptible A9 neurons, proved capable of protecting
dopaminergic neurons when overexpressed in A9 neu-
rons [119]. Neuronal CD200 is a negative regulator of
inflammation, previously found to be decreased AD
[120] and PD [121]. Our data suggest that each of these
genes is in fact decreased across each neurodegenerative
diseases in our analysis—AD, PD, HD ALS, and likely
others—suggesting broader potential applications of
these prior findings.

Metallothioneins and oxidative stress
Four of the top 10 up-regulated genes in the CNM were
metallothioneins (MT2A, MT1Z, MT1H, and MT1F),
each of which was also up-regulated in the normal aging
brain. Metallothioneins are increasingly being explored
in neurological diseases as potential therapeutic targets
[122]. Metallothioneins 1 and 2 are expressed predomin-
antly in astrocytes and are critical for buffering zinc,
which has been implicated in the production of reactive
oxygen species (ROS) in association with aging and in-
flammation [123]. States of increased oxidative stress
promote mobilization of zinc from matrix metallothio-
neins after which they are taken up by mitochondria
where they impede respiration and incite further ROS.
This finding underscores the central additive role of fur-
ther oxidative stress and mitochondrial dysfunction in
all neurodegenerative diseases. That these genes were
also up-regulated in normal aging in our analysis sug-
gests that changes in these metallothioneins tended to
be adaptive, rather than pathological in nature, which in
turn suggests that astrocytes may attempt to mitigate
this increased oxidative stress by further up-regulation
of metallothioneins. Our identification of multiple repro-
ducibly upregulated metallothioneins across all neurode-
generative diseases provides further impetus for further
work in this area.
Limitations
Despite its comprehensiveness, our analysis has several
limitations. Although we have made inferences about
genes likely altered in neurons, the resolution of cell-
type specific data from mixed tissue is inherently limited.
A number of methods for statistical deconvolution of
mixed tissue gene expression data have been developed,
which should be used to further explore cell-type spe-
cific expression in neurodegeneration once further hu-
man brain cell-specific gene expression profiles have
been established [124]. Degeneration of specific neuronal
subtypes in different diseases is believed to result from
selective vulnerability—an issue that is not addressed in
our analysis. Based on the use of microarray data, in-
cluding that from multiple platforms, we can draw no
conclusions regarding the broadly observed alterations
in splice variants that are increasingly implicated in neu-
rodegeneration; future analysis of transcriptome data de-
rived from RNA-seq will illuminate this issue. Work to
evaluate conserved epigenetic signatures of neurodegen-
eration will also be of great interest once sufficient rele-
vant data are available in the future. Samples included in
our analysis were largely derived from late stage disease,
thereby masking potentially important early changes that
could offer targets for preventative therapies. Neverthe-
less, the CNM was found to associate with histologic
disease severity (Figure 3). Further work to collect
region- and cell-type specific transcriptome data at mul-
tiple stages of disease with next generation sequencing
technology will dramatically enhance the insights obtain-
able through bioinformatics analysis in the future.
In addition, while most included studies attempted to use

brain tissue without co-pathologies, there are potentially
other pathologies in the samples. Given the size of our
study and the number of sources that the samples in these
studies came from, we are optimistic that such confound-
ing is minimized. Furthermore, the common neurodegen-
eration pathways identified may also be shared with other
prevalent human diseases, like diabetes mellitus and ath-
erosclerosis, which requires further investigation. However,
such an analysis is out of the scope of our current analysis.
Finally, although our data shed light on the conserved

signature of neurodegeneration, direct experimentation
will be required to determine which of these newly
highlighted changes are (1) direct etiological contribu-
tors to degeneration; (2) appropriate “survival” reactions
activated in a valiant attempt to preserve cellular viabil-
ity; or (3) stress-related changes that, though adaptive in
the acute setting, lead to neurodegenerative sequelae in
the long term.

Conclusions
We carried out an integrated multi-cohort analysis of
CNS tissue microarrays from AD, PD, HD, and ALS,
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thereby identifying a conserved transcriptional signature
of neurodegeneration. These results were confirmed in
additional independent publically available neurodegen-
eration CNS tissue microarray data sets meeting our in-
clusion criteria. Impaired bioenergetics with global
down-regulation of mitochondria-related genes was the
most predominantly conserved theme of neurodegenera-
tion, accompanied by evidence of neuroinflammation,
protein mishandling, oxidative stress, microglial activa-
tion, gliosis, and coordinated down-regulation of a host of
genes essential for neurotransmission and normal neur-
onal function (Figure 8A). Overall, our functional analysis
of the CNM, using Gene Ontology terms, MetaCore ca-
nonical pathways, and ChIP-Seq transcription factor pre-
diction analysis, confirmed established findings and
revealed additional novel insights. We believe the CNM
represents a rich repository of convergent candidate genes
that may be harnessed to improve our understanding of
neurodegeneration, provide unique biomarkers for neuro-
degeneration, and facilitate the development of thera-
peutic strategies. We hope that these data will aid those
studying neurodegeneration and pursuing therapies for
these devastating diseases.
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