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Deterministic and stochastic 
modelling of impacts from genomic 
selection and phenomics on genetic 
gain for perennial ryegrass dry 
matter yield
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Andrew G. Griffiths1, Colin Eady3, Will Clayton3, Alan V. Stewart4, Richard M. George4, 
Valerio Hoyos‑Villegas5, Kaye E. Basford2 & Brent Barrett1

Increasing the efficiency of current forage breeding programs through adoption of new technologies, 
such as genomic selection (GS) and phenomics (Ph), is challenging without proof of concept 
demonstrating cost effective genetic gain (∆G). This paper uses decision support software DeltaGen 
(tactical tool) and QU‑GENE (strategic tool), to model and assess relative efficiency of five breeding 
methods. The effect on ∆G and cost ($) of integrating GS and Ph into an among half‑sib (HS) family 
phenotypic selection breeding strategy was investigated. Deterministic and stochastic modelling 
were conducted using mock data sets of 200 and 1000 perennial ryegrass HS families using year‑by‑
season‑by‑location dry matter (DM) yield data and in silico generated data, respectively. Results 
demonstrated short (deterministic)‑ and long‑term (stochastic) impacts of breeding strategy and 
integration of key technologies, GS and Ph, on ∆G. These technologies offer substantial improvements 
in the rate of ∆G, and in some cases improved cost‑efficiency. Applying 1% within HS family GS, 
predicted a 6.35 and 8.10% ∆G per cycle for DM yield from the 200 HS and 1000 HS, respectively. The 
application of GS in both among and within HS selection provided a significant boost to total annual 
∆G, even at low GS accuracy  rA of 0.12. Despite some reduction in ∆G, using Ph to assess seasonal 
DM yield clearly demonstrated its impact by reducing cost per percentage ∆G relative to standard 
DM cuts. Open‑source software tools, DeltaGen and QuLinePlus/QU‑GENE, offer ways to model the 
impact of breeding methodology and technology integration under a range of breeding scenarios.

Designing the best structure for a breeding program, within the resources available, are important decisions to be 
made at the onset of cultivar  development1,2. In forage breeding, there are a range of well proven and commonly 
used methods based on half-sib and full-sib family recurrent  selection3,4, which have often been adapted to suit 
specific breeding objectives. Today, genomic selection and marker-aided breeding  approaches5–7 together with 
high throughput, non-destructive phenotyping  platforms8–11 provide new opportunities for plant breeders to 
improve the efficiency and accuracy of conventional plant breeding strategies.

The cost and time required for phenotypic assessment limits the efficiency of screening traits in crops and 
forages. This is particularly the case for evaluating yield or stress related traits such as DM yield, increased toler-
ance to abiotic stress, or water use  efficiency12. Breeding focused on improving growth is often constrained by 
destructive methods of biomass measurement across multiple genotypes evaluated in field  trials13. The application 
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of powerful sensors and digital tools can help in accurate trait  quantification14. In the past five years adoption of 
these phenomics based technologies and tools in crops and forages has increased  markedly8,11,14–17.

Questions associated with optimisation of breeding strategies are complex, compounded by cost and uncer-
tainty of changing a system, even if the existing system may be delivering less genetic gain, be less nimble or 
address fewer traits than desired. Decision support software enables simulation of breeding strategy efficacy in 
response to factors including selection among and within genetic families, different combinations of year, season, 
site and replicate with associated costs per selection cycle. Such software help breeders design and implement 
more efficient and effective breeding programs based on predicted genetic gain. To date this has been focused 
on simulation for inbred  species18–20, leaving a gap in obligate outcrossing species such as forage grasses. Recent 
efforts to address this gap have led to the development of two decision support software packages for plant breed-
ing: the tactical tool  DeltaGen21 based on deterministic modelling; and the strategic tool  QuLinePlus22 a com-
ponent of QU-GENE18 based on stochastic modelling. QuLinePlus is a breeding module, specifically designed 
to simulate full and half sibling breeding programs for outcrossing species and QU-GENE is considered as an 
engine which generates the simulation inputs. Concurrently, new phenomic tools for electronic automation, 
acceleration and standardisation of data collection for key traits such as DM yield have been  developed8, and 
are being deployed in field breeding  programs23. Genomic prediction models have recently been developed and 
assessed for complex traits, including DM  yield24 and nutritive  value25 in perennial ryegrass (Lolium perenne). 
Understanding the implications of these new technologies on genetic gain over time is pivotal to ensuring their 
use is optimized.

The availability of Ph and GS tools for forage plant breeding, and of decision support simulation tailored for 
outbred species, gives rise to the opportunity to examine the relative costs and impact of options for integrating 
these tools into breeding systems. This paper aims to investigate, using modelling and simulation, the relative 
efficiency of five half sib (HS) breeding methods based on predicted genetic gain and associated costs to improve 
DM yield of perennial ryegrass. Simulation was conducted applying tactical deterministic and strategic stochas-
tic decision support modelling software (i.e. DeltaGen and QU-GENE) based on a “mock data” set of 1000 HS 
families, created by combining DM yield data from two sets of field trials. A key objective of this paper is also to 
demonstrate the potential application of the combination of DeltaGen/QU-GENE, to expand the scope of tools 
available to breeders in decision support for breeding program design.

The five HS family breeding methods simulated were: (a) standard phenotypic among half-sib family selec-
tion  (Ap), (b) among half-sib family selection based on phenomics  (APh), (c) standard phenotypic among half-
sib family selection and within family genomic selection  (ApWgs), (d) among half-sib family selection based on 
phenomics and within family genomic selection  (APhWgs), (e) both among and within half-sib family selection 
based on genomic selection  (AgsWgs).

Material and methods
Deterministic modelling for estimating genetic gain using HS family breeding strategies. The 
genetic gain simulation analyses were conducted using the open source software  DeltaGen21 (available via 
https:// delta gen. agres earch. co. nz/ app/ delta gen) for single selection cycles. The constructed mock data matrices 
of 200 HS and 1000 HS families used to generate starting points for the simulation of breeding methods, were 
compiled using perennial ryegrass DM yield and growth score measurements generated from two sources of 
multi-year-season-location trials. The term starting points referred to in this paper, are a common set of HS 
family means, estimates of additive genetic/interaction variance components and narrow sense heritabilities, 
applied in the different breeding equations used for deterministic modelling and simulation of the five breeding 
methods using DeltaGen.

Construction of the 1000 and 200 HS family “mock data” matrices of perennial ryegrass. Prediction of differences 
in genetic gain ∆G among breeding strategies is based on the application of quantitative genetic  models3,4. These 
genetic analyses require estimates of population parameters; phenotypic variance ( σ 2

P ), additive genetic variance 
( σ 2

A ), different components of genotype-by-environment (GE) interaction such as HS family interactions with; 
year, season and location, depending on breeding objectives, and narrow sense heritability ( h2n ). In our investiga-
tion using deterministic simulation, a key criterion for modelling the impact of GS and Ph technologies on the 
relative efficiency of HS family breeding methods, was to use mock data sets constructed from actual HS family 
multi location- year-season field trials rather than using in silico generated data. These mock data matrices ena-
bled “realistic” estimates of genetic parameters to be generated. It is important to note that these estimates were 
only used as starting points to conduct simulation of the breeding methods using DeltaGen. Two mock DM yield 
data matrices, of 1000 HS and 200 HS families, were created by combining data generated from multi-location, 
year and season, HS family evaluation studies reported by Faville et al.24 and Arojju et al.26.

The 1000 HS family DM yield mock data set was based on field trials conducted across 2 locations over 2 years 
and 3 seasons per year. The mock data set was constructed so that each location had a 20 row-by-50 column 
design with 3 replicates. The herbage DM yield data matrix consisting of 200 HS families was constructed from 
a random sample of 200 families taken from the 1000 HS family matrix. The year ( n=2), season ( n=3) and loca-
tion ( n=2) data associated with each of the 200 randomly sampled HS families, were combined into a 3 replicate, 
row and column (10 rows- by-20 columns) by location, season and year design matrix. A detailed description of 
construction of the two mock data sets is provided in supplementary material 1 in File S1, and the distribution 
of the 200 and 1000 HS family DM yield data are presented in Figure S1.

It is important to note that a key assumption used for quantitative genetic analysis and modelling of the 
mock data, was that both the 200 HS and 1000 HS families were generated from parents randomly sampled 
from the same random mating population, cross pollinated under isolation. The coefficient of inbreeding ( F ) 

https://deltagen.agresearch.co.nz/app/deltagen
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was assumed to be zero (F = 0) and therefore the among HS family ( σ 2
f  ) variation provided an estimate of ¼ σ 2

A 
(additive genetic variation)27.

Data analysis. The two HS family mock data matrices (provided as supplementary material 2) were analysed 
using Eqs. 1 and 2 below, to derive estimates of additive genetic variation, associated genotype-by-environment 
(GE) interaction and narrow sense heritability on a family mean basis. A linear mixed model (Eq. 1) using the 
Residual Maximum Likelihood (REML)28–30 procedure in  DeltaGen21 was used to estimate genetic parameters 
to be used for modelling based on breeding equations.

The linear mixed model used for analysis across locations, seasons and years:

Yijklmno is the value of an attribute measured from HS family i in column o and row n of replicate m at location 
j in season k of year l  , and i = 1,…, nf  ; j = 1,…,nl, k = 1,…,ns ; l = 1,…, ny ; m = 1,…, nb ; n = 1,…, nr ; o = 1,…,nc ; 
where f, l  , s , y , b , r and c , are families, locations, seasons, years, replicates, rows and columns, respectively; M is 
the overall mean; fi is the random effect of family i , N(0, σ 2

f ); lj is the fixed effect of location j ; 
(

fl
)

ij
 is the effect 

of the interaction between family i and location j , N(0, σ 2
fl ) ; sk is the fixed effect of season k ; 

(

fs
)

ik
 is the effect of 

the interaction between family i and season k , N(0, σ 2
fs) ; yl is the fixed effect of year l ;

(

fy
)

il
 is the effect of the 

interaction between family i and year l  , N(0, σ 2
fy) ; bjklm is the random effect of replicate m within location j , within 

season k , within year l  , N(0, σ 2
b ) ; rjklmn is the random effect of row n in replicate m within location j , within season 

k , within year l  , N(0, σ 2
r ) ; cjklmno is the random effect of column o in row n in replicate m within location j , within 

season k , within year l  , N(0, σ 2
c ) ; εijklmno is the residual effect for family i in row n and column o in replicate m 

in location j in season k , during year l , N(0, σ 2
ε ).

The estimates of variance components generated from Eq. 1, were used to generate an estimate of narrow 
sense heritability, h2n , for herbage DM yield on a family mean basis using Eq. 2.

 where n , number of and f, l, s, y and r, are families, locations, seasons, years and replicates, respectively.
DeltaGen generated estimates of narrow sense heritability ( h2n ) on a HS family mean basis across locations, 

seasons and  years31.

Breeding methods and associated prediction equations. The five breeding methods assessed in this study were:

(a) Standard phenotypic among HS family selection  (Ap): Elite HS families are selected based on phenotypic 
performance within or across environments. Equal numbers of remnant seed from each selected HS family 
are randomly sampled. The selected individuals become the parents of the next generation. The prediction 
equation for genetic  gain4,

where, kf  , is among family selection intensity; c , parental control factor; σ 2
A , additive genetic variance;σPF , 

the phenotypic standard deviation among families. For HS family selection c = 0.5 as selection is on female 
gametes  only27.

(b) Among HS family selection using LiDAR (light detection and ranging) based phenomics  (APh): as per (a), 
elite HS families are selected but based on phenotypic data collected using a LiDAR based phenomic  tool8. 
The precision of genetic gain estimated using breeding Eq. (3) will depend on the accuracy of the phenomics 
method applied.

(c) Standard phenotypic among HS family selection and within HS family genomic selection  (ApWgs): This 
breeding method consists of the steps: (i) select elite HS families, using a predetermined selection pressure, 
based on standard phenotypic measurements as per (a); (ii) equal numbers of remnant seed from each 
selected HS family are randomly sampled, seedlings established and individually genotyped, individual 
genomic-estimated breeding values (GEBV’s) determined using genomic prediction, and the best seed-
lings within each family based on their GEBV’s are selected on a predetermined selection pressure; (iii) 
the selected individuals become the parents of the next generation. The genomic prediction model used in 
step (ii) is itself derived using standard phenotypic measurements from the HS field trial and DNA marker 
data from the maternal parents of the HS  families24,32,33. The equation for predicting genetic gain,

where, ApWgsY is the predicted ∆G for trait Y using a combination of standard phenotypic among HS family 
selection and within HS family genomic selection; σ 2

AY , additive genetic variance for primary trait Y; σAY , 
standard deviation of additive genetic variance for primary trait Y  ; 

√

3
4
=

√
3
2

 ; σPF , among HS family phe-
notypic standard deviation; kf  and kw , among and within family selection intensity, respectively; cf  (= 0.5) 

(1)Yijklmno = M + fi + lj +
(

fl
)

ij
+ sk +

(

fs
)

ik
+ yl +

(

fy
)

il
+ bjklm + rjklmn + cjklmno + εijklmno

(2)h2n =
σ 2
f

σ 2
f +

σ 2
fl

nl
+

σ 2
fs

ns
+

σ 2
fy

ny
+ σ 2

ε

nsnynr

(3)�G = kf c
1
4
σ 2
A

σPF

(4)ApWgsY = kf cf

1
4
σ 2
AY

σPF
+ kwcwhXrA−XY

√
3

2
σAY
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and cW (= 0.5) among and within family parental controls, respectively; hX , square root of heritability for 
secondary trait X ; rA−XY , genomic prediction accuracy – Pearson’s correlation between Phenotypic Esti-
mated Breeding Values – BLUP’s Y  and GEBV’s X . In GS, the assumption is hX =134,35. Please note that the 
subscript gsY  in Eqs. 4 and 5 is for genomic selection ( gs ) for trait Y  . This is based on correlated response 
where, trait Y  (the true breeding value of an individual) is indirectly selected based on selection for trait X 
(the GEBV of that individual).

(d) Among HS family selection using LiDAR based phenomics (Ph) and within family genomic selection 
 (APhWgs): as per (c) except that elite HS families are selected based on data collected using a LiDAR based 
Ph tool.

(e) Both among and within HS family selection based on genomic selection  (AgsWgs): This breeding method 
is implemented in cycle 2 using the HS families generated using the  ApWgs method (c). In this scenario, 
following application of  ApWgs, a second cycle of selection is completed using only genomic prediction. 
To achieve among family selection based on GEBV’s, a predetermined number of seeds is randomly sam-
pled from each HS family and the seedlings genotyped. The marker information is used in the already-
established genomic prediction model to generate GEBV estimates and a mean GEBV for each family is 
determined. Based on the required selection pressure, HS families are selected on their GEBV means. 
Within-family selection of the chosen HS families, using a predefined selection pressure, is applied to family 
members based on their individual GEBV estimates, as per (c). The selected individuals form the parents 
of the next generation. The equation used for predicting genetic  gain21,

where the terms in the above equation have been defined in equation 4.

Genomic selection. For the purposes of this exercise, the cost of conducting GS was defined as the cost per 
GEBV. The costing was based on a non-commercial research laboratory, the Forage Genetics GBS facility at 
AgResearch, and includes consumables and time. All steps from extracting DNA through genotyping-by-
sequencing (GBS) to generate a GEBV are addressed in supplementary material 1, Table S1: DNA isolation, GBS 
library development, GBS library sequencing, bioinformatic processing and genotype calling from raw GBS 
data, and genomic prediction (GEBV determination). Seedling grow-out and tissue sampling were not included 
as it is expected tissue samples for DNA isolation would be provided. The GBS process, including data filtering 
steps, is largely as described by Faville, et al.24 except that it is conducted at a 384-plex scale (376 samples plus 
four blanks and four positive controls per library) instead of 96-plex (94 samples plus one blank and one positive 
control).

Phenomics, sampling and field trial operational costs. The Ph referred to in this paper is a LiDAR based mobile 
platform for non-invasive vegetative biomass and growth rate estimation in perennial ryegrass. The accuracy of 
0.90 was determined from LiDAR based volumetric estimates compared against fresh weight and dry weight 
data across different ages of plants, seasons, stages of regrowth, sites, and row plot (two 2 m rows 15 cm apart) 
 configurations23. The costs (New Zealand $) per sample; based on perennial ryegrass herbage DM derived via 
harvest and via Ph were $7.50 and $0.87, respectively. These sampling costs were obtained from multi-year, 
season and location field trials, based on row plots, which generated the original data used to build the 1000 HS 
family data matrix. The cost information is provided in supplementary material 1, Table S2.

Stochastic modelling of multiple selection cycles using HS family breeding strategies. Sto-
chastic modelling of the three breeding strategies  Ap,  ApWgs and  AgsWgs were conducted using  QuLinePlus22, 
available via https:// sites. google. com/ view/ qu- gene, with modifications to the software to implement GS. The 
objective of this modelling was to generate trends of response to selection over multiple breeding cycles, based 
on populations of similar size used in deterministic modelling.

The breeding strategies;  Ap,  ApWgs and  AgsWgs were simulated across ten selection cycles using QuLinePlus 
software. The three strategies were compared for percentage of genetic gain per year (%ΔG), cumulative genetic 
gain (ΣΔG), allele fixation rate, genetic variance and prediction accuracy across multiple selection cycles. Each 
generated value is an average 250 iterations.

Generation of the initial training population for simulation in QuLinePlus. Two sets of training populations con-
sisting of 196 and 980 HS families, hereafter referred to as Sim200 and Sim1000, were simulated. Beginning with 
experimentally derived information on phenomic and associated genomic data from a commercial breeding 
population consisting of 98 plants, QuLinePlus software was used to generate 98 HS families. These HS families 
were used to simulate their performance for DM yield for three years across three locations. From each of the 
evaluated families two random individuals were drawn to generate a training population of 196 plants (Sim200) 
and ten random individuals were drawn to generate a second training population of 980 plants (Sim1000). It is 
important to note that the 200 and 1000 HS families used in deterministic modelling were related, the former a 
random sample from the latter.

Defining the genetic model and trait architecture. A recombination map with seven linkage groups was con-
structed based on a genetic  map36 using the genomic markers from the initial population (98 individuals). In 
total, 1807 segregating markers were assigned to the seven linkage groups, out of which 474 were QTLs with an 

(5)AgsYWgsY = kf cf hXrA−XY
1

2
σAY + kwcwhXrA−XY

√
3

2
σAY
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additive gene model. The allelic effect of each QTL was estimated based on genome-wide association analysis for 
DM yield implemented using  GAPIT37.

Narrow sense heritabilities on a family mean basis, estimated from mixed model analysis in DeltaGen using 
data for mean DM yield of the simulated 200 HS and 1000 HS families, were converted to single plant-based 
heritabilities (considering 30 plants per plot).

Genomic prediction. A genomic prediction model was generated using marker and phenotypic data from the 
training populations, Sim200 and Sim1000. The GEBVs for each individual plant were estimated using a stand-
ard BLUP procedure using the R package  rrBLUP38. The heritability estimate of GEBVs was considered as 0.95, 
rather than 1.00, to account for genotyping error.

Breeding strategies. The breeding strategies  Ap,  ApWgs and  AgsWgs were simulated in QuLinePlus using the 
modelling options available for each method.

(a) Among half-sib family phenotypic selection  (Ap): Using Sim200 and Sim1000 training populations, the  Ap 
strategy was performed by randomly intermating all individuals to generate 196 and 980 HS families. These 
HS families were evaluated for DM yield in two environments for two years using three replicates and 30 
plants per plot. From these trials, among family selection pressures of 20% and 2% were applied to select 
the best families. To restore the initial number of parents in the training population (196 and 980) for the 
next selection cycle, random samples of 5 (2.77%) and 50 (27.77%) individuals from the best 20% and 2% 
HS families were taken and used as parents to generate progeny for the next selection cycle. Each selection 
cycle was completed in three years (years 1 and 2—field evaluation and selection, and year 3—random 
mating of selected parents and half-sib family generation).

(b) Among half-sib family phenotypic selection and within family genomic selection (ApWgs): In this breeding 
strategy, HS families were phenotypically evaluated as described in (a) and among family selection pres-
sures of 20% and 2% were applied based on phenotype. However, within family selection was based on 
GEBVs estimated using the rrBLUP genomic prediction model. The GEBVs were ranked and the top 5 
(2.77% within family selection pressure) or 50 (27.77% within family selection pressure) individuals from 
the best 20% and 2% families, respectively, were selected as parents for the next cycle. Each selection cycle 
was completed in three years (years one and two—field evaluation and selection, and year three—random 
mating of selected parents and half-sib family generation).

(c) Among and within half-sib family selection based on genomic selection (AgsWgs): The  AgsWgs strategy was 
similar to  ApWgs, with the only difference at the stage of among family selection, which was based on GEBVs 
rather than phenotypic measurements. Among and within family selection pressures were the same as the 
 ApWgs strategy, with 20% and 2% among family selection pressure and 2.77% and 27.77% within family 
selection pressure. It is important to note that this breeding strategy was conducted in one year.

Simulation output. Percentage genetic gain (%∆G) for all three breeding strategies was based on BLUP mean 
differences between selection cycles. The percentage genetic gain per year was calculated by dividing total pre-
dicted %∆G by the number of years per cycle. Cumulative genetic gain (Σ∆G) was calculated as the BLUP mean 
in each cycle relative to that in cycle zero. Allele fixation rate was computed within the QuLinePlus software to 
determine the percentage of fixed alleles in each cycle for the trait under selection. Genomic prediction accuracy 
was computed as the Pearson correlation coefficient between the true breeding value and their GEBVs. Percent-
age change of genetic variance across selection cycles was computed relative to cycle zero, considered as 100%.

Results
Deterministic modelling. Variance component analysis indicated significant (P < 0.05) additive genetic 
variation ( σ 2

A ) for herbage dry matter (DM) yield among the HS families within each of the two mock data 
matrices, consisting of 200 and 1000 entries (Table 1). There were significant (P < 0.05) family-by-season ( σ 2

AS ) 
and family-by-location ( σ 2

AL ) interactions estimated from the 200 HS matrix but family-by-year ( σ 2
AY ) was not 

significant (P > 0.05) in this dataset. The estimates of family-by-season ( σ 2
AS ), family-by-location ( σ 2

AL ) and fam-
ily-by-year ( σ 2

AY ) interactions were all significant (P < 0.05) for the 1000 HS family DM yield matrix. HS family 
narrow sense heritability ( h2n ) estimates for DM yield, based on family mean performance across years, seasons 
and locations, were moderate for both data matrices, the 1000 HS family derived estimate being higher (Table 1). 
The estimates were within the range reported for perennial  ryegrass24,39,40. The estimated genetic parameters, 
from REML analysis, presented in Table 1 were used as starting points in the different breeding equations to 
predict genetic gain.

Predicted genetic gain based on the 200 HS family mock data matrix. Applying the among HS family phenotypic 
selection method  (Ap), at a selection pressure of 20%, to the seasonal DM yield data, predicted a 1.43% increase 
in DM yield above the population mean of 200 HS families (Table 2). Using phenomics with an accuracy of 0.90 
for estimating DM yield generated from  APh, a 1.29% increase in DM yield was predicted. The cost per %ΔGc 
using  Ap was higher than that when  APh was applied. However, using  APh reduced the cost per %ΔGc by 25%. 
The final number of selected parents decreased from 40 at 20% selection pressure to 4 individuals at 2% selection 
pressure (Table 2).

The results of predicted ∆G presented in Tables 3 and 4 were generated from two cycles of HS family selec-
tion for increasing herbage DM yield. Cycle 1 (C1) (Table 3) was based on the  ApWgs method in which the same 
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among and within family selection pressures of 20%/10% (among/within family), 10%/5%, 5%/1% and 2%/1%, 
were applied at each level of accuracy  rA (0.26, 0.36, 0.46). Cycle 1 consisted of 3 years. Cycle 2 (C2) (Table 4) 
used genomic selection for both the among and within family selection  (AgsWgs) applying selection pressures of 
20%/10% and 10%/5%. Cycle 2, a single year, was based on 100 HS families each taken from the 2000 HS and 
500 HS families generated in C1 at selection pressures of 20%/10% and 10%/5%, respectively. In addition to  rA 
values of 0.26, 0.36 and 0.46, an additional level of accuracy,  rA of 0.12, was applied in C2 to model a scenario of 
declining accuracy due to decay of genetic relationships (Table 4).

In C1 (Table 3), the predicted %ΔG per cycle rose as  rA was increased. In this cycle, the combination of 
increasing among HS family phenotypic selection pressure (2%) and within family genomic selection pres-
sure (1%), at high  rA (0.46), resulted in the highest ΔG of 6.35%, based on data from the  Ap seasonal herbage 
DM yield sampling method. The cost per percentage gain was a low $27,397 compared to the high $111,819 at 
among and within HS family selection pressures of 20% and 10%, respectively, at  rA of 0.26. However, while the 
low selection pressures and  rA resulted in the selection of 400 parents, the high selection pressure and  rA lead to 
identifying only 4 parents (Table 3). As expected, the predicted ΔG per cycle, under the  APh strategy phenomics 
assessments of seasonal herbage DM in C1, was slightly lower than  Ap, but there was a substantial increase in 
cost efficiency per % genetic gain (Table 3).

Cycle 2 (Table 4) was based on genomic selection among and within  (AgsWgs) 100 HS families generated from 
selected parents from C1 at 20%/10% and 10%/5% selection pressure and at  rA values of 0.26, 0.36 and 0.46. In 
C2, ΔG was estimated relative to the new mean of HS progeny generated from C1, within each combination 
of % selection pressure and  rA. The predicted ΔG per cycle ranged from 2.05% at  rA 0.26 to 3.59% at  rA 0.46, at 
among and within family selection pressures of 20%/10%. Applying higher selection pressures (10%/5%) at  rA 
values of 0.26 and 0.46, increased the range of predicted ΔG per cycle to 2.44% and 4.27%, respectively. Predicted 
ΔG combined across selection C1 and C2 resulted in totals ranging from 4.93% to 7.58% at  rA 0.26 and 0.46, 
respectively, at among and within selection pressures of 20%/10% (Table 4). At the same  rA values of 0.26 and 
0.46 at among and within HS family selection pressures of 10%/5%, the predicted ΔG combined across cycles C1 
and C2 were 5.93% and 9.06%, respectively. Comparing the costs per percentage predicted ΔG, combined across 
cycles C1 and C2, the total of $148,418 at  rA 0.26 and 20%/10% among and within family selection pressures was 

Table 1.  Ranges, medians, means (based on BLUP estimates), variance components and associated standard 
error (± SE) and family mean narrow sense heritability for herbage DM yield estimated from the 200 and 
1000 HS family data; evaluated across two sites over 2 years and 3 seasons per year. The estimated variance 
components were used as starting points for simulation of breeding methods.

Sources of variation 200 HS 1000 HS

Range (kg  ha−1) 2649–3662 2587–4073

Median (kg  ha−1) 3298 3086

Mean (kg  ha−1) 3262 3301

σ 2
A

14,170 ± 5310 22,345 ± 3692

σ 2
AY

2222 ± 1481 4102 ± 608

σ 2
AS

13,406 ± 2292 12,942 ± 865

σ 2
AL

38,511 ± 5107 58,532 ± 3420

σ 2
ε

221,768 ± 4307 159,453 ± 1330

h2n 0.310 ± 0.125 0.358 ± 0.043

Table 2.  Simulated predictions of percentage genetic gain per cycle (3 years) of selection (%ΔGc), at different 
selection pressure (%), for perennial ryegrass dry matter (DM) yield and associated cost per percentage genetic 
gain ($ per % gain), from half-sib (HS) family phenotypic selection among 200 families evaluated across 
2 years, 3 seasons and 2 locations. Ap, DM yield data collected using seasonal herbage cuts;  APh, DM yield 
data generated using seasonal phenomics based phenotyping. The costs associated with achieving one percent 
genetic gain based on DM cuts and phenomics were $7.50 and $0.87 per sample, respectively. The associated 
number of selected parents are indicated. A cycle of selection is the sum of the number of years of the field trial 
(2 years) plus one extra year for progeny generation, total 3 years. $, New Zealand dollars. These results are 
based on the estimated variance components, from REML analysis of the mock data, used as starting points for 
simulation of breeding methods. Ph*, LiDAR based phenomics accuracy = 0.90.

Selection pressure (%) Ap %ΔGc APh* %ΔGc
Ap
$/% gain

APh
$/% gain No. parents generated

20 1.43 1.29 102,739 76,987 40

10 1.80 1.62 81,724 61,239 20

5 2.11 1.90 69,822 52,321 10

2 2.47 2.22 59,436 44,714 4
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Table 3.  Simulation cycle 1 (C1) of selection for seasonal DM yield among 200 HS families of perennial 
ryegrass based on among HS family phenotypic selection, using data from a 2 year field trial, 3 seasons per 
year across 2 locations followed by the application of genomic selection (GS) within the selected HS families. 
Combinations of among and within (among/within) HS family selection at different selection pressures (%) and 
different genomic prediction accuracies  (rA) were applied. The costs per percent genetic gain, relative to the 
mean BLUP value (3262 kg  ha−1), of the 200 HS families, based on DM cuts and phenomics (Ph) were $7.50 
and $0.87 per sample, respectively. For GS, $41 was used as the cost for generating a single GEBV (genomic 
estimated breeding value). A cycle of selection is the sum of the number of years of the field trial (2 years) plus 
one extra for progeny generation, total 3 years. Percentage genetic gain per cycle of selection (%ΔGc), cost per 
percentage of predicted genetic gain ($ per % gain), among Ap family phenotypic selection and within  HSgs 
family genomic selection  (ApWgs) and Ph selection  (APhWgs).  rA, is the Pearson correlation coefficient between 
Phenotypic Estimated Breeding Values and Genomic Estimated Breeding Values. $, New Zealand dollars. 
These results are based on the estimated variance components, from REML analysis of the mock data, used as 
starting points for simulation of breeding methods. *LiDAR based phenomics accuracy = 0.90.

rA C1

Selection 
pressure 
(among/within)
(%) in C1 ApWgs %ΔGc

ApWgs ΔGc 
in absolute
units (kg  ha−1) APh*Wgs %ΔGc

APhWgs ΔGc 
in absolute
units (kg  ha−1)

ApWgs
$/% gain

APhWgs
$/% gain

No. parents 
generated 
in C1

0.26

20/10

2.88 93.95 2.59 84.55 111,819 105,778

4000.36 3.44 112.21 3.10 100.99 93,703 88,375

0.46 3.99 130.15 3.59 117.14 80,639 76,313

0.26

10/5

3.49 113.84 3.14 102.46 68,655 61,135

1000.36 4.15 135.37 3.74 121.84 57,865 51,327

0.46 4.79 156.58 4.31 140.92 50,006 44,539

0.26

5/1

4.3 140.27 3.87 126.24 46,218 39,009

100.36 5.14 167.67 4.63 150.90 38,635 32,606

0.46 5.99 195.39 5.39 175.85 33,190 28,008

0.26

2/1

4.67 152.34 4.20 137.10 37,303 30,087

40.36 5.51 179.74 4.96 161.76 31,592 25,477

0.46 6.35 207.14 5.72 186.42 27,397 22,092

Table 4.  Cycle 2 (C2) is based on selection among and within HS family progeny generated from polycrossing 
the elite parents identified in cycle 1. In C2, both among and within HS selection is based only on genomic 
selection (GS). Combinations of among and within (among/within) HS family selection at selection pressures 
of among/within, 20%/10% and 10%/5%, and different genomic prediction accuracies  (rA) were applied. From 
within each of 100 HS families generated from cycle 1 generated at 20%/10% and 10%/5% selection pressure, 
random samples of 100 seedlings per family were used in cycle 2, a total of 10,000 individuals subjected to 
GS. The costs per percent genetic gain (relative to the C1 HS family predicted progeny means), are based on 
$41 for generating a single GEBV (genomic estimated breeding value). The length of C2 is 1 year. percentage 
genetic gain per cycle of selection (%ΔGc), cost per percentage of predicted genetic gain ($ per % gain).  rA, is 
the Pearson correlation coefficient between Phenotypic Estimated Breeding Values and GEBV’s, based on the 
predicted equation developed in C1. Among and within half-sib family genomic selection  (AgsWgs). In C2 an 
 rA of 0.12, predicted in cycle 2 of stochastic simulation using Sim200 HS families, was used in deterministic 
simulation to model a possible scenario of  rA decay, displayed in italics in the table. **, mean of 200 HS families 
plus predicted ΔG in C1; †, sum of gain (%ΔGc) and cost ($) from C1and C2.

Progeny**mean (kg  ha−1) from C1 
using  ApWgs rA C2

Selection pressure
(%) in C2

AgsWgs
%ΔGc

AgsWgs ΔGc
in absolute units (kg  ha−1)

Total† %ΔG
(C1 + C2)

Cost ($)† per
%ΔG (C1 + C2) No. parents generated in C2

3356
0.26

20/10

2.05 68.84 4.93 148,418

200

0.12 0.95 32.04 3.83 191,044

3374
0.36 2.82 95.32 6.26 116,885

0.12 0.95 32.04 4.39 166,674

3392
0.46 3.59 121.79 7.58 96,530

0.12 0.94 32.04 4.93 148,418

3376
0.26

10/5

2.44 82.45 5.93 109,562

50

0.12 1.14 38.37 4.63 140,324

3397
0.36 3.36 114.16 7.51 86,511

0.12 1.13 38.37 5.28 123,049

3419
0.46 4.27 145.87 9.06 71,711

0.12 1.12 38.37 5.91 109,932
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over double the cost, $71,711 at  rA 0.46 at 10%/5% selection pressures. The number of elite parents selected on 
GEBV’s at the end of C2 were 200 and 50 based on the among and within family selection pressures of 20%/10% 
and 10%/5%, respectively (Table 4). These results assumed that the  rA values, 0.26, 0.36 and 0.46, did not change 
from C1 to C2. The effect of possible genomic accuracy decay on ΔG in C2 was assessed using a  rA of 0.12. This 
resulted in diminished ΔG and increased costs ($) per % ΔG. However, even at the reduced  rA of 0.12, the addi-
tional predicted ΔG in the single year of C2 provided an increase in total gain across cycles C1 and C2.

Predicted genetic gain based on the 1000 HS family mock data matrix. The trend of response to selection for DM 
yield based on the 1000 HS families was the same as that observed from the 200 HS family simulations. Using 
DM cut phenotypic data  (Ap) the predicted ΔGc ranged from 1.90 at 20% among HS family phenotypic selection 
pressure to 3.62% at 1% selection pressure (Table 5). The large population of HS families resulted in higher num-
bers of parental half-sibs being selected, compared to the 200 HS family dataset. This ranged from 200 parental 
HS families at 20% selection pressure to 10 families at 1%. The application of phenomics based DM assessment 
 (APh) clearly indicated its impact on reducing costs ($) per %ΔGc by 58%.

Analyses involving 1000 HS families (Tables 6 and 7) generated results analogous to those from the 200 HS 
families (Tables 3 and 4). The application of the  ApWgs breeding strategy to the 1000 HS families in C1 resulted 
in predicted ΔGc ranging from 3.69% to 8.10% at among/within selection pressures of 20%/10% and 2%/1% 
at  rA values of 0.26 and 0.46, respectively. While the predicted ΔGc from applying  APhWgs at similar combina-
tions of selection pressures and  rA values was lower, there was a considerable reduction in cost ($) per %ΔG 
that ranged from 10 to 40%. The number of selected parental HS families in C1 at the among and within family 
selection pressure combinations of 5%/1% and 2%/1%, resulted in selection of less than 100 HS families, 50 and 
20, respectively (Table 6).

Genomic among and within family selection was conducted in C2, in a single year, on 100 HS families from 
C1 generated at 20%/10% and 10%/5% selection pressure at  rA values of 0.26, 0.36 0.46. Trends in ΔGc mirrored 
those observed with the 200 HS family dataset, but the level of gain was consistently higher. The  AgsWgs applied 
resulted in predicted ΔGc ranging from 2.53% at  rA 0.26 to 4.41% at  rA 0.46 at among and within family selec-
tion pressures of 20%/10% (Table 7). At selection pressures of 10%/5% and  rA values of 0.26 and 0.46, predicted 
ΔGc cycle increased to 3.00% and 5.23%, respectively. Combining %ΔG across C1 and C2 resulted in total ΔG 
ranging from 6.22% to 9.48% at  rA 0.26 and 0.46, respectively, at selection pressures of 20%/10%. At the same  rA 
values of 0.26 and 0.46 and selection pressures of 10%/5%, the predicted %ΔG combined across selection C1 and 
C2 was 7.49% and 11.33%, respectively. The total combined costs per %ΔG across cycles 1 and 2, were $273,392 
at  rA equal to 0.26 at 20%/10% among and within family selection pressures was over twice the cost, $113,901 
at  rA 0.46 at 10%/5% selection pressures. The elite parents selected on GEBV’s at the end of cycle 2 were 200 
individuals and 50 individuals based on the selection pressures of 20%/10% and 10%/5%, respectively (Table 7). 
As in the 200 HS family analysis, the effect of a possible scenario of  rA decay on ΔG in C2 was assessed using a 
 rA of 0.12, (Table 7). The outcomes were similar to those observed in the 200 HS analysis.

Predicted annual %ΔG for seasonal DM yield resulting from deterministic modelling of the three breeding 
strategies;  Ap,  ApWgs and  AgsWgs, based on data from the 200 and 1000 HS families clearly indicate the lower 
response to selection resulting from the among HS family phenotypic selection  (Ap) breeding strategy (Fig. 1A,B). 
There was an increase in annual %ΔG when GS was combined with the  Ap breeding method. The predicted 
annual %ΔG improved with increasing selection pressure and  rA. The breeding strategy  AgsWgs resulted in the 
highest predicted annual %ΔG at all among and within family selection pressures and  rA. It is also clear that 
when  rA decreased to 0.12 in C2 there was a reduction in predicted annual %ΔG, as would be expected. However, 
even at a  rA value of 0.12 in C2, the predicted annual %ΔG was higher than that predicted for HS in C1 at all 
selection pressures (Fig. 1A,B).

Stochastic modelling. Genetic gain. The percentage annual genetic gain (%ΔG) for DM yield in Sim200 
and Sim1000 training populations were different for each breeding strategy (Fig. 2). The trends in genetic gain 
between two training populations (Sim200 and Sim1000) were similar, however, the variation in genetic gain 

Table 5.  Simulated predictions of percentage genetic gain per cycle (3 years) of selection (%ΔGc) and cost per 
percentage of predicted genetic gain ($ per % gain), using among half-sib  (Ap) family selection, for dry matter 
(DM) yield based on the 1000 HS family data (evaluated across years, seasons and locations), from DM cuts 
 (Ap) and phenomics based phenotyping  (APh). Selection pressure (%) and the associated number of selected 
parents are indicated. $, New Zealand dollars. These results are based on the estimated variance components 
from REML analysis, used as starting points for simulation of breeding methods. Ph*, LiDAR based phenomics 
accuracy = 0.90.

Selection pressure (%) Ap %ΔGc APh %ΔGc
Ap
$/% gain

APh
$/% gain No. parents generated

20 1.90 1.71 203,158 86,152 200

10 2.38 2.14 162,185 68,777 100

5 2.79 2.51 138,351 58,670 50

2 3.28 2.95 117,683 49,905 20

1 3.62 3.26 106,630 45,218 10
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Table 6.  Simulation cycle 1 (C1) of selection for seasonal DM yield among 1000 HS families of perennial 
ryegrass based on among family phenotypic selection, using data from a field trial conducted across 2 
locations, 2 years with 3 seasonal measurements per year. Genomic selection (GS) was applied to individuals 
within the selected HS families. Combinations of among and within (among/within) HS family selection at 
different selection pressures (%) and different genomic prediction accuracies  (rA) were applied. The costs per 
percent genetic gain, relative to the mean BLUP value (3301 kg  ha-1), of the 1000 HS families, based on DM 
cuts and phenomics (Ph) were $7.50 and $0.87 per sample, respectively. For GS, $41 was used as the cost for 
generating a single GEBV (genomic estimated breeding value). A cycle of selection is the number of years 
of the field trial (2 years) plus one extra for progeny generation, total 3 years. Percentage genetic gain per 
cycle of selection (%ΔGc), cost per percentage of predicted genetic gain ($ per % gain), among Ap family 
phenotypic selection and within  HSgs family genomic selection  (ApWgs) and Ph selection  (APhWgs).  rA, is the 
Pearson correlation coefficient between Phenotypic Estimated Breeding Values and Genomic Estimated 
Breeding Values. $, New Zealand dollars. These results are based on the estimated variance components from 
REML analysis, used as starting points for simulation of breeding methods. Ph*, LiDAR based phenomics 
accuracy = 0.90.

rA C1
Selection pressure 
(among/within) (%) in C1 ApWgs %ΔGc

ApWgs ΔGc in absolute 
units (kg  ha−1) APh*Wgs %ΔGc

APhWgs ΔGc in absolute 
units (kg  ha−1)

ApWgs
$/%/gain

APhWgs
$/%/gain

No. parents generated 
in C1

0.26

20/10

3.69 121.85 3.32 109.67 338,618 304,372

20000.36 4.38 144.64 3.94 130.17 285,274 256,423

0.46 5.07 167.42 4.56 150.68 246,450 221,525

0.26

10/5

4.49 148.05 4.04 133.25 186,971 148,681

5000.36 5.29 174.72 4.76 157.25 158,696 126,196

0.46 6.10 201.39 5.49 181.25 137,623 109,439

0.26

5/1

5.51 182.00 4.96 163.80 115,154 79,819

500.36 6.56 216.56 5.90 194.91 96,723 67,043

0.46 7.61 251.13 6.85 226.02 83,377 57,792

0.26

2/1

6.00 198.10 5.40 178.29 85,250 50,522

200.36 7.05 232.66 6.35 209.40 72,553 42,998

0.46 8.10 267.23 7.29 240.51 63,148 37,424

Table 7.  Cycle 2 (C2) is based on genomic selection (GS) applied to among and within HS family progeny 
generated from polycrossing the elite parents identified in cycle 1. Combinations of among and within (among/
within) HS family selection at pressures of among/within, 20%/10% and 10%5%, and different genomic 
prediction accuracies  (rA) were applied. From within each of 100 HS families from cycle 1 generated at 
20%/10% and 10%/5% selection pressure, random samples of 100 seedlings per family were used in cycle 2, 
a total of 10,000 individuals subjected to GS. The costs per percent genetic gain (relative to the C1 HS family 
predicted progeny means), are based on $41 for generating a single GEBV (genomic estimated breeding 
value). The length of C2 is 1 year. Percentage genetic gain per cycle of selection (%ΔGc), cost per percentage of 
predicted genetic gain ($ per % gain).  rA, is the Pearson correlation coefficient between Phenotypic Estimated 
Breeding Values and Genomic Estimated Breeding Values, based on the predicted equation developed in 
C1. Among and within half-sib family genomic selection  (AgsWgs). In C2 a  rA of 0.12, predicted in cycle 2 of 
stochastic simulation using Sim200 HS families, was used in deterministic simulation to model a possible 
scenario of  rA decay, displayed in italics in the table. **, mean of 1000 HS families plus predicted ΔG in C1; †, 
sum of gain (%ΔGc) and costs ($) from C1and C2.

Progeny**mean 
 (kgha−1) from C1 using 
 ApWgs rA C2

Selection Pressure (%) 
in C2 AgsWgs %ΔGc

AgsWgs ΔGc in absolute 
units (kg  ha−1) Total† %ΔG (C1 + C2)

Cost ($)† %ΔG 
(C1 + C2)

No. parents 
generated in C2

3423
0.26

20/10

2.53 86.44 6.22 273,392

200

0.12 1.17 39.90 4.86 349,897

3446
0.36 3.47 119.69 7.85 216,624

0.12 1.16 39.90 5.54 306,949

3468
0.46 4.41 152.94 9.48 179,378

0.12 1.15 39.90 6.22 273,392

3449
0.26

10/5

3.00 103.54 7.49 172,296

50

0.12 1.39 47.79 5.88 219,473

3476
0.36 4.12 143.36 9.41 137,141

0.12 1.37 47.79 6.66 193,769

3502
0.46 5.23 183.18 11.33 113,901

0.12 1.36 47.79 7.46 172,989
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across multiple iterations was higher in Sim200 compared to the Sim1000 training population. Among different 
breeding strategies, the highest annual genetic gain (%ΔG) was achieved for  AgsWSgs, followed by  ApWgs and  Ap 
strategies under both 20% and 2% selection pressures. The differences in %ΔG between the breeding strategies 
were less evident after the second selection cycle (Fig. 2). When comparing among family selection pressures, the 
highest genetic gain for all three strategies was observed under 2% selection pressure compared to 20% selection 
pressure. While the variability in genetic gain across multiple iterations was consistently higher under 2% selec-
tion pressure compared to that at 20%, this was more evident for the  AgsWgs strategy. The highest ΣΔG in each 
selection cycle was achieved in  ApWgs strategy, followed by  Ap and  AgsWgs (Supplementary material 1, Figure S2).

Fixation rate of favourable alleles. The influence of selection pressure and training population size on allele 
fixation rates were observed, with the latter being more pronounced (Fig. 3). The fixation rate was highest in the 
Sim200 training population under 2% selection pressure and the lowest rate was observed in Sim1000 under 
20% selection pressure. In both the training populations, under 20% among family selection pressure, the fixa-
tion rate steadily increased across the selection cycles. However, under 2% selection pressure the alleles were 
fixed more rapidly from selection cycle 3 for all three breeding strategies. Among three breeding strategies, the 
allele fixation rate followed similar patterns and the differences in fixation rate were more noticeable in the later 
selection cycles (Fig. 3).

Genetic variance and prediction accuracy. The percentage of genetic variance present within the Sim200 and 
Sim1000 training population decayed rapidly from cycle 0 to cycle 1 for all three breeding strategies. The pat-
terns were similar under the two different selection pressures (Fig. 4). In Sim200 training population, among 
three breeding strategies, the lowest genetic variance was observed for  AgsWgs followed by  ApWgs and  Ap, similar 
trends were observed in Sim1000 training population. The prediction accuracy at cycle 0 was 0.3 in Sim200 and 
0.25 in Sim1000 and was reduced to 0.12 (60% decrease in prediction accuracy) and 0.07 (72% decrease in pre-
diction accuracy) in selection cycle 1 (Fig. 5). There was no difference in the prediction accuracies between the 
two different selection pressures. The accuracy steadily decreased from cycle 2 and at the end of cycle 10 was a 
low 0.03 in Sim200 and 0.002 in Sim1000 training populations (Fig. 5).

Figure 1.  Predicted annual percentage genetic gain (%∆G) for seasonal DM yield resulting from modelling 
the breeding strategies; among HS family phenotypic selection  (Ap), among HS family phenotypic selection 
and within family genomic selection  (ApWgs), among and within HS family genomic selection  (AgsWgs), applied 
to the: (A) 200 HS families and (B) 1000 HS families, of perennial ryegrass.  Ap was only conducted for one 
cycle. In cycle 2, only genomic selection (GS) was conducted at accuracies  (rA) of 0.12, 0.26, 0.36 and 0.46. *rA 
of 0.12 was only applied to simulations using among HS family selection pressures of 20% and 10% and within 
HS family selection pressures of 10% and 5%, respectively. The predicted annual %∆G for each combination of 
selection pressures is indicated by the height of bars, values in brackets indicate  rA levels. Since cycle 1 consisted 
of 3 years, annual genetic gain, %∆G = %∆GC/3. Cycle 2 was 1 year.
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Discussion
Deterministic modelling. Choosing and optimizing an appropriate breeding strategy to suit a specific 
cultivar development goal, will require the comparison of different breeding methods based on predicted genetic 
 gains3. While a key criterion for determining the success of a breeding method is genetic gain, cost is also a major 
factor. Especially in commercial breeding programs, where cost efficiency of a breeding strategy, and access to 
commercial opportunities, will often determine its adoption.

With increasing pressure on plant breeders to develop new productive cultivars with adaptation to changing 
environments and meeting consumer demands, new selection and phenotyping technologies must be imple-
mented to enhance genetic  advance41. However, incorporation of these technologies into conventional field 
breeding programs are often challenged as being expensive to implement. Application of quantitative genetic 
 deterministic21 and stochastic  modelling22 can be used to evaluate the relative efficiency, genetic gain and associ-
ated cost, of conventional breeding strategies in combination with the integration of new selection technologies.

As mentioned in the introduction, HS and FS family breeding strategies are commonly used in forage grass 
cultivar development programs. In this paper, we present results from deterministic modelling using DeltaGen 
and stochastic modelling via QU-GENE/QuLinePlus, to predict ∆G and calculate cost per predicted %∆G for DM 
herbage yield of perennial ryegrass. Deterministic analysis was conducted using a common set of starting points 
based on estimates of quantitative genetic parameters, from analysis of the 200 HS and 1000 HS family mock data 
matrices generated using actual field trial DM yield (kg  ha-1). We also evaluated the effect of using phenomics 
(Ph) on the cost per cycle of selection. The narrow sense heritability values 0.31 and 0.36, estimated for herbage 
DM yield for the 200 HS and 1000 HS families, respectively, were within the range previously  reported24,42,43. 

Figure 2.  The percentage genetic gain (%ΔG) per year for DM yield in Sim200 and Sim1000 training 
populations estimated across 10 selection cycles using three breeding strategies  (Ap,  ApWgs and  AgsWgs). 
Selection pressures of 20% and 2% were imposed to select the best HS families. Within each family, for the 
 ApWgs and  AgsWgs strategies the top 5 or 50 individuals were selected and for the  Ap strategy 5 or 50 individuals 
were randomly selected to restore the initial number of parents for the next selection cycle. In each selection 
cycle %ΔG was based on 250 iterations.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13265  | https://doi.org/10.1038/s41598-021-92537-w

www.nature.com/scientificreports/

For mean herbage DM yield across years, seasons and locations, and based on a three year selection cycle, the 
predicted annual %∆G per selection cycle from the  Ap strategy varied from 0.48 to 0.83 (200 HS families) and 0.63 
to 1.21 (1000 HS families), depending on selection pressure. These increases are in the general range reported by 
 Humphreys44 0.38%, Easton, et al.45 0.4% to 0.5%, Wilkins and  Humphreys46 0.5% to 0.6%,  Woodfield47 0.25% to 
0.73% and Harmer, et al.48 0.76%. However, at high selection pressures applying  Ap in large HS populations, such 
as the 1000 family dataset, annual increases of 1.21% can be achieved. With every percentage increase in ∆G, cost 
efficiency improved. Although the predicted %∆G using data from Ph based DM assessments (at an accuracy 
of 0.90), was lower than predictions using DM yield from herbage cuts, there was a considerable decrease in 
the cost per %∆G. This was especially evident when comparing DM measurement costs between the  ApWgs and 
 APhWgs breeding methods based on herbage cuts and LiDAR phenomic assessments, from the 1000 HS families. 
There was a considerable reduction in cost ($) per %ΔG that ranged from 10 to 40%.

Annual increases in %∆G of over 2% per year will be required in crops such as maize (Zea mays), rice (Oryza 
sativa), wheat (Triticum aestivum), and soybean (Glycine max L.), to meet future global food  demands49. For 
perennial ryegrass and other out crossing forage species, achieving a 2% annual gain in DM yield using  Ap meth-
ods, which exploit only a quarter of the total available additive genetic  variation27, is an unrealistic objective. 
Accessing the ¾ additive variation within HS families will make a significant contribution to increasing annual 
%∆G4,50. Low genetic gains in forage breeding programs are due, in part, to an inability to satisfactorily exploit 
within family genetic  variation50,51. Historically, application of within family selection in forage grasses could 
only be based on measurements conducted on random samples of individual, spaced plants, representing the 
selected HS families.  Casler50 presented a range of examples in forage grass breeding for and against using spaced 
plants. Hayward and  Vivero52 and Lazenby and  Rogers53 indicated poor genetic correlation between individual 

Figure 3.  Percentage of favourable alleles fixed in the Sim200 and Sim1000 training populations at each 
selection cycle, under three breeding strategies  (Ap,  ApWgs and  AgsWgs). A selection pressure of 20% and 2% was 
imposed to select the best HS families. Within each family, for the  ApWgs and  AgsWgs strategies the top 5 or 50 
individuals were selected and for  Ap strategy 5 or 50 individuals were randomly selected to restore the initial 
number of parents for next selection cycle. In each selection cycle percentage of favourable alleles were based on 
250 iterations.
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spaced plant vigour and sward DM yield. Applying GS based on prediction models constructed using multi-
year-season-location phenotypic data from sown rows or plots makes within family selection for DM yield and 
other sward traits feasible. The benefits to ∆G of using GS typically focus on the promise of reducing generation 
interval. However, in addition, the application of genomic prediction to generate GEBV’s for large numbers of 
random individuals sampled from elite HS families, offers a means to also improve ∆G by increasing the effi-
ciency of within family selection for sward DM yield. Deterministic simulation of the  ApWgs breeding strategy 
using DeltaGen, based on the 200 HS and 1000 HS families, clearly indicated the advantage of applying GS for 
within family selection. For both HS populations, increasing within family selection pressure, from 10 to 1% or 
increasing  rA from 0.26 to 0.46 increased %∆G per cycle. For both the 200 HS and 1000 HS family populations, 
at 1% within family GS, %∆G per cycle for DM yield was 6.35 and 8.10, respectively. Based on the three-year 
selection cycle assumed in this study, these increases equate to annual %∆G of 2.11 and 2.70, comfortably above 
the 2% ∆G per annum target. As expected, with increasing genetic gain the cost %∆G decreased.

As alluded to above, in addition to enabling within family selection, a key advantage in using GS is reduc-
ing the length of a selection cycle and the cost %∆G54,55. This was further demonstrated in our deterministic 
simulation by applying a wholly GS second selection cycle,  AgsWgs, to the HS families generated following C1 in 
both the 200 HS and 1000 HS family scenarios. The fact that  AgsWgs enabled selection of another generation of 
elite parental seedlings based on GEBV’s in the space of one year, following C1 (3 years), resulted in high annual 
%∆G in cycle 2. Annual %∆G resulting from  AgsWgs was higher than both the  Ap and  ApWgs breeding strategies 

Figure 4.  The percentage of genetic variance at each selection cycles estimated in Sim200 and Sim1000 training 
populations using three breeding strategies  (Ap,  ApWgs and  AgsWgs). A selection pressure of 20% and 2% was 
imposed to select best half-sib families and within each family, for the  ApWgs and  AgsWgs strategies top 5 and 
50 individuals were selected and for  Ap strategy random 5 and 50 individuals were selected to restore the initial 
number of parents for next selection cycle. In each selection cycle percentage genetic variance was based on 250 
iterations.
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at all selection pressures and  rA’s. This additional year based on  AgsWgs following the 3 years of the field-based 
strategy (C1) increased total %∆G.

It is important to note that the deterministic simulation results discussed assumed that the  rA values 0.26, 0.36 
and 0.46 in C1 continued to hold in C2. There is always the probability of the correlation between GEBV’s and 
phenotype derived BLUP’s or true breeding values, decreasing due to decay in  rA, due principally to declining 
genetic relatedness between training and selection  populations56, following polycrossing of C1 selected parents. 
The use of a  rA of 0.12 was introduced into simulation in C2 to investigate this scenario. Simulation results 
indicated that even at the  rA value of 0.12 in C2, the predicted annual %ΔG using  AgsWgs, was higher than that 
predicted for  Ap in C1 at all selection pressures.

Stochastic modelling. While genetic gain is a key determinant of the merit of a breeding strategy, informa-
tion on fixation rate of favourable alleles and the rate of decay of genetic variance and  rA are vital, especially when 
designing long-term recurrent selection breeding programs. For example, knowing at what stage in the recurrent 
selection process to recalibrate the prediction model when using GS is essential. Application of strategic deci-
sion support software tools such as QU-GENE, provide a platform for plant breeders to assess the progress, over 
multiple selection cycles, for ∆G and associated genetic parameters such as; additive genetic variance, fixation 
rates and  rA. In crop species, several studies have explored stochastic modelling to understand long-term trends 
of implementing GS in breeding  programs19,57–60. In forages, Lin, et al.55 and Esfandyari, et al.61 used stochastic 
modelling to assess the impact of GS in commercial and FS breeding programs.

In the current study, stochastic modelling using QU-GENE/QuLinePlus provided graphical trends for; ∆G, 
allele fixation rate, genetic variance and  rA, over 10 cycles of selection in response to three breeding strategies;  Ap, 
 ApWgs and  AgsWgs, when applied to either 200 HS or 1000 HS families of perennial ryegrass. In our simulations, 
the greatest %∆G observed for GS  (ApWgs and  AgsWgs) breeding strategies compared to  Ap across two different 

Figure 5.  Average prediction accuracy estimated as the Pearson correlation co-efficient between true breeding 
value (TBV) and genomic estimated breeding value (GEBV) in the Sim200 and Sim1000 training populations. 
In each selection cycle prediction accuracy was based on 250 iterations.
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selection pressures and populations sizes (Fig. 2). These results are due to precise selection of genotypes, for DM 
yield, within a family when implementing GS, compared to random selection of individuals from within selected 
families when using the  Ap strategy. This further supports the findings of Esfandyari, et al.61 who in the context of 
full sib (FS) family breeding strategies, reported that accurate selection of single plants, based on GS, establishes 
a strong genetic correlation in terms of performance between single plants and plots, leading to increased ∆G.

The GS breeding strategies applied in C1 outperformed the  Ap strategy in terms of predicted %∆G. However, 
in later cycles, these differences were less pronounced, due to a decline in  rA in the selection cycles post C1. These 
trends observed in our simulations were similar for both the Sim200 and Sim1000 HS families, mainly due to 
similar size and number of additive genetic effects used in the recombination map for simulating the breeding 
strategies. Generally, with larger training populations,  rA  increases6,62 or remains constant relative to smaller 
 populations58. However, in our simulations there was a difference in  rA following each selection cycle. In the 
Sim1000 HS families the observed  rA values were relatively lower compared to the Sim200 HS family simulations. 
While the  rA disparity between the populations is unclear, it should be noted that, Sim200 and Sim1000 were two 
independently simulated populations evaluated under different GE simulation systems, as described in “Material 
and Methods”. Populations evaluated under different GE systems, irrespective of the size of training population, 
produce different  rA

63,64. In forages,  rA is a result of genetic linkage and linkage disequilibrium (LD)24,65,66. As 
selection cycles progress the genetic linkage between the training and selection population declines, resulting 
in poor  rA as observed in our simulations (Fig. 5). To maintain higher  rA across multiple selection cycles, train-
ing populations need to be updated with new elite material or by including the families from previous selec-
tion  cycles58,61. The implication of this strategy in HS breeding systems is yet to be investigated and would be 
considered in future studies.

Genetic variance within breeding populations provides the foundation for cultivar  development67. In our 
simulations, there was a rapid decline in the percentage of genetic variance from selection C0 to C1, particularly 
for the  ApWgs and  AgsWgs methods and in the later selection cycles there was a steady decline in all three breed-
ing strategies (Fig. 4). The rapid decline from C0 to C1 in the GS strategies is the result of utilizing both among 
(1/4 σ2

A) and within (3/4 σ2
A) HS family additive genetic variation, and this was reflected in the %∆G (Fig. 2). In 

addition, the polygenic architecture of the DM yield trait may be an underlying factor. Muleta, et al.58 reported 
similar trends, notably a rapid early decline in genetic variance, for a polygenic trait through their simulation 
of genomic assisted recurrent selection in sorghum (Sorghum bicolor). Cycles of continuous recurrent selection 
increase the frequency of favourable alleles and at the same time increase the probability of fixation of deleterious 
alleles. Selection pressure and population size have big impact on the allele fixation rates (Fig. 3). Our simula-
tions demonstrated that smaller populations and high selection pressure will lead to higher allelic fixation rates 
earlier in the selection cycles. Allelic fixation rate is the direct measure of inbreeding in a  population27,68,69. With 
decreasing population size and higher selection pressures the potential for inbreeding depression  increases55,68,69. 
In cross pollinating species such as perennial ryegrass, which consists of heterozygous and heterogenous popula-
tions, inbreeding depression effects can be  severe70. Our results re-emphasize the importance of larger training 
populations for GS implementation in order to maintain optimum levels of inbreeding rates and the genetic 
variance in a recurrent selection program.

In addition to having information such as heritability of key traits, the possibility of predicting the rate of 
decrease of their genetic variances and associated allele fixation rates, over multiple selection cycles, as shown 
in our study for HS families, also simulation studies by Esfandyari, et al.61 for FS families and Lin, et al.55 in a 
commercial breeding program, will enhance decisions on choice of breeding pool to achieve specific cultivar 
development goals, by deploying cost effective breeding strategies.

Conclusion
Optimizing breeding program inputs for rate and cost-efficiency of genetic gain can be informed by simulation. 
Using mock data matrices constructed from empirically derived data, we demonstrated short- and long-term 
impacts of breeding strategy and integration of key technologies including genomic selection and phenomics 
on rate of predicted genetic gain for dry matter yield, a key economic trait, in perennial ryegrass. Our findings 
indicate these technologies offer substantial improvements in the rate of gain, and in some cases improved cost-
efficiency per unit gain. The value of GS in exploiting within family additive genetic variation to increase genetic 
gain was demonstrated using both deterministic and stochastic simulation.

The application of GS in both among and within HS family selection in C2, provided a significant boost to 
total annual genetic gain across both cycles (C1 = 3 years and C2 = 1 year), even at low GS accuracy  rA of 0.12. 
Despite some reduction in genetic gain, using phenomics (LiDAR based mobile platform) to assess seasonal 
DM yield clearly demonstrated its impact by reducing cost per percentage gain relative to standard DM cuts.

The open-source software tools, DeltaGen and QU-GENE, offer ways to query and model the impact of 
breeding methodology and technology integration under a range of breeding scenarios and inputs in out crossing 
species including pasture species. This software expands the scope of tools available to breeders in decision sup-
port for breeding program design. The analyses reported in this paper can also be extended to major crop species 
using the genetic modelling capability for self-pollinating species, developed in both DeltaGen and QU-GENE.

Data availability
The datasets generated in this study are included as supplementary information files.

Code availability
Software links to perform the deterministic and stochastic modelling were provided within this article.
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