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Abstract

Often derived from partial correlations or many pairwise analyses, covariance networks rep-

resent the inter-relationships among regions and can reveal important topological structures

in brain measures from healthy and pathological subjects. However both approaches are

not consistent network estimators and are sensitive to the value of the tuning parameters.

Here, we propose a consistent covariance network estimator by maximising the network

likelihood (MNL) which is robust to the tuning parameter. We validate the consistency of our

algorithm theoretically and via a simulation study, and contrast these results against two

well-known approaches: the graphical LASSO (gLASSO) and Pearson pairwise correlations

(PPC) over a range of tuning parameters. The MNL algorithm had a specificity equal to and

greater than 0.94 for all sample sizes in the simulation study, and the sensitivity was shown

to increase as the sample size increased. The gLASSO and PPC demonstrated a specific-

ity-sensitivity trade-off over a range of values of tuning parameters highlighting the discrep-

ancy in the results for misspecified values. Application of the MNL algorithm to the case

study data showed a loss of connections between healthy and impaired groups, and

improved ability to identify between lobe connectivity in contrast to gLASSO networks. In

this work, we propose the MNL algorithm as an effective approach to find covariance brain

networks, which can inform the organisational features in brain-wide analyses, particularly

for large sample sizes.

1 Introduction

Brain networks derived from neuroimaging data have been shown to quantify the level of

brain atrophy, and hence the relative stage of neurological disease and identify disease related

changes [1]. Cortical networks from structural magnetic resonance imaging (MRI) consist of

nodes which represent brain regions of interest (ROI) and edges that link two nodes if these

regions have spatial correlation or similarity [2, 3]. Unlike networks from ROI volume or sur-

face area, cortical thickness networks have been shown to be a more stable measure along the
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Alzheimer’s Disease (AD) continuum. This is because cortical thickness is a direct measure of

cortical atrophy due to cytoarchitectural features of the cortex tissue [2]. The resultant net-

works characterise alterations in the communication processes across multiple ROI associated

with morphological changes due to disease onset and progression [4–8]. Furthermore, net-

work analysis of cortex connectivity maps allow for the detection of ROI that serve particular

cognitive functions, thus providing a link between brain structure and function [9–11]. Such

links include spatial topographical patterns typically observed between those with and without

neurological disease [12–14].

An early approach to derive a cortical correlation network is the application of Pearson

pairwise correlation (PPC) analyses for all possible pairs of ROIs [3, 15–19]. This approach

quantifies the presence or absence of a linear relationship between two sets of observations,

and a threshold (tuning parameters) is applied to the correlation values to produce the resul-

tant network. In addition to being threshold dependent, another disadvantage of PPC net-

works is the reliance on correlations based on independent analysis among two ROIs. While

these methods quantify the correlation between region pairs i and j, this correlation measure

ignores any relationship region i may simultaneously have with regions other than j, poten-

tially resulting in a loss of information [20].

To overcome this limitation, partial correlation networks, such as the sparse inverse covari-

ance estimation with the graphical least absolute and selection operator or gLASSO [21] have

become increasingly popular [22]. The gLASSO approach is particularly useful in situations

where the set of observations N is smaller than the set of possible network connections p (N<

p case) [20, 23]. However, in order to accommodate for this case, the gLASSO enforces sparsity

in the inverse covariance estimate, and the penalised likelihood expression that needs to be

optimised is not a consistent estimator [24]. While the gLASSO overcomes some the short-

comings of the PPC, it too relies on a tuning parameter, a sparsity index λ, which is often

defined independent of the data and has a large effect on the resultant network. Methods to

choose the optimal value of λ have been well-researched. One such method is the stability

approach to regularisation selection (StARS) for high dimensional graphical models [25].

However, this approach also relies on pre-defined tuning parameters independent of the data,

such as the size and number of sub-matrices to sample which is required by the algorithm

[25]. For these reasons, a consistent statistical network approach that is robust to the choice of

value for the tuning parameter is needed in order to deduce reliable data driven networks.

Furthermore, in an era of neuroimaging “big data”, Smith and colleagues [26] foresee the

need to develop novel statistical methods, such as connectivity network estimators, which have

desirable theoretical properties such as convergence to the true solution as the sample size

increases (N> p case). This unmet need follows from one of the most successful and largest

studies in advancing AD research, the Alzheimer’s Disease Neuroimaging Initiative (ADNI

[27]) as well as several other large-scale studies [28–30] which are in the process of recruiting

thousands to hundreds of thousands of participants.

1.1 Theoretical background of the MNL algorithm

Markov random fields (MRF) are a broad class of neighbourhood based formulations which

are often included in neuroimage processing models to account for the spatial variation

among voxels or ROI [31]. Conditional autoregressive (CAR) spatial models are a type of MRF

which assumes a known and fixed neighbourhood adjacency structure in the form of a binary

symmetric matrix W [32]. The covariance structure for the multivariate CAR model is a func-

tion of W, and, while the joint distribution of the well-known intrinsic CAR model is improper

(the distribution does not integrate to one and the expected value is not defined in closed
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form), variations of the CAR model yield well defined multivariate distributions. For example,

the Leroux et. al. (2000) [33] multivariate adaptation of the CAR model was applied by Ander-

son et. al. (2016) [34] in the context of aerial disease mapping. However these simple and fixed

neighbourhood formulations of W may not adequately capture the complex spatial covariance

patterns between regions of the brain.

More recently, in the context of estimating neuroimaging covariance, Cespedes et. al.

(2017) [35] estimated the matrix W using a Bayesian hierarchical model. However, as this

model consisted of 595 parameters, it was found to be too computationally intensive to esti-

mate with Markov chain Monte Carlo methods. It is therefore desirable to develop a method

to approximate W using a less computationally intensive approach, particularly for large data

sets, as this can be very useful for exploratory purposes.

The Leroux et. al. (2000) [33] multivariate adaptation of the CAR model is a joint probabil-

ity distribution of spatial observations, bi, conditional on the adjacency structure W and a spa-

tial scale variance term, s2
s , which in this work will be referred to as the network likelihood.

Maximum likelihood estimation (MLE) is a well-known statistical approach employed in

many applications for parameter estimation [36, 37]. One of the advantages of this approach is

that it only requires optimisation of the likelihood function conditional on the sample data,

which is straightforward to implement in general. Furthermore, MLEs have been shown to be

consistent under certain conditions [38–40], meaning that as the sample size increases, the

MLE will converge with probability one to the true parameter value of the data generating

process.

In this work, we propose a MLE algorithm to estimate W in the network likelihood, as it

represents the underlying covariance connectivity brain structure, while taking into account

the variation among all participants. The approach presented will henceforth be termed as

maximisation of the network likelihood (MNL). Unlike gLASSO and PPC networks, the MNL

returns a single binary connectivity matrix based on a consistent network estimator and is

robust to the choice of value for the tuning parameter. This avoids the threshold and sparsity

issues discussed earlier and provides a simultaneous analysis on the connectivity of all regions,

while providing network estimates whose accuracy increases proportional to the sample size.

The layout of this manuscript is as follows. Sections 2.1 and 2.2 presents the case study used

in this research. The MNL approach is described in detail in Section 2.3. The utility of this

approach is then demonstrated through both a simulation study (Sections 2.4 and 3.1) and an

application of cortical thickness covariance networks from structural MRI data (Section 3.3).

Two network connectivity matrices are derived for groups of healthy controls (HC) and mild

cognitive impaired (MCI), followed by a comprehensive discussion of the comparative merits

of the MNL algorithm with the PPC and gLASSO alternatives presented in Sections 3.1 and

3.4.

2 Materials and methods

2.1 Participants of the ADNI study

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a world wide data sharing collab-

oration project for AD research [27, 41]. ADNI is a multisite ongoing longitudinal study

designed to assist researchers develop clinical, imaging, genetic and biochemical biomarkers

for AD research. In this work, we compare cortical connectivity’s of normal healthy ageing

(HC) individuals with those who have mild cognitive impairment (MCI). As cognitive

impairment precedes dementia onset, individuals with MCI may include prodromal AD par-

ticipants where cortical atrophy may already be present and/or in its early stages. For the
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current research, we used the participant’s first visit (baseline) data from 1,383 individuals; 761

male and 622 female.

Written and informed consent was obtained from all participants and/or authorised repre-

sentatives and study partners. All ADNI studies are conducted according to the Good Clinical

Practice guidelines, the Declaration of Helsinki, US 21CFR Part 50—Protection of Human

Subjects and Part 56—Institutional Review Boards, and pursuant to the state and federal

Health Insurance Portability and Accountability Act (HIPAA) regulations. Refer to http://

adni.loni.usc.edu/ for full details of ADNI protocol and ethical requirements for each ADNI

study.

2.2 Image analysis and data acquisition

In this work, we consider structural MRI scans which were undertaken at baseline. The struc-

tural MRI T1.5 and T3 weighted images were first segmented into grey/white matter and cere-

bral spinal fluid using an in-house implementation of the expectation maximisation algorithm

applied to a Gaussian mixture model [42]. Cortical thickness was then computed along the

grey matter based on the combined Lagrangian-Eulerian partial differential equations

approach [43]. The automated anatomical atlas (AAL) [44] was used to parcellate the brain

into 116 cortical and sub-cortical regions. In this work, we analysed 34 cortical regions from

the left and right hemisphere (K = 68 regions total) for each individual. The remaining 48 sub-

cortical regions were excluded as these analyses considers ROI cortex regions measured in

mm, and sub-cortical ROIs such as the hippocampus are better represented by their volume

rather than thickness. The anatomical regions are listed in Table 1. Once parcellated, the mean

cortical thickness of the voxels in each ROI was computed and used in this analysis.

2.3 Maximisation of the network likelihood

The MNL algorithm estimates the connectivity structure via maximising the network likeli-

hood. In this work, the network likelihood is the Leroux et. al. (2000) [33] multivariate CAR

Table 1. List of 68 regions of interest (ROI) of the cortical mantle from the AAL. Right and left hemispheric regions

correspond to odd and even numbers respectively.

Region Name No. Region Name No.

Superior frontal gyrus dorsolateral 1, 2 Precentral gyrus 35, 36

Superior frontal gyrus orbital 3, 4 Supplementary motor area 37, 38

Middle frontal gyrus 5, 6 Postcentral gyrus 39, 40

Middle frontal gyrus orbital 7, 8 Superior parietal gyrus 42, 42

Inferior frontal gyrus opercular 9, 10 Inferior parietal gyrus 43, 44

Inferior frontal gyrus triangular 11, 12 Supramarginal gyrus 45, 46

Inferior frontal gyrus orbital 13, 14 Angular gyrus 47, 48

Superior frontal gyrus medial 15, 16 Precuneus 49, 50

Superior frontal gyrus orbital 17, 18 Pracentral lobule 51, 52

Gyrus rectus 19, 20 Olfactory cortex 53, 54

Anterior cingulate and paracingulate gyri 21, 22 Lingual gyrus 55, 56

Median cingulate and paracingulate gyri 23, 24 Fusiform gyrus 57, 58

Posterior cingulate gyrus 25, 26 Superior temporal gyrus 58, 60

Cuneus 27, 28 Temporal pole: superior temporal gyrus 61, 62

Superior occipital gyrus 29, 30 Middle temporal gyrus 63, 64

Middle occipital gyrus 31, 32 Temporal pole: middle temporal gyrus 65, 66

Inferior occipital gyrus 33, 34 Inferior temporal gyrus 67, 68

https://doi.org/10.1371/journal.pone.0198583.t001
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model, which is of the following form

bi � MVNð0; s2
s QÞ

Q� 1 ¼ gðŴ � WÞ þ ð1 � gÞI;
ð1Þ

where the set of spatial observations for K ROIs on the ith participant is bi and I is the K by K
identity matrix. The binary elements of the symmetric adjacency matrix W take values wjk = 1

to denote a network link, if regions j and k have spatial similarity, or wjk = 0 otherwise, which

denotes the absence of a link. The diagonal elements are wjj = 0 as specified by Lee (2011) [45]

and Anderson et. al. (2014) [46]. Diagonal matrix Ŵ has zero off-diagonals, with the jth diago-

nal term equal to jth row sum of matrix W. The spatial scale variance is denoted by s2
s which

controls the amount of spatial variation among the K regions and is multiplied by the spatial

covariance matrix Q, which is a function of γ and the adjacency matrix W. The value of γ rep-

resents the strength of spatial dependence on bi and, in this setting, it is the tuning parameter

in the MNL algorithm. Values of γ close to zero imply the set of spatial observations are inde-

pendent and Q becomes a diagonal matrix. Alternatively, as γ approaches one, it forces Q to be

a covariance structure with non-zero off-diagonal terms. This suggests that bi has an inherent

spatial covariance structure. In practice γ is seldom estimated and remains fixed as it is a diffi-

cult (in terms of identifiability) and computationally intensive parameter to estimate [34, 45].

In the context of brain connectivity estimation, γ is often set to 0.9 to enforce a relatively large

spatial dependence among the observations [35]. In this work, in addition to the simulation

study described in Section 2.4, we also performed a simulation study to assess the ability of the

MNL algorithm (with γ fixed at 0.9) to recover the connectivity network on data generated on

a range of γ values. We found that the MNL algorithm adequately recovered the simulated

connectivity structure from data with various levels of spatial dependence and is hence robust

to the value of γ, and supports our choice for fixing γ to 0.9. Refer to Supporting Information

S1 Table for simulation results.

2.3.1 MNL algorithm implementation. For N total participants, the likelihood function

is

pðBjW; s2
s Þ ¼

YN

i¼1

pðbijW; s2

s Þ

¼
YN

i¼1

j2ps2

s Qj
� 1

2 exp �
1

2s2
s

bT
i Q
� 1bi

� �

:

ð2Þ

Maximisation of Eq (2) is performed using 15 steps as shown in Algorithm 1. The MNL

algorithm provides iterative updates on W� and s2�
s M times. The fast quasi-Newton algorithm

implemented to update s2�
s was adapted from Byrd et. al. (1995) [47]. As this is a deterministic

algorithm, Step 14 of Algorithm 1 repeats the search for W for P sets of different starting values

to mitigate being stuck in a local minima.

Algorithm 1: MNL algorithm
Input: Set of spatial observations B, random binary matrix W� and small

positive spatial variance s2�
s

Output: W and s2
s estimates that maximise the network likelihood

1 Evaluate log-likelihood d
�
¼ log½pðBjW�;s2�

s Þ�

2 for M runs do
3 foreach w element of W� do
4 Permute wth element in W� to get W��

5 d
w
¼ log½pðBjW��; s2�

s Þ�

6 if δw > δ� then

An effective ROI covariance network algorithm
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7 δ� = δw

8 W� = W��

9 end
10 end
11 Update s2�

s conditional on W� with a fast quasi-Newton algorithm
12 end
13 Retain final W� and s2�

s

14 Repeat Steps 1 to 13 at different random starting values P times
15 Return W� and s2�

s estimates corresponding to the highest δ�

2.3.2 Data processing. To estimate the model proposed in Eq (1) based on real data, a lin-

ear regression was applied to the set of ROI observations y.k = [y1k, y2k, . . ., yik, . . ., yIk] for each

ROI over all I individuals. Covariates in these linear regression models included gender, apoli-

poprotein (APOE) ε4 carrier and non-carriers status and age in a similar manner as previous

studies [8, 15, 17]. The predicted values of the regression model ðŷ ikÞ were obtained, and the

residuals for each set of ROIs were computed by εik ¼ ŷ ik � yik. These residuals were standard-

ised by bik ¼ ðεik � �εkÞ=sk, where �εk and sk are the empirical mean and standard deviation of

the residual for each region over all individuals. The MNL algorithm was applied to the final

set of observations (bik). This transformation allows for the residuals of the ROIs to be on the

same scale, (as the variance of each ε.k is set to one) while maintaining the correlation structure

of the data after accounting for covariates. Pairwise plots and histograms of the transformed

residual showed linear relationships between certain ROIs and each ROI were approximately

Normally distributed and centred at zero (not shown).

2.4 Simulation study of MNL algorithm

The goal of the simulation study is to assess the ability of the MNL algorithm described in Sec-

tion 2.3 to recover binary connectivity matrices based on simulated neural data at various sam-

ple sizes. A further assessment focused on comparing the results of the MNL algorithm with

those obtained using the gLASSO and PPC methods applied to the same simulated data.

Our simulation study comprised of two simulated networks, S1 and S2 as shown in Fig 1.

We combined a second order diagonal network with a random network model as described in

Bien and Tibshirani (2011) [48]. As cortical networks, in general, have a diagonal structure

[14], both binary solution networks had second order connections Si,i−1 = Si−1,i and Si,i−2 =

Si−2,i = 1 and zero otherwise. A random network model was used to simulate semi-sparse (S1)

and sparse (S2) off-diagonal elements, whereby the remaining off-diagonal elements had a

probability of 0.1 and 0.05 respectively, of a connection being present. To convert these binary

solution networks into covariance matrices, in a similar manner as Bien and Tibshirani (2011)

[48], the diagonals and off-diagonal elements of S1 and S2 were multiplied by different positive

constants resulting in covariance matrices O1 and O2. Data were generated from a multivariate

normal distribution MVN(0, O) for each covariance matrix for sample sizes N = 100, 250, 500,

1000. Ten independent sets of simulated data were drawn for each sample size in order to

allow for a rigorous comparison of performance of each method at every sample size.

To assess the performance of the MNL algorithm we compared the rate of the true positive

connections (sensitivity), which was summarised by the percentage of the connections which

were correctly identified to be present. Likewise, the true negative rate (specificity) was sum-

marised by the proportion of absent connections that were correctly identified by the algo-

rithm. As the connectivity matrices are symmetric, we only consider the upper off-diagonal

elements of each matrix. A network classifier which has a perfect recovery of the solution net-

work will have both sensitivity and specificity percentages close to one. Alternatively, a poor

performing algorithm will have the respective percentages close to zero.

An effective ROI covariance network algorithm
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Comparison of the performance of the MNL, gLASSO and PPC methods for increasing

sample sizes provides insight into the consistency of each approach. A consistent network esti-

mator has a property that as the sample size increases, the estimated network converges to the

true solution [37]. Mathematically, we can demonstrate that the parametrisation of 1=s2
s Q
� 1,

and by extension s2
s Q, is a positive definite covariance matrix for all values of γ, refer to Sup-

porting Information S1 File: Proos MNL is a consistent estimator for a proof of this result. It fol-

lows from fundamental theoretical results by Greene 2010 (Chapter 14 [49]) and Pourahmadi

(2000) [50] among others, that an MLE estimator of a positive definite covariance matrix is a

consistent estimator, and will converge to the true solution with probability one as the sample

size increases.

In addition to assessing the MNL algorithm as a suitable candidate for network estimation,

the simulation study also provides information on the performance of each algorithm accord-

ing to different sample sizes based on two network configurations for a range of tuning param-

eters (for gLASSO and PPC methods).

2.5 Alternative brain connectivity methods

As described in Section 1, the PPC and gLASSO are current and popular methods used to

derive connectivity networks. In this section we provide a brief description of each approach

in relation to the simulation study and its application to the case study.

2.5.1 PPC approach. The PPC continues to be a popular approach to derive cortical con-

nectivity networks [19] and, for this reason, this approach will also be considered in our

Fig 1. Simulated networks S1 and S2. W connectivity matrices to recover in simulation study. Semi-sparse (left) and sparse (right) second order

random networks denoted as S1 and S2 respectively. Off-diagonal elements had a probability of 0.1 and 0.05 of a link present (in blue) and 0.9 and 0.95

probability of an absent link (cells in white).

https://doi.org/10.1371/journal.pone.0198583.g001
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simulation study. The correlation between region i and j is denoted by ρij and −1� ρij� 1. All

possible sets of pairwise correlations (ρij) were used to populate the correlation matrix [2, 8, 15,

51, 52]. A binary adjacency matrix A was derived from the correlation matrices, with elements

aij equal to zero if |ρij|< τ and value one if |ρij|� τ, where the threshold range or tuning

parameter is 0< τ< 1, similar to the threshold range described by He et. al. (2008) [51].

Fewer spurious correlations are included as τ approaches one, and this may result in discon-

nected networks determined by the strongest correlations. Alternatively, if τ is too close to

zero then the highly connected network may include connections which arose due to spurious

noise from the data. In practice, the threshold range in cortical correlation analyses is chosen

such that the resultant networks have several organisational features such as small-world topol-

ogy and the minimum clustering coefficient is above zero in order to make meaningful com-

parisons between networks [6, 15, 51, 53]. In contrast, the estimated W from the MNL

algorithm does not rely on tuning parameters and organisational network features described

above can be evaluated directly on this estimated network. In this work, values for τ in {0.1,

0.15, 0.2, 0.25, . . ., 0.75, 0.8, 0.85} were initially investigated for the PPC networks, and this was

fine-tuned for the simulation study.

2.5.2 gLASSO algorithm. The graphical LASSO is a fast approach to estimate a sparse

inverse covariance matrix [21, 22, 54]. For a set of observations b.1, b.2, . . ., b.I from a multivar-

iate normal distribution b.i * MVN(0, Γ) with precision matrix Θ = Γ−1, gLASSO aims to find

Ŷ such that

Ŷ ¼ maxflogðjYjÞ � traceðSYÞ � l kYk1g; ð3Þ

where the sample covariance matrix is denoted by S and ||.||1 is the L1 norm. The sparsity tun-

ing parameter λ, also known as the penalizing parameter, determines the sparsity of Ŷ. For

example, high values of λ implies that ||Θ||1 has a large contribution to the optimisation prob-

lem in (3). Conversely, when λ = 0, Eq (3) reverts to a simpler MLE problem.

In terms of brain connectivity, the gLASSO is applied to estimate Θ, which is then used to

derive the binary connectivity matrix. Values of this network matrix are equal to one if the cor-

responding values of Ŷ are non-zero, and an absent connection is defined by the zero values

of Ŷ. Brain connectivity networks estimated by (3) include the work by Huang et. al. (2010)

[20] and Cho et. al. (2017) [23] among others [55, 56]. Authors Huang et. al. (2010) [20]

focused on the investigation of network organisation and selected λ such that the networks

had a fixed number of links. Alternatively, the StARS approach was used to derive an optimal

value for the tuning parameter λ in Cho et. al. (2017) [23] and the effect of λ on the results

were not investigated. In addition to the StARS approach, extensive research and development

in relation to the optimal λ value has led to several novel approaches, including cross validation

[24] among others [57], refer to Fan and Feng 2009 [58] for a review.

In this work, we are interested on the effect λ has on the performance of gLASSO and its

ability to correctly identify the solution networks for S1 and S2. Values for λ in {0.1, 0.15, . . .,

1.7} were explored for gLASSO networks in the simulation study, and a subset of this range

was chosen for the real data analyses. Furthermore, we also explored the optimal value of λ
which minimises the cross validation error, as this is one of many standard approaches to

derive the value of λ [24] (See Supporting Information S3 Fig for results). As the intention of

this research is to present the MNL algorithm, further investigation of networks derived by

gLASSO with other approaches to derive λ is beyond the scope of this work.
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2.6 Statistical analysis

Via exploratory data analyses, the demographic characteristics were compared between HC

and MCI participants over age using an Analysis of Variance, Independent Sample t-test, Chi-

squared tests (gender and APOE ε4 allele positive status), as well as Kruskal Wallis test

(MMSE and CDR). All statistical analyses were performed using the R statistical environment

(R version 3.4.2, R Core Team [59]).

On both simulation and real data application, a single application of the MNL algorithm

took less than a minute to run on a single central processing unit (CPU) on a standard com-

puter (four core 3.40GHz Intel i7-4770 processor). We expect this to vary for different N and K
data sets. Step 5 of Algorithm 1 is executed in C++ in order to improve the computational time

taken to run the MNL algorithm. The remainder of the algorithm is implemented in R. We

note that nested for-loops (Steps 2 and 3 of Algorithm 1) act as a bottle neck and future work

to profile Algorithm 1 would speed up the implementation of the MNL algorithm. In this

work, the MNL algorithm was found to be slightly slower (in terms of seconds) than the

gLASSO and PPC. Refer to https://github.com/MarcelaCespedes/MNL_algorithm for the

coded implementation of the MNL algorithm, full simulation study as well as a tutorial on the

implementation of the MNL approach.

3 Results

3.1 Simulation study: Comparison of MNL, gLASSO and PPC algorithms

The aim of this simulation study was to evaluate the performance of the MNL algorithm to

correctly recover the connectivity matrices for each configuration shown in Fig 1 from the

simulated data described in Section 2.4. As the simulation study described in Section 2.3

shows that for a range of γ the performance of the MNL algorithm is relatively robust in terms

of the the sensitivity and specificity of the recovered network, in this simulation study we assess

the performance of the MNL algorithm against a range of threshold and sparsity values for the

PPC and gLASSO.

3.1.1 Simulated semi-sparse network S1. As described in Section 2.4, out of the two sim-

ulated matrices considered in this work, S1 is the semi-sparse diagonal network. Each sample

size comprised of ten replicates and Supporting Information S2 Fig shows the covariance plots

for randomly selected covariance matrices for each sample size. Fig 2 shows the gLASSO and

PPC results and their ability to correctly identify the elements of the S1 matrix via the sensitiv-

ity and specificity for all simulated data over a range of tuning parameters.

The sensitivity and specificity of the MNL algorithm are shown by the red and blue hori-

zontal lines respectively, refer to Table 2 for values. Supporting our theoretical results which

show that the MNL is a consistent estimator, our simulation study shows that as the sample

size increases, both sensitivity and specificity approach one. It is interesting to note that for all

sample sizes the MNL algorithm in general has a specificity close to one, suggesting that the

algorithm has a high chance of detecting no link when no such link exists. The simulation

study in this work show that the MNL algorithm is better suited for applications where it is

desirable to avoid over-interpreting incorrect links. While this trait has it obvious merits, the

MNL algorithm may be unsuitable in applications such as gene regulatory networks, where it

is desirable to over-select the network connections rather then underestimate them [25].

Both gLASSO and PPC approaches show a trade-off between the ability to correctly detect

the presence and absence of links over the range of values of τ and λ. In general, for all sample

sizes and small tuning parameters, both algorithms show a sensitivity close to one but a speci-

ficity close to zero, suggesting that these algorithms largely overestimated the number of links
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Fig 2. Simulation results for S1. Sensitivity (in red stars) and specificity (in blue dots) for S1 simulation results for PPC (left column: A, B, C and D)

and gLASSO (right column: D, F, G and H). Simulation results highlight the effect of threshold and sparsity tuning parameters for the PPC and gLASSO

algorithms over sample sizes N = 100, 250, 500 and 1000. MNL algorithm sensitivity and specificity results are shown by the horizontal lines which are

the average over all 10 replicates for each sample size, colour coded in red and blue respectively.

https://doi.org/10.1371/journal.pone.0198583.g002
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of the networks. At the other extreme of the tuning parameters, this relationship switches, and

resultant networks approach a zero connectivity matrix reflected by specificity close to one

and a sensitivity close to zero. Our results illustrate the extent the tuning parameters can have

on the gLASSO and PPC, making the correct choice in practice difficult; as the optimal perfor-

mance of the gLASSO and PPC occurs when the specificity and sensitivity are at their highest

and this occurs within a very narrow range of the tuning parameters. This simulation study

also serves to show the benefits of an approach that is robust to the choice of value for the tun-

ing parameter, as the MNL algorithm is not affected by such trade-off.

In relation to the PPC, the value of τ can range between zero and one, however, a smaller

range away from the extremes is often used in practice to avoid the issues described in Section

2.5.1. It is surprising to see in our simulation study that at small values of τ = 0.08, 0.09, 0.1 and

0.11, the PPC offers superior performance compared to the other two alternatives, particularly

at a sample size of N = 1000. While it is unlikely that these values of τ are used in practice, we

note that the approach to simulate the data favours the PPC approach. As the sample covari-

ance matrices in Supporting Information S2 Fig show a clear difference between covariance

values for present and absent links. This difference is mostly emphasised as the sample size

increases to N = 1000.

Across all sample sizes, the optimal performance of the gLASSO occurs at sparsity values

λ = 0.55, 0.6, 0.65 and 0.8 as shown in Fig 2. Outside of these values, gLASSO shows the trade-

off between sensitivity and specificity giving poorer performance. In comparison to the MNL

algorithm, particularly at λ values where gLASSO had optimal performance, the MNL algo-

rithm maintained similar or superior specificity and sensitivity across all sample sizes. As the

MNL algorithm relies on the evaluation of the full likelihood, its application is not always suit-

able for small sample sizes (N< p case). As suggested in literature the gLASSO may be better

suited for brain connectivity estimation in smaller clinical studies [20]. Our simulation study

support this result in the case of N = 100 and K = 68 ROIs, as the gLASSO results were compa-

rable to those those from the MNL algorithm. We note that unlike the bounded tuning param-

eters of the PPC, the range λ can take are all positive values, making the choice of λ in practice

more difficult to ascertain than the PPC approach.

3.1.2 Simulated highly sparse network S2. The data generating network for S2 has

approximately half the connections than the S1 network and for this reason it is of interest to

see how the MNL and PPC algorithm perform, and in particular how they compare to the

gLASSO which is specifically designed to estimate sparse networks. Refer to Supporting Infor-

mation S2 Fig for covariance plots for data generated by the S2 binary networks.

Simulation results in Fig 3 follow similar trends as those described in Section 3.1.1 for the

gLASSO and PPC. The trade-off between sensitivity and specificity across the tuning parame-

ters remains and the PPC demonstrates superior performance over the MNL and gLASSO

algorithm at similar τ values as described above, particularly at a sample size of N = 1000. In

this scenario, there is a faster improvement of the MNL algorithm as the sample size increases

Table 2. MNL simulation results. MNL simulation study results across sample size (N) for S1 and S2 simulated networks. Sensitivity and specificity values averaged over

ten replicates.

N S1 S2

Sensitivity Specificity Sensitivity Specificity

100 0.56 0.94 0.51 0.94

250 0.75 0.97 0.73 0.96

500 0.84 0.98 0.85 0.97

1000 0.89 0.99 0.91 0.98

https://doi.org/10.1371/journal.pone.0198583.t002
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Fig 3. Simulation results for S2. Sensitivity (in red stars) and specificity (in blue dots) for S2 simulation results for PPC (left column: A, B, C and D)

and gLASSO (right column: D, F, G and H). Simulation results highlight the effect of threshold and sparsity tuning parameters for the PPC and gLASSO

algorithms over sample sizes N = 100, 250, 500 and 1000. MNL algorithm sensitivity and specificity results are shown by the horizontal lines, colour

coded in red and blue respectively.

https://doi.org/10.1371/journal.pone.0198583.g003
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and we believe this is due to the simulated covariance values are larger for S2 than S1, and this

is reflected in their respective covariance plots. Refer to Table 2 for MNL algorithm results.

As the connectivity matrix we are interested in recovering is a highly sparse network in

comparison to S1, it is not surprising to see that the performance of the gLASSO also improves

faster as the sample size increases. In this simulated scenario, optimal performance of the

gLASSO occurs at λ = 1.55 on a sample size of N = 100 and this improves for an optimal sensi-

tivity and specificity of 0.62 with λ = 1.1 at a sample size of N = 1000. The MNL algorithm

shows higher sensitivity and specificity values compared to the gLASSO at sample sizes greater

than 250. It is interesting to note, that in this simulation study the optimal values of τ remain,

in general, unchanged for the PPC approach, whereas for the gLASSO, there is a large differ-

ence in the range of λ for S1 and S2 matrices where optimal performance occurs.

3.2 Case study: Characteristics of study participants

The results of the exploratory data analyses of the demographic features of the participants in

the study are shown in Table 3. A chi-squared test for independence found a significant associ-

ation between gender and diagnosis levels (p< 0.0001), as the MCI group had a considerably

higher number of males compared to the HC group. Compared with HC, MCI participants

were more likely to have the variant APOE ε4 allele (p< 0.0001). Cortical thickness measures

for all 68 ROI were significantly higher in HC participants (mean 2.71 mm) compared with

MCI participants (mean 2.66 mm) (p< 0.0001). Significant ordinal patterns of degeneration

from HC to MCI were observed as follows: cognitive Mini Mental State Examination (MMSE)

scores decreased from 29 to 28 (p< 0.0001); Clinical Dementia Rating (CDR) score values

increased from 0 to 1.5 (p< 0.0001). As each individual has 68 ROI observations, here, the

smallest sample size comprises of 35,156 observations which is greater than 2,278 potential

links for a 68 × 68 connectivity matrix.

3.3 Case study: MNL analysis

Prior to applying the MNL algorithm, we observed the histograms of the b.i values for each

region. These plots confirmed that the transformed data follow an approximate Normal distri-

bution centred at zero (plots not included).

Inspection of pairwise plots of the transformed data showed the association between

regions displayed various levels of linear relationships, suggesting there is a covariance struc-

ture in the data (plots not included). Representative samples from these plots, such as paired

Table 3. Summary of ADNI case study data. Subset of ADNI cohort demographic characteristics for individuals stud-

ied at baseline. Age mean reported with standard deviation in parenthesis. Mini-mental state exam (MMSE) and clini-

cal dementia rating sum of boxes (CDR-SOB) medians reported with inter-quartile range in parenthesis. Genetic

assessment included the apolipoprotein (APOE) ε4 carrier and non-carrier status. Data included missing APOE ε4 sta-

tus for a single HC and three MCI individuals.

N = 1,383 participants

HC MCI p-value

Total no. 517 866

Age 74.27 (5.78) 73.05 (7.60) 0.00073

Female 268 (52%) 354 (41%) 0.0001<

APOE ε4 carriers 147 (28%) 435 (50%) 0.0001<

MMSE 29 (1) 28 (3) 0.0001<

CDR 0 (0) 1.5 (1) 0.0001<

https://doi.org/10.1371/journal.pone.0198583.t003
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regions 23 and 49, 48 and 60, 42 and 52 suggest there is a linear relationship among these

regions for all diagnosis groups, refer to Table 1 for ROI names and Supporting Information

S3 Fig for plots. Hence, the covariance structure of the MNL algorithm in Fig 4 show these

regions to be connected. Likewise, the absence of a linear relationships was observed in pair-

wise plots between, for example, regions 21 and 30, 36 and 57, 51 and 68, across both diagnosis

groups. The lack of association between these regions is indicated by the corresponding

absence of links in the networks of Fig 4. Furthermore, as a goodness-of-fit assessment of the

MNL algorithm, we examined the residuals after we fitted the model to the transformed data

from the two diagnosis groups. Histograms and scatter plots of the residuals show they were

approximately Normally distributed, refer to Supporting Information S5 Fig.

In order to assess if the MNL algorithm adequately modelled the spatial structure of the

data, we computed the Moran’s I statistic [60] on the set of residuals from the MNL model fit-

ted to the data for each person within each diagnosis group [61, 62]. Synonymous to Pearson’s

correlation, a Moran’s I value close to zero, contingent on spatial structure matrix W, indicates

the data have low spatial correlation [63]. The median Moran’s I value for HC and MCI groups

were found to be equal to or less than 0.31. Correlation and partial correlation plots of the

MNL algorithm residuals in general had values which were substantially small, refer to the

Supporting Information S5 Fig for plots. In summary, the selected pairwise, partial correlation

plots and Moran’s I values suggest the covariance structure of the data on all diagnosis groups

was adequately modelled by expression (2), and the histograms support the Normality

assumption in (2).

Fig 4. MNL networks on case study data. MNL connectivity networks for HC (left) and MCI (right) diagnosis. Blue denotes a link between two ROIs

and white denotes absence of connections, cerebral frontal, limbic, occipital, parietal and temporal lobes outlined in red. Refer to Table 1 for ROI

names.

https://doi.org/10.1371/journal.pone.0198583.g004
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The binary matrices from the MNL algorithm applied to the case study data are shown in

Fig 4. These matrices represent the estimated general connectivity structures for the HC and

MCI diagnosis groups. The total number of potential connections on a 68 ROI network is

2,278. The total number of links in the diagnosis networks are 180 and 167 for HC and MCI

networks, respectively. The networks in Fig 4 shows a large overlap in connectivity between

the networks, with 136 connections in common. Most of the connections which are common

to both HC and MCI groups include those within each lobe, while most of the differences tend

to occur between lobe connectivity. While there was only a subtle reduction in connectivity

along the diagnosis spectrum (from HC to MCI), all estimated networks were connected, sug-

gesting that, at some level, all ROIs co-vary with each other in that there were no regions inde-

pendent from the rest.

Our initial investigation was performed on a clinical study with smaller sample sizes (HC:

171, MCI: 46 and AD: 29). However, based on the simulation study results in Section 3.1, it is

clear that the performance of the MNL algorithm improves as the sample size increases. Hence

in this work we applied our method on the ADNI case study on two large groups (HC and

MCI), with expected pathological differences in connectivity.

From the networks in Fig 4, additional network analysis can be applied to the network

matrices to determine small-world topology [4] and organisational network features such as

characteristic path length and clustering coefficient [64], however, this is beyond the scope of

the present study. The results from simulation studies in Section 3.1 suggest that the obtained

networks are relatively reliable, and as the sample size increases, the performance of the MNL

algorithm improves in both the ability to correctly identify the presence and absence of

connections.

3.4 Case study: gLASSO approach

Our intention of applying a competing algorithm to the case study is to compare a single

binary network between the MNL algorithm to a current known approach. There are several

alternatives available for estimating such a network via the gLASSO, and for this reason we

applied the gLASSO to the case study data. As we have yet to find methods to choose a single

value for τ given the data, in this application we did not apply the PPC to the case study data.

Fig 5 shows the connectivity matrices for selected sparsity (λ) values, whose total links were

similar to the MNL results. Without knowing the correct value of λ we first applied the glASSO

for the range of sparsity values λ = {0.1, 0.15, . . ., 1} to understand the effect λ had on estimated

networks. The resultant networks ranged between 2,278 to 0 in total number of links, refer to

Supporting Information S2 Table for full results.

In a similar manner as Huang and colleagues (2010) [20], the sparsity value was chosen

such that the resultant networks had a similar number of links to those from the MNL algo-

rithm in Section 3.3. We note that the primary intention of applying the gLASSO to the case

study data is to compare the change in connectivity, with less focus on finding the best model

fit. Fig 5 shows the resultant networks for HC and MCI groups and the total number of links

for each network were 171 and 122 for HC and MCI groups respectively.

The networks in Fig 5 show clearer block diagonal matrices, in comparison to the MNL

algorithm (Fig 4), suggesting that in this work, gLASSO networks detected higher inter-lobe

connections rather than between lobe connections. No connections were detected within or

between the limbic lobe. In a similar manner as the MNL algorithm, there was a large overlap

between the connectivity within each lobe for the HC and MCI groups, with 66 links in com-

mon. The HC network is shown to have no connections between the parietal and occipital

lobes, however, in the MCI network there is a large change in connections between the
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occipital and temporal lobes. We note that in order to appropriately assess the network organi-

sation (by investigating the clustering coefficient, efficiency and small world topology of the

networks) and thereby further discuss biological and neurological differences between the

MNL and gLASSO networks, a suitable range of λ is required, and this is beyond the scope of

this work.

4 Discussion

In this work, we propose a novel approach to estimate brain networks from neuroimaging

data. Validated on a numerical simulation study, the sensitivity and specificity performance of

the MNL algorithm was shown to improve as the sample size increases supporting our theoret-

ical results that the MNL algorithm is a consistent network estimator. In the simulation study

for sample sizes greater than 100, the MNL algorithm was shown to have a higher sensitivity

and specificity compared to the results from gLASSO, over a range of sparsity values. At the

range of 0.08� τ� 0.11, the PPC was shown to outperform both MNL and gLASSO algo-

rithms, particularly at a sample size of N = 1000. Application of the MNL algorithm to the

ADNI case study identified a loss of connections between HC and MCI connectivity networks,

suggesting evidence of atrophy along the neurodegeneration pathway, supporting biologically

meaningful results.

Our simulation studies found that the PPC and gLASSO analyses were sensitive to the tun-

ing parameters in terms of the ability to recover the solution networks. A trade-off exists

between the specificity and sensitivity rates in all sample sizes considered in this work, which

showed that as the tuning parameters (threshold τ and sparsity λ) increase the specificity

increases, but the sensitivity decreases and vice versa. Application of the MNL approach

yields a single connectivity structure that is robust to the value of the tuning parameter (γ)

Fig 5. gLASSO networks on case study data. gLASSO connectivity structures for HC (left) and MCI (right) diagnosis. Blue denotes a link between two

ROIs and white denotes absence of connections, cerebral frontal, limbic, occipital, parietal and temporal lobes outlined in red. Refer to Table 1 for ROI

names.

https://doi.org/10.1371/journal.pone.0198583.g005
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which serves as a descriptive network statistic which is beneficial for exploratory purposes.

As such, interpretation of the resultant network is limited to the specific sample used to

derive the network. The brain wombling models applied to neuroimaging data by Cespedes

et. al. (2017) [35] utilise expression (2) as part of a Bayesian wombling model to estimate

the network connectivity and its associated uncertainty. To compare our exploratory

approach with those from the Bayesian wombling models, we applied the MNL algorithm

to HC, MCI and AD diagnosis groups and 35 ROIs selected in the work by Cespedes et. al.

(2017) [35], albeit to baseline data only. We found that the MNL diagnosis networks correctly

identified over 83% of the links (correctly detected the presence and absence of connections)

obtained in the wombling model (see Supporting Information S6 Fig), suggesting the MNL

algorithm can provide results that are comparable to those of Bayesian probabilistic network

models.

4.1 Extensions

Despite the substantive appeal of the MNL algorithm described in this paper, there are several

extensions that could be considered. Firstly, the current mean of the multivariate network dis-

tribution is zero and as such the MNL algorithm does not provide ROI mean estimates.

Extending the MNL algorithm to include a non-zero region mean vector μ may be informative

as not all ROIs have the same mean. In this work we compensated for this by applying linear

regression models to each ROI and transforming the residuals such that they have a mean of

zero (Section 2.3.2). We note that the added complexity of the proposed extensions to the

MNL approach may result in a more difficult optimisation problem and may require more

sophisticated numerical optimisation methods to estimate the additional parameters. Sec-

ondly, analyses on longitudinal neuroimaging studies are favoured in contrast with cross sec-

tional analyses, as they could potentially include information on ROI changes over time [65].

While the MNL algorithm presented in this work does not account for repeated measures, an

extension of expression (1) to account for repeated measures can be achieved by adding a ran-

dom effects layer in the model. However, as the MNL algorithm is the first brain network algo-

rithm of its kind whose connectivity estimates improves as the sample size increases, such an

extension is left as future work.

4.2 Conclusion

The potential application of MNL networks is not restricted to cortical thickness structural

MRI data, and can easily be applied to any complete spatial set of observations from any neu-

roimaging modality. The objective for the methodology and application presented here is to

introduce and demonstrate the utility of the MNL algorithm, as the application of MNL

method can be applied to functional MRI, positron emission topography (PET) and electroen-

cephalography (EEG) data. Other than the suggestions already discussed, an additional area

for future work is the application of the MNL algorithm to assess for network robustness as

described in Bernhardt et. al. (2011) [16] and Hart et. al. (2016) [11]. Here, the authors investi-

gate the loss of random or targeted nodes or edges removed from the network, representing

deterioration due to pathology. Furthermore, additional validation of the MNL algorithm on

other neurological applications such as epilepsy [16] and schizophrenia [15, 66], as well as

healthy ageing studies over a wide age range, and analyses of network topological metrics [8]

are needed to better understand the performance and biological insight from the proposed

MNL algorithm.
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Supporting information

S1 Table. Sensitivity and specificity results for data generated with various λ values for S1

connectivity matrix. A further simulation study was performed in order to assess the perfor-

mance of the MNL algorithm (with γ set to 0.9) applied to simulated data with various levels of

spatial dependence. Simulated data from the model (1) was generated with γ values {0.60, 0.70,

0.80, 0.90, 0.99}, s2
s ¼ 1 and W = S1 as shown in Fig 1 of the manuscript. The sample size was

set to N = 500.

(PDF)

S2 Table. Total number of links from gLASSO network applied to ADNI data. HC and

MCI total number of network links derived by gLASSO for the range of 0.1� λ� 1. This

range encompasses a full networks where each ROI is connected with each other at 2,278 links

(λ = 0.1), to the null networks with no connections (λ = 1).

(PDF)

S1 File. Proof MNL is a consistent estimator.

(PDF)

S1 Fig. CV error in search for optimal λ. Cross validation mean and error intervals on simu-

lated study for data simulated from binary matrices S1 (top) and S2 (bottom) for all ten repli-

cates. Vertical black lines denote the optimal specificity and sensitivity λ trade-off as per

manuscript Figs 2 and 3. Optimal value of λ is chosen such that the CV error is at its lowest.

(PDF)

S2 Fig. Sample covariance matrix for S1 (top) and S2 (bottom). Sample covariance matrices

for various sample sizes generated by S1 semi-sparse and S2 sparse matrix.

(PDF)

S3 Fig. Selected ROI pairs which support the presence and absence of connections via the

MNL. Pairwise scatter plots for selected HC and MCI ROIs. Top: ROI pairs denote linear asso-

ciation and correspond to link in estimated networks in Fig 4 of manuscript. Bottom: selected

ROI pairs denoting an absent linear association and correspond to absent connections in Fig 4

of the manuscript.

(PDF)

S4 Fig. Residual scatter plot and histogram of the residuals from the MNL algorithm

applied to the ADNI case study data. Top: residual scatter plots for HC (left) and MCI

(right). Bottom: Residual histograms for HC (left) and MCI (right). As these residuals are

approximately normal and the scatter plot shows no apparent deviations from zero, we con-

clude that there were no violations on our MNL model assumptions. Furthermore, we applied

Moran’s I to each set of residuals on both HC and MCI groups to assess if there was still spatial

correlation remaining in the data after fitting the MNL algorithm to the data. The median

Moran’s I was 0.29 and 0.31 for HC and MCI groups respectively.

(PDF)

S5 Fig. Partial correlation plots of the data for HC (top left) and MCI (top right) groups.

Partial correlation plots of the residuals of the MNL algorithm for HC (bottom left) and MCI

(bottom right) groups.

(PDF)

S6 Fig. MNL results for 35 ROI application on AIBL case study data. To further assess the

performance of the MNL algorithm, we applied our method on the same clinical diagnosis
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groups (Healthy Control (HC), mild cognitive imapired (MCI) and Alzheimer’s disease (AD))

on 35 ROI of the left hemisphere as done in Cespedes et. al. (2017) [35] on data from Austra-

lian Imaging, Biomarkers and Lifestyle (AIBL) study of ageing (https://aibl.csiro.au/). We

found 83%, 84% and 85% of the connections in our network correctly match to those from the

formal connectivity model, for the HC (left), MCI (middle) and AD (right) networks respec-

tively. M. I. Cespedes, J. McGree, D. C. C., K. Mengersen, J. D. Doecke, and J. Fripp. A Bayes-

ian hierarchical approach to jointly model structural biomarkers and covariance networks. In

QUT ePrints: 112807, November 2017.

(PDF)
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