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Abstract: Melamine (MEL) has raised human concern since the 2008 milk scandal. Co-exposure
to MEL and one of its analogues, cyanuric acid (CYA), has been reported to have a synergistic
effect on promoting urolithiasis. However, few epidemiological studies have reported urolithiasis in
association with exposure to CYA based on our knowledge. We therefore conducted a case-control
study to investigate whether cases of urolithiasis had higher excretion of urinary CYA than the
controls. Spot urine samples from 70 adult cases and first-morning urine samples from 70 controls
(matched by age and sex) were collected for the measurement of MEL, CYA, and other two analogues
in urine. The case group also had 2.81-fold higher concentration of urinary CYA than the control
group (34.87 versus 12.43 ng/mL, p-value < 0.001). Multivariate conditional logistic regression models
adjusting potential confounders of personal characteristics identified the risk factor of urinary CYA
as a continuous variable with odds ratio (OR) (95% confidence interval, 95%CI) of 1.11 (1.02–1.21)
(p-value = 0.021) and having meals at restaurants with OR of 5.71 (1.01–32.31) (p-value = 0.049).
Compared to the participants having the lowest quartile of CYA concentration in urine, participants
at the second, third, and fourth quartile groups had ORs of 13.94, 83.69, and 118.65 with p-values of
0.004, <0.001, and <0.001, respectively. The high excretion of urinary CYA in urolithiasis cases might
be the sign of stones in patients consisting of CYA, then proving the attribution of CYA exposure
in the etiology of urolithiasis. These findings are important since CYA is a degraded by-product of
chlorinated isocyanuric acid disinfectants, which are widely used in daily life not only in swimming
pool water but also in other scenarios, such as serving as anti-pandemic disinfectants. Risk assessment
of CYA serving as a by-product of disinfectants needs to be conducted in future studies.

Keywords: cyanuric acid; urolithiasis; urinary excretion; chlorinated isocyanuric acid disinfectants

1. Introduction

Melamine (MEL) has raised human concern since the 2007 pet food scandal in North
America [1,2] and the 2008 milk scandal in China [3,4]. During the scandals, cases were
found to suffer from urolithiasis, which was proven by later experiments in animals and
epidemiological surveys in humans [5–8]. The crystals or stones in the urinary tract by
exposure to MEL was reported to mainly consist of complexes of MEL with uric acid
or cyanuric acid (CYA) [9,10]. Animal studies reported a strong synergistic effect on
urolithiasis in the event of co-exposure to both MEL and CYA [11–13].

It is generally thought that urolithiasis caused by MEL was associated with scenarios
of high levels of exposure, such as adulteration of milk powders [14]. However, several case-
control studies in Taiwan reported higher excretion of urinary MEL in adult urolithiasis
cases and therefore suspected the attribution of low levels of exposure to MEL [15,16].
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Several cross-sectional studies in mainland China, Taiwan, and America also reported renal
dysfunction in association with low levels of exposure to MEL [5,17–19]. Considering the
stronger synergistic effect (12–20-fold higher, as suggested by Xie et al. [20] and Gamboa da
Costa et al. [21]) of co-exposure to MEL and CYA compared to single exposure to MEL, we
might also suspect urolithiasis in association with low levels of exposure to CYA. However,
little evidence has been reported in the literature of human data.

More importantly, such suspicion could be more reasonable since the literature has
reported a higher level of exposure to CYA than MEL in both the general population and in
children [22]. The pollution examination of environmental media, including food, water,
soil, and sludge, etc., also reported a typical 2–3-fold higher level of exposure to CYA than
MEL [23,24].

Because of its ability to stabilize chlorine [25], CYA is widely used as a raw material
for organic chlorine-containing disinfectants in industry, which are commonly applied to
the disinfection of drinking water, swimming pool water, medical and health institutions,
aquaculture, public health places, and industrial water treatment and so on [26–28]. Two of
the most common chlorinated isocyanuric acid disinfectants are sodium dichloroisocyanurate
and trichloroisocyanuric acid, both of which can be degraded in water to produce CYA
and may become an important source of pollution to the environment [29,30]. During the
coronavirus (COVID-19) pandemic, chlorine disinfectants were used as a routine strategy
to counteract the possible contamination from the virus in the environment, especially in
China [31]. Such massive application of disinfectants may increase the background pollution
of CYA in the environmental media and therefore raise greater concern of urolithiasis [32].

In this study, we conducted a case-control survey to investigate whether cases of
urolithiasis had higher excretion of urinary CYA than the matched controls. Since CYA in
the human body has been reported to be excreted mainly through urine in prototype [33], a
higher excretion of urinary CYA in cases than the controls may predict a higher exposure
to CYA in cases and therefore support the hypothesis of urolithiasis in association with
CYA exposure.

2. Materials and Methods
2.1. Study Subjects

This study recruited 70 adult patients who were diagnosed with urolithiasis by B-
ultrasound in the urology department at Zhongshan Hospital, affiliated to Fudan University,
from September 2020 to January 2021. We excluded the patients with medical history of
chronic urinary tract infection, renal failure, chronic diarrhea, gout, renal tubular acidosis,
hyperthyroidism, tumor, and other diseases. Anyone that had taken drugs or health
products in the past 6 months, such as diuretics, potassium preparations, vitamin D tablets,
and calcium tablets, were also excluded.

Applying the same exclusion criterion and a simple random sampling method, we
selected controls (without history of urolithiasis and no clinical finding of stones confirmed
by B-ultrasound) from the Shanghai Suburban Adult Cohort and Biobank. The cohort
profile has been described in the previous study [34]. Briefly, the cohort conducted a
baseline survey on 44,887 participants in seven communities from 6 April 2016 through
31 October 2017. Seventy participants from one community were randomly selected to
serve as controls matched (1:1) with cases by age (±3 years) and sex.

2.2. Questionnaire Survey and Sample Collection

All participants were interviewed by trained investigators using structured question-
naires, including personal information (age, gender, body weight and height, labor intensity,
and medical history of having stones in the urinary system) and behaviors (cigarette-smoking
and alcohol-drinking behavior, fluid intake, swimming, and eating behavior). The partici-
pants’ frequency of having meals at the canteen was divided as “barely” (≤1~2 times/week)
and “frequently” (≥3~4 times/week), and the frequency of having meals at restaurants as
“barely” (≤1~3 times/month) and “frequently” (≥1~2 times/week). Participants who had



Int. J. Environ. Res. Public Health 2022, 19, 8726 3 of 10

swimming behavior in the swimming pool ≥1 time/summer were defined as “yes”. Body
weight and height were used to calculate the body mass index (BMI).

Spot urine samples from cases and first-morning urine samples from controls were
collected for the measurement of urinary pH, MEL, and its analogues. Indexes of kidney
function (serum urea nitrogen, serum creatinine, and serum uric acid) were from the
hospital for cases and from baseline survey record for controls.

2.3. Measurement of Melamine and Its Analogues in Urine

MEL and its three analogues (ammeline (AMN), ammelide (AMD), and CYA) were
simultaneously detected by ultra-performance liquid chromatography tandem mass spec-
trometry (UPLC-MS/MS). The detailed detection methodology of MEL and its analogues
has been described in the previous study [35]. Briefly, 100 µL internal standard solution
and 3.9 mL acetonitrile were added into 1 mL urine sample. After vortex, sonication,
and centrifugation, the urine sample was firstly loaded into the activated mixed cation
exchange (MCX) solid-phase extraction column for the enrichment of MEL, AMN, and
AMD and then into mixed anion exchange (MAX) solid-phase extraction column for the
enrichment of CYA. The extracted solution was eluted with 5% ammoniated methanol or
2% formic acid methanol, dried under nitrogen at 40 ◦C, and then separated by amide
chromatographic column (2.1 mm × 100 mm, 1.7 µm). Tandem mass spectrometer was
used to perform qualitative and quantitative analysis in the simultaneous scanning mode
of positive and negative ions. MEL, AMN, AMD, and CYA had limits of detection (LOD)
of 0.03, 0.04, 0.04, and 0.05 ng/mL and limits of quantification (LOQ) of 0.11, 0.12, 0.14, and
0.15 ng/mL, respectively.

2.4. Statistical Analyses

The population of all participants in this study had the detection prevalence of 76.42%,
41.43%, 97.86%, and 98.57% for MEL, AMN, AMD, and CYA, respectively. One-half of
the LOD values were assigned to the participants with MEL or its analogues less than
LOD. Univariate and multivariate conditional (matched) logistic regression models were
established to explore the association of urolithiasis with personal characteristics, kidney
function indexes, and the exposure to MEL and its analogues. The adjusted confounders in
the multivariate models were those differently distributed in cases and controls with p-value
of <0.05 and those being reported to be positively associated factors (fluid intake and BMI).
Since the continuous value of CYA presented a remarkable significance in both univariate
and multivariate models, we further explored its association with urolithiasis by dividing
its value into two (using median cut-point) or four groups (using quartile cut-point). Such
strategy of turning the continuous variable into a categorical variable presented a much
more remarkable significance for the association between urolithiasis and the exposure to
urinary CYA. All analyses were performed using SAS software version 9.4 (SAS Institute
Inc., Cary, NC, USA). A p-value of <0.05 was considered statistically significant.

3. Results

Table 1 presents the personal characteristics of adult patients with urolithiasis and
the controls. Compared to the control group, the case group had higher prevalence of
labor intensity, alcohol drinking, and swimming behavior; ate more frequently at either
canteens or restaurants; and had higher concentrations of serum creatinine and uric acid.
The case group also had 2.81-fold higher concentration of urinary CYA than the control
group (34.87 versus 12.43 ng/mL, p-value < 0.001).
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Table 1. Personal characteristics of patients with urolithiasis and the controls (1:1 matched by age
and sex, N = 70 pairs).

Variables Controls Urolithiasis

N (%) p-value a

Gender
Male 56 (80.00) 56 (80.00)

Female 14 (20.00) 14 (20.00) 1.000
Labor intensity

Light 60 (85.71) 50 (71.43)
Moderate 10 (14.29) 20 (28.57) 0.040

Fluid intake (mL/day)
<1000 8 (11.43) 12 (17.14)

1000–2000 35 (50.00) 38 (54.29) 0.528
>2000 27 (38.57) 20 (28.57) 0.191

Cigarette smoking
No 44 (62.86) 39 (55.71)
Yes 26 (37.14) 31 (44.29) 0.390

Alcohol drinking
No 59 (84.29) 48 (68.57)
Yes 11 (15.71) 22 (31.43) 0.029

Swimming (≥1 time/summer)
No 68 (97.14) 62 (88.57)
Yes 2 (2.86) 8 (11.43) 0.049

Meals at canteens
Barely 45 (64.29) 28 (40.00)

Frequently 25 (35.71) 42 (60.00) 0.004
Meals at restaurants

Barely 44 (62.86) 25 (35.71)
Frequently 26 (37.14) 45 (64.29) 0.001

Mean ± SD p-value b

Age 48.95 ± 1.48 49.01 ± 1.50 0.595
BMI (kg/m2) 24.25 ± 0.41 24.45 ± 0.39 0.728

Indexes of kidney function
Urinary pH 5.91 ± 0.09 6.05 ± 0.07 0.244

Serum urea nitrogen (mmol/L) 5.24 ± 0.16 * 5.38 ± 0.17 0.454
Serum creatinine (µmol/L) 79.31 ± 1.88 * 92.29 ± 4.00 <0.001
Serum uric acid (µmol/L) 339.3 ± 10.41 * 470.8 ± 102.6 0.029

Melamine and its analogues (ng/mL)
Melamine 11.79 ± 1.53 7.33 ± 2.26 0.109
Ammeline 0.50 ± 0.12 0.37 ± 0.10 0.414
Ammelide 3.37 ± 0.31 3.10 ± 0.37 0.565

Cyanuric acid 12.43 ± 1.53 34.87 ± 3.99 <0.001
a p-value for chi-square test; b p-value for paired t-test; SD, standard deviation. * The case group has 29 missing
values on serum urea nitrogen and serum creatinine and 28 missing values on serum uric acid. Average value
was applied to fill in the missing values.

Table 2 presents the results of conditional logistic regression analyses by comparing
cases with controls. Univariate models identified risk factors of drinking alcohol, having
meals at canteens or at restaurants, and having higher concentrations of serum creatinine,
serum uric acid, and urinary CYA (p-value < 0.05). Labor intensity and swimming fre-
quency in summer were also risk factors with odds ratios (ORs) close to the statistical
significance (p-value = 0.056 and 0.069, respectively). Without considering MEL and its
analogues, multivariate models after adjusting significant variables of personal characteris-
tics maintained the significance of ORs with frequently having meals at restaurants, serum
creatinine, and serum uric acid. When including the variables of MEL or its analogues,
multivariate models adjusting significant variables of personal characteristics only iden-
tified the risk factor of CYA with OR (95% confidence interval, 95%CI) of 1.11 (1.02–1.21)
(p-value = 0.017).
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Table 2. Personal characteristics in association with the risk of urolithiasis by conditional logistic
regression models (1:1 matched by age and sex, N = 70 pairs).

Variables
Univariate Multivariate *

OR (95%CI) p-Value OR (95%CI) p-Value

Labor intensity
Light Reference Reference

Moderate 2.25 (0.98, 5.18) 0.056 1.63 (0.63, 7.31) 0.523
Fluid intake (mL/day)

<1000 Reference Reference
1000–2000 0.72 (0.27, 1.89) 0.502 0.91 (0.12, 6.99) 0.927

>2000 0.40 (0.12, 1.32) 0.134 0.74 (0.07, 7.56) 0.801
Cigarette smoking

No
Yes 1.42 (0.68, 2.97) 0.356 1.71 (0.42, 6.93) 0.455

Alcohol drinking
No Reference Reference
Yes 2.57 (1.07, 6.16) 0.034 1.91 (0.44, 8.24) 0.385

Swimming (≥1 time/summer)
No Reference Reference

Yes 7.00 (0.86, 56.89) 0.069 5.66 (0.31,
102.16) 0.240

Meals at canteens
Barely Reference Reference

Frequently 3.13(1.41, 6.93) 0.005 1.92 (0.47, 7.79) 0.361
Meals at restaurants

Barely Reference Reference
Frequently 4.80 (1.83, 12.58) 0.001 5.71 (1.01, 32.31) 0.049

Age 1.13 (0.72, 1.76) 0.593 1.11 (0.48, 2.55) 0.812
BMI (kg/m2) 1.02 (0.92, 1.13) 0.726 0.94 (0.78, 1.13) 0.501

Indexes of kidney function
Urinary pH 1.32 (0.83, 2.09) 0.246 1.17 (0.52, 2.60) 0.707

Serum urea nitrogen (mmol/L) 1.12 (0.84, 1.50) 0.452 1.12 (0.64, 1.95) 0.690
Serum creatinine (µmol/L) 1.06 (1.03, 1.10) <0.001 1.07 (1.01, 1.14) 0.024
Serum uric acid (µmol/L) 1.01 (1.01, 1.02) <0.001 1.01 (1.00, 1.02) 0.042

Melamine and its analogues
Melamine 0.98 (0.96, 1.01) 0.130 0.98 (0.93, 1.02) 0.339
Ammeline 0.84 (0.56, 1.28) 0.418 0.98 (0.62, 1.56) 0.932
Ammelide 0.96 (0.84, 1.10) 0.565 0.54 (0.21, 1.38) 0.197

Cyanuric acid 1.12 (1.07, 1.18) <0.001 1.11 (1.02, 1.21) 0.021
OR (95 CI%), odds ratio (95% confidence interval). * Adjusted by significant variables in Table 1, including labor
intensity, fluid intake, alcohol-drinking behavior, swimming frequency in summer, frequently having meals at
canteens, frequently having meals at restaurants, BMI, serum creatinine, and uric acid.

Table 3 presents the results of stratified CYA concentration in association with the
risk of urolithiasis by conditional logistic regression models. Either stratified by median
or quartile values, higher concentration of urinary CYA was associated with higher ORs.
Compared to the participants of having lowest quartile of CYA concentration in urine,
participants at the second, third, and fourth quartile groups had ORs of 13.94, 83.69, and
118.65 with p-values of 0.004, < 0.001, and < 0.001, respectively.
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Table 3. Stratified concentration of CYA in association with the risk of urolithiasis by logistic
regression models.

CYA Conc.
(ng/mL)

Controls Urolithiasis Univariate Multivariate *

N (%) N (%) OR (95%CI) p-Value OR (95%CI) p-Value

Stratified by median
<19.3 56 (80.00) 14 (20.00) Reference Reference
≥19.3 14 (20.00) 56 (80.00) 16.00 (6.99, 36.63) <0.001 24.36 (7.79, 76.21) <0.001

Stratified by quartile
<11.0 39 (55.71) 2 (2.86) Reference Reference

11.0–19.7 19 (27.14) 14 (20.00) 14.37 (2.96, 69.75) 0.001 13.94 (2.35, 82.70) 0.004
19.7–32.5 8 (11.43) 25 (35.71) 60.94 (11.95, 310.65) <0.001 83.69 (11.74, 596.62) <0.001
32.5–271.3 4 (5.71) 29 (41.43) 141.38 (24.22, 825.11) <0.001 118.65 (17.21, 817.97) <0.001

* Adjusted by significant variables in Table 1, including labor intensity, fluid intake, alcohol-drinking behavior,
swimming frequency in summer, frequently having meals at canteens, frequently having meals at restaurants,
BMI, serum creatinine, and uric acid.

4. Discussion

In this study, we found a significantly higher excretion of urinary CYA in cases of
urolithiasis than in the controls. The logistic regression model presented an OR of 1.11 for
CYA as a continuous variable after adjusting confounders, which meant a 1 ng/mL increase
of urinary CYA would lead to a 1.11-fold higher risk of having urolithiasis. Such an effect
was even more remarkable when we turned the urinary CYA into a categorical variable
using either median or quartile cutoff points. The exposure level of urinary CYA was
similar to the findings in U.S. children [5]. This is the first study, based on our knowledge,
reporting epidemiological data of urolithiasis in association with exposure to CYA.

The results need to be carefully explained. General knowledge on the toxicokinetics of
CYA in the human body is that it is rapidly absorbed after administration and eliminated
unchanged via the urine with an elimination half-life of about 3 h [36]. Based on such
knowledge, one cannot attribute the results of higher excretion of urinary CYA to the CYA
exposure before the appearance of stone nidus in urolithiasis cases. The case-control design
of this study might occasionally find a higher excretion of urinary CYA in cases than in
controls due to the temporary exposure to CYA in the sampling day.

However, in a case study of the 2008 milk scandal, Ching-Wan Lam et al. [37] found
a higher excretion of urinary MEL in infants with urolithiasis even after at least 10 days
of stopping the consumption of MEL-tainted milk products. The researchers also found
the excretion of MEL was positively correlated to the size of kidney stone. Since MEL and
CYA share similar toxicokinetics in the human body, one may deduce that the excretion
of CYA could be also prolonged in the case of the urinary tract having stones consisting
of CYA [33]. It should be noted that the case study by Lam et al. did not find a higher
excretion of urinary CYA, which was different from the results of urinary MEL. How can
such a contradiction between the MEL and CYA in their paper be explained? Basically,
animal data in the literature presented that MEL-induced stones or crystals were MEL-urate
complexes (formed by co-exposure to MEL and uric acid) [38] or MEL-cyanurate complexes
(formed by co-exposure to MEL and CYA) [39,40]. Literature suggested that the urolithiasis
cases in infants during the milk scandal consisted of mainly MEL-urate complex rather than
MEL-cyanurate complex since infants took milk as the staple food, and few contaminations
of CYA were found in milk products [41]. However, the adult urolithiasis cases in this
study might consist of both MEL-cyanurate complex and MEL-urate complex since the
general population was usually exposed to a 2–3-fold higher level of CYA than MEL. The
key question to be answered is whether the MEL-cyanurate complex-related urolithiasis
will prolong the toxicokinetics of MEL and CYA in human body. If the answer is “yes”, the
findings that a higher excretion of urinary CYA in urolithiasis cases might be a direct sign
of stones consisted of CYA, then proving the attribution of CYA exposure in the etiology
of urolithiasis.
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Besides the finding of a higher excretion of urinary CYA in cases, another finding
might also suggest the importance of CYA exposure in the etiology of urolithiasis: swim-
ming frequency presents an OR of 7.00, which is close to being significant (p-value = 0.069).
The lack of significance might be associated with the small sample size since only 10 par-
ticipants reported a frequency of ≥1 time/summer. Water in swimming pools is usually
disinfected using chlorinated isocyanuric acid disinfectants, which can be degraded to
produce CYA [42]. Zhu et al. [43] reported a high level 1.5 × 107 ng/L in swimming
pool water, which was around 1.5 × 105-fold higher than that in bottled water (median
value: 98 ng/L). Swimming behavior may be a remarkable source of CYA exposure and
needs to be assessed for health concern. However, few studies in the literature conducted
such a risk assessment.

One other interesting finding was that urinary MEL in cases was not associated with
urolithiasis. The case group even had a lower excretion of urinary MEL than the control
group although the p-value was not significant. If the deduction of CYA in association with
urolithiasis and the stones in the cases were consisted of MEL-cyanurate complex, then
how can the contradiction between the findings of MEL and CYA be explained? In this
study, the cases provided spot urine samples, while the controls provided first-morning
urine samples. There was a 1.3-fold higher excretion of urinary MEL in first-morning urine
(12.07 ng/mL) than that in spot urine (mean value: 9.25 ng/mL) in our unpublished data
of a panel study, which compared MEL concentration in all urine samples of graduate
students collected in 24 h. A similarly designed case-control study by Liu et al. [15] found a
higher excretion of urinary MEL in cases than the controls. However, Liu et al.’s study did
not present the data of CYA. The etiology of urolithiasis by both MEL and CYA based on
Liu et al.’s study and this study need to be confirmed in future studies.

Another finding in this study might also suggest the etiology of MEL: having meals
at the canteens or restaurants showed as being risk factors of urolithiasis in univariate
logistic regression models, and having meals at restaurants remained significant even after
adjusting the confounders. The reason might be attributed to the potential exposure to
MEL at canteens and restaurants since these places likely use tableware made by MEL-
formaldehyde resin, which was reported to release MEL to food [44,45]. Other reasons for
eating at restaurants being found as a risk factor might be attributed to the food pattern [17].

The urolithiasis cases in this study present a higher concentration of both serum
creatine and serum uric acid (Table 1). Similar results on these two indexes of kidney
function were also reported in the case studies of the 2008 milk scandal and in the animal
studies [9,37]. This study also presented a possible impact of higher labor intensity and
alcohol-drinking behavior on increasing the risk of having urolithiasis (Tables 1 and 2).
People who are more labor-intensive sweat heavily, which leads to loss of body fluids,
thereby concentrating the urine. The concentration of lithogenic substances in the urine is
therefore increased and leads to the formation of stones. For alcohol-drinking behavior,
most studies in the literature reported an inverse association between alcohol consumption
and kidney stones [46–48], which were in contrast to the findings of the current study. Such
inconsistence between this study and the literature may be due to the small sample size or
the misclassification of alcohol behavior.

This study has several major limitations need to be addressed. Firstly, the sample
size was small. Secondly, the control group was from the community but not from the
same hospital of the case group, which might lead to selection bias. Thirdly, urine samples
from controls were first-morning urine samples, while that from cases were not, which also
lowered the comparability between cases and controls. However, an experiential higher
level of excretion in first-morning urine than that in spot urine strengthened the significance
of urinary CYA since the spot urine samples from the cases in this study already presented
a 2.81-fold higher concentration than that in first-morning urine samples in the controls.
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5. Conclusions

We found a significantly higher excretion of urinary CYA in urolithiasis cases than that in
controls, which might suggest the importance of exposure to CYA in the etiology of urolithiasis.
Such a finding is important since CYA is a degraded by-product of chlorinated isocyanuric
acid disinfectants, which are widely used in daily life not only in swimming pool waters but
also in other scenarios, such as serving as anti-pandemic disinfectants. Risk assessment of CYA
serving as a by-product of disinfectants needs to be conducted in future studies. The finding
of CYA exposure in association with urolithiasis may also have clinical implications since
patients having stones composed of CYA may have different features in clinical symptoms
and biochemistry, which may benefit the diagnosis and treatment of urolithiasis.
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