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Abstract

Additive genetic variance (VA) and total genetic variance (VG) are core concepts in biomedical, evolutionary and production-
biology genetics. What determines the large variation in reported VA/VG ratios from line-cross experiments is not well
understood. Here we report how the VA/VG ratio, and thus the ratio between narrow and broad sense heritability (h2/H2),
varies as a function of the regulatory architecture underlying genotype-to-phenotype (GP) maps. We studied five dynamic
models (of the cAMP pathway, the glycolysis, the circadian rhythms, the cell cycle, and heart cell dynamics). We assumed
genetic variation to be reflected in model parameters and extracted phenotypes summarizing the system dynamics. Even
when imposing purely linear genotype to parameter maps and no environmental variation, we observed quite low VA/VG

ratios. In particular, systems with positive feedback and cyclic dynamics gave more non-monotone genotype-phenotype
maps and much lower VA/VG ratios than those without. The results show that some regulatory architectures consistently
maintain a transparent genotype-to-phenotype relationship, whereas other architectures generate more subtle patterns.
Our approach can be used to elucidate these relationships across a whole range of biological systems in a systematic
fashion.
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Introduction

The broad-sense heritability of a trait, H2~VG=VP, is the

proportion of phenotypic variance attributable to genetic causes,

while the narrow-sense heritability h2~VA=VG , is the proportion

attributable to additive gene action. The total genetic variance

VG~VAzVDzVI includes the variance explained by intra-locus

dominance (VD) and inter-locus interactions (VI ). The reasons for

and importance of this non-additive genetic variance that

distinguishes the two heritability measures has been subject to

substantial controversy for more than 80 years (e.g., [1–6]). It was

recently shown through statistical arguments that for traits with

many loci at extreme allele frequencies, much of the genetic

variance becomes additive with h2/H2 (or equivalently VA/VG)

typically .0.5 [3]. In populations with intermediate allele

frequencies, such as controlled line crosses, lower VA/VG ratios

are often reported [7,8]. This is illustrated in Table 1, which

summarizes estimated VA/VG ratios from a collection of studies on

such populations. This wide range of h2/H2 ratios reported for line

crosses cannot be explained by an allele-frequency argument, and

putative explanations must be based on how the regulatory

architecture of the underlying biological systems shape the

genotype-phenotype (GP) map.

It is important to understand the causal underpinnings of the

observed variation in h2/H2 ratios within and between biological

systems for several reasons. In human quantitative genetics, where

twin studies are commonly used, most heritability estimates refer

to H2 [9]. In cases where h2/H2 is low, this can lead to unrealistic

expectations about how much of the underlying causative

variation may be located by linear QTL detection methods [6].

On the other hand, low narrow sense heritability for a given

complex trait does not necessarily imply that the environment

determines much of the variation. In evolutionary biology,

additive variance is the foremost currency for evolutionary

adaptation and evolvability. Important questions in this context

are for example (i) to which degree is there selection on the

regulatory anatomies themselves to maintain high additive

variance, (ii) are there organizational constraints in building

adaptive systems such that in some cases a low h2/H2 ratio must of

necessity emerge while the proximal solution is still selected for?

Moreover, in production biology with genetically modified,

sexually reproducing organisms, one would like to ensure that

the modifications would be passed over to future generations in a

fully predictable way. Thus, one would like to ensure that the

modification becomes highly heritable in the narrow sense.

As a step towards a physiologically grounded understanding of

the variation of the h2/H2 relationship across biological systems or

processes, we posed the question: Are there regulatory structures,

or certain classes of phenotypes, more likely to generate low VA/VG

ratios than others? Addressing this question requires the linking of
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genetic variation to computational biology in a population context

(e.g., [10–19]), so-called causally-cohesive genotype-phenotype

(cGP) modeling [15,17,18]. We applied this approach to five well-

validated computational biology models describing, respectively,

the glycolysis metabolic pathway in budding yeast [20], the cyclic

adenosine monophosphate (cAMP) signaling pathway in budding

yeast [21], the cell cycle regulation of budding yeast [22], the gene

network underlying mammalian circadian rhythms [23], and the

ion channels determining the action potential in mouse heart

myocytes [24] These models differ in their regulatory architecture;

below, we show that they also differ in the range of VA/VG ratios

that they can exhibit. In particular, positive feedback regulation

and oscillatory behavior seem to dispose for low VA/VG ratios. The

results suggest that our approach can be used in a generic manner

to probe how the h2/H2 ratio varies as a function of regulatory

anatomy.

Methods

Simulations of cGP models
The five cGP models were built and analyzed with the cgptoolbox

(http://github.com/jonovik/cgptoolbox) an open-source Python

package developed by the authors; further source code specific to

the simulations in this paper is available on request. In the

following we describe the three main parts of the workflow: (i) the

mapping from genotypes to parameters, (ii) the mapping from

parameters to phenotypes, i.e. solving the dynamic models and (iii)

the setup of Monte-Carlo simulations combining the two

mappings (Figure S1). For each model, we briefly describe its

origins, the software used to solve it, which parameters were

subject to genetic variation, what phenotypes were recorded, and

criteria for omitting outlying datasets. Figures S2, S3, S4, S5, S6

shows graphical representations of the five model systems and

Text S1 contains more detailed descriptions of all five models.

Genotype to parameter mapping. For each model, the

following procedure was repeated 1000 times (see also ‘‘Monte

Carlo simulations’’ below) for different selections of parameters to

be subjected to simulated genetic variation. We started by

sampling three polymorphic loci, each determining one or two

parameters in the dynamic model. Tables of eligible loci with

corresponding parameters and their baseline values are listed in

Table S1, S2, S3, S4, S5, corresponding to the cAMP, glycolysis,

cell cycle, circadian and action potential models respectively.

Heritable variation in a chosen parameter was generated for a

single biallelic locus with allele indexes 0 and 1 in the following

manner. First, two numbers r1 and r2 were sampled uniformly in

the interval [0.7, 1.3]. The parameter value for a homozygote 00

was set to r1b where b is the baseline value, for a homozygote 11

the parameter value was r2b. The heterozygous genotype 01 was

assigned the average of the two homozygotes (r1zr2)b=2,

resulting in an additive mapping from genotypes to parameter

values.

cAMP model. The model of the complete cAMP signaling

pathway in S. cerevisiae [21] taking the external glucose level as

input was downloaded as SBML code (http://www.biomedcentral.

Table 1. Examples of reported VA/VG ratios of from line-crossing experiments.

Species Type of traits
Number of
traits Ref. Min VA/VG Max VA/VG Mean VA/VG

Chicken Growth, weight 17 [45] 0.03 0.71 0.29

Mouse Hyperoxic survival 1 [46] - - 0.46

Drosophila melanogaster Locomotor behavior 1 [47] - - 0.31

Drosophila melanogaster Olfactory behavior 1 [48] - - 0.64

Upland cotton Nematode resistance 1 [49] - - 0.79

Melon Fruit color and maturity 2 [50]a 0.55 0.58 0.57

Maize Morphological traits 17 [51]b 0.13 1.1 0.59

Maize Leaf spot resistance 5 [52] 0.51 0.95 0.76

Arabidopsis thaliana Flowering and morphology and 22 [53]c 0.58 1.05 0.76

Eggplant Callus related traits 4 [54] 0.42 0.93 0.73

a.Average of ratios from generation mean analysis and variance component method.
b.Using average of inbred and hybrid line estimates of h2 and H2.
c.Using estimated h2 and H2 from triple test cross.
doi:10.1371/journal.pcbi.1003053.t001

Author Summary

The broad-sense heritability of a trait is the proportion of
phenotypic variance attributable to genetic causes, while
the narrow-sense heritability is the proportion attributable
to additive gene effects. A better understanding of what
underlies variation in the ratio of the two heritability
measures, or the equivalent ratio of additive variance VA to
total genetic variance VG, is important for production
biology, biomedicine and evolution. We find that reported
VA/VG values from line crosses vary greatly and ask if
biological mechanisms underlying such differences can be
elucidated by linking computational biology models with
genetics. To this end, we made use of models of the cAMP
pathway, the glycolysis, circadian rhythms, the cell cycle
and cardiocyte dynamics. We assumed additive gene
action from genotypes to model parameters and studied
the resulting GP maps and VA/VG ratios of system-level
phenotypes. Our results show that some types of
regulatory architectures consistently preserve a transpar-
ent genotype-to-phenotype relationship, whereas others
generate more subtle patterns. Particularly, systems with
positive feedback and cyclic dynamics resulted in more
non-monotonicity in the GP map leading to lower VA/VG

ratios. Our approach can be used to elucidate the VA/VG

relationship across a whole range of biological systems in a
systematic fashion.

Heritability and Regulatory Architecture
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com/content/supplementary/1752-0509-3-70-s1.xml) and integrat-

ed using PySCeS [25]. Genetic variation was introduced on

association/dissociation and phosphorylation/dephosphorylation

rates of signal proteins (see Figure S2 and Table S1). The initial

steady state concentrations before adding external glucose, the peak

values after adding glucose and the time taken to reach peak values

of cellular proteins were recorded as phenotypes (see Figure 1A for

phenotype illustration and Table S6 for phenotype descriptions).

Glycolysis model. The model published by Teusink et al.

[20] describes glycolysis in S. cerevisiae through the kinetics of 13

glycolytic enzymes determining the fluxes of metabolite state

variables. Genetic variation was introduced on maximal reaction

rates for the enzymes (see Figure S3 and Table S2). We

downloaded the model from the BioModels database (http://

www.ebi.ac.uk/biomodels-main/BIOMD0000000064) in SBML

L2 V1, and solved it with PySCeS [25] to find the stable steady

state concentrations of metabolites, which were used as pheno-

types (see Figure 1B and Table S7). Datasets were discarded if one

or more of the genotypes did not give a stable steady state, as can

happen due to a saddle-node bifurcation [26].

Cell cycle model. The model of the consensus control

mechanisms of the cell cycle in S. cerevisae modeled by algebraic/

differential equations that describe the continuous changes in state

variables and discontinuities due to cellular events [22] was

Figure 1. Phenotypes derived from the cGP models. Graphical illustration of the phenotypes recorded for the five cGP models studied. Time
courses (state variable on y-axis, time on x-axis) for the baseline parameter set are displayed for all five models. A. In the absence of external glucose
all state variables (concentration of cAMP is shown) in the cAMP model [21] converge to a stable steady state (blue circle on y-axis). After addition of
external glucose (5 mM added at time 50) we see a rapid change followed by a slow return to the original steady state. In addition to the original
steady state, the extremal concentration (top blue circle) as well as the time to reach the extremum (blue line) was recorded as phenotypes. B.
Metabolite concentrations (internal glucose (GLCi), glucose-6-phospate (G6P) and fructose-6-phospate (F6P) are shown) in the glycolysis model [20]
all converge to a stable steady state, indicated by open circles. The steady state concentrations for 13 metabolites were recorded as phenotypes from
this model. C. For the cell cycle model [22] we recorded the peak level and the time from bottom to peak as for the circadian model (Figure 1D), and
in addition we recorded cell cycle events such as bud emergence at the time when [BUD] = 1 indicated by the black arrow. D. mRNA and protein
concentrations (mRNA for Bmal1 (MB), Cry (MC) and Per (MP) are shown) in the circadian model [23] converge to a limit cycle. In addition to the
period of oscillation (long blue line) for each of the 16 variables the peak level (open blue circle) as well as the time from bottom to peak (short blue
line) were recorded as phenotypes. E. We used the base level, peak level, amplitude, time to peak, and time to 25%, 50%, 75% and 90% recovery of
the action potential and calcium transient as cell level phenotypes of the action potential model [24]. An action potential is shown in the figure.
doi:10.1371/journal.pcbi.1003053.g001

Heritability and Regulatory Architecture
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obtained from the CellML repository (http://models.cellml.org/

workspace/chen_calzone_csikasznagy_cross_novak_tyson_2004).

Genetic variation was introduced on the production and decay

rates of various proteins (see Figure S4 and Table S3). The

published model contains reset rules (events) for both parameters

and state variables, but the CellML implementation only includes

the parameter (kmad2, kbub2 and klte1) rules. Reset rules for state

variables [BUD], [SPN], and [ORI] as described in the model

paper, were implemented by solving the model with rootfinding

for the relevant variables. The model was numerically integrated

using the CVODE solver [27] until convergence of cell division

time, cell cycle events. The peak levels and time to peak levels for

the cytosolic protein concentrations, together with the timing of

cell division events were recorded as phenotypes (see Figure 1C

for phenotype illustrations and Table S8 for phenotype

descriptions).

Circadian model. The model of the mammalian circadian

clock published by Leloup and Goldbeter [23] describes the

dynamics of mRNA and proteins of three genes in the cytosol and

nucleus. Genetic variation was introduced on mRNA decay rates

(see Figure S5 and Table S4). The model was downloaded from

CellML repository (http://models.cellml.org/workspace/

leloup_goldbeter_2004) and integrated using CVODE [27] until

convergence to its limit cycle. As phenotypes we used the bottom

levels and time to from bottom level to peak value of the

concentrations of mRNAs, proteins and protein complexes. In

addition, we recorded the period of oscillations (see Figure 1D for

phenotype illustrations and Table S9 for phenotype descriptions).

Action potential model. The model of [24] is an extension

of [28] and describes the action potential and calcium transient of

a mouse heart muscle cell. We obtained CellML code from the

authors and the file is available as supplementary material in [17].

Numerical integration was done using CVODE [27]. Genetic

variation was introduced on the maximal conductances of ion

channels and pump affinities (see Figure S6 and Table S5).

Phenotypes were generated by simulated regular pacing as done in

[17,18], with a stimulus potassium current of 215 V/s was lasting

for 3 ms at the start of each stimulus interval. The model was

simulated to convergence as described in [17]; datasets that failed

to converge were discarded. The initial level, peak level,

amplitude, and time to 25, 50, 75 and 90% recovery of the action

potential and calcium transient were recorded as the cell level

phenotypes (see Figure 1E for phenotype illustrations and Table

S10 for phenotype descriptions).

Monte Carlo simulations. For each model we performed

1000 Monte Carlo simulations as follows (see Figure S1 for an

illustration). We first sampled three polymorphic loci for

introduction of genetic variation and sampled the genotype-to-

parameter map as described above. Then all 27 possible three-

locus genotypes were enumerated, mapped into 27 parameter

sets and for each parameter set the dynamic model was solved

and phenotypes (as described above and in Figure 1) were

obtained. To avoid artifacts arising from numerical noise

datasets with low variability were omitted from the genetic

analysis. Absolute variability was measured as the difference

between the maximum and minimum values of a phenotype in a

dataset, and relative variability as the ratio of the absolute

variation to the mean phenotype of the same dataset. The

threshold values for each phenotype and the number of datasets

exceeding the thresholds are listed in Tables S6, S7, S8, S9,

S10, for the cAMP, glycolysis, cell cycle, circadian and action

potential models, respectively.

Statistical analysis
Decomposition of genetic variance. A single Monte Carlo

simulation results in genotype-to-phenotype maps comprised by

27 genotypic values (i.e. the phenotype values corresponding to the

27 genotypes) for a given phenotype. We used the NOIA

framework [29] to compute the resulting genetic variance (VG )

in a hypothetical F2 population and decompose it into additive

(VA) and non-additive components (VD and VI ). This was done

with the function linearGPmapanalysis in the R package noia (http://

cran.r-project.org/web/packages/noia/) version 0.94.1.

Monotonicity of GP-maps. We build on the definitions of

monotonicity and the indexing of alleles introduced in [30]. Given

a simulated GP map with 27 genotypic values we measured the

degree of order-breaking for a particular locus k by the allele

substitution effects at that locus. For a fixed background genotype

at all other loci (as indicated in eq. (14) in [30]), we computed the

difference in genotypic value when substituting a 0-allele with a 1-

allele (i.e. when going from 00 to 01 or from 01 to 11 at locus k).

We collected substitution effects across all 9 background genotypes

to compute N, the sum of all negative substitution effects, and A,

the sum of absolute values of all substitution effects. If the GP map

is monotone for locus k then N~0, and if it is order-breaking for

locus k the N=Aw0.

Results/Discussion

System classification and phenotype dimensionality
The five cGP models studied in this work differ in several ways,

both in their function and the underlying network structure. The

glycolysis and cAMP models are both pathway models with an

acyclic series of reactions transforming inputs to outputs. The

glycolysis model [20] is more advanced than the metabolic models

in earlier genetically oriented studies (e.g., [3,31,32]) as it contains

many different types of enzyme kinetics as well as negative

feedback regulation of some enzyme activities through product

inhibition. The cAMP model [21] contains a number of negative

feedback loops, but overall it also has a clear pathway structure

where the glucose signal is relayed from G-proteins to cAMP to

the target kinase PKA. Both these two models have in common

relatively simple dynamics with solutions converging to a stable

steady state (Figure 1A and B).

In contrast, the three other models show cyclic behavior

resulting from an interplay between positive and negative feedback

loops (Figure 1 C–E). However, there are clear differences

between these models too. The heart cell model [24] is an

excitable system with feedback mechanisms including calcium-

induced calcium release and several voltage-dependent ion

channels. In contrast to pacemaker cells, it relies on external

pacing to initiate the action potential. The circadian rhythm

model [23,33] is a gene expression network with intertwined

positive and negative transcriptional feedback loops, giving a limit

cycle oscillator with sustained oscillations even in continuous

darkness. The cell cycle model [22] centers around a positive

feedback loop between B-type cyclins in association with cyclin

dependent kinase and inhibitors of the cyclin dependent kinase,

which establishes a hysteresis loop causing the cell cycle to emerge

from transitions between the two alternative stable steady states.

This crude classification of the five cGP models into pathway

models and more complex regulatory systems is clearly reflected in

the effective dimensionality of the phenotypes arising in our Monte

Carlo simulations. We studied the phenotypic dimensionality for

all five cGP models by Principal Component Analysis (PCA) for

each Monte Carlo simulation (Figure 2). Across all simulated

datasets, 95% of phenotypic variation of the glycolysis and cAMP

Heritability and Regulatory Architecture
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models can be explained by the first 3 principal components, the

cell cycle and heart cell models require the first 5 principal

components, and 7 components are required for the circadian

model. Since the genotype-to-parameter maps are additive for all

five models, these differences in the effective dimensionality of

high-level phenotypes indicate that the mappings from parameters

to phenotypes are simpler for the pathway models than the other

three models. This, together with results on the effect of positive

feedback on statistical epistasis in gene regulatory networks [11],

suggested that the glycolysis and cAMP models might result in

higher VA/VG ratios than the other three models.

The ratio of additive genetic variance to total genetic
variance

The results confirmed our expectations regarding high VA/VG

ratios for the glycolysis and cAMP models. Furthermore, a

number of distinct patterns emerged. The cAMP model shows the

overall highest VA/VG ratios values (Figure 3A and Table S6), with

mean and median values above 0.99 across all recorded

phenotypes. The 0.05-quantile (i.e. only 5 percent of the Monte

Carlo simulations show lower values than this) VA/VG values were

above 0.97 for all phenotypes and no values lower than 0.6 were

observed. In other words, an intra- and inter-locus additive model

of gene action very well approximates the genotype-phenotype

maps arising from this cGP model.

The glycolysis model also has mean and median VA/VG values

close to 1 for all phenotypes (Figure 3B and Table S7). But

compared to the cAMP model, the numbers are clearly lower; the

lowest recorded mean value (phenotype BPG) is 0.9 and 0.05-

quantile values are below 0.7 for some phenotypes. A few VA/VG

values below 0.5 are observed for all phenotypes. The distribution

of VA/VG ratios for the cell cycle model (Figure S7 and Table S8) is

quite similar to that of the glycolysis model, with a lowest mean

VA/VG value of 0.93 for time to peak for Sic1 and with 0.05-quantiles

below 0.8 for some phenotypes. VA/VG values below 0.1 are

observed for a few Monte Carlo simulations in some phenotypes.

For each of the cAMP, glycolysis and cell cycle models the

distributions of VA/VG ratios were quite similar across all

phenotypes, and a large majority of the Monte Carlo simulations

showed very high ratios. The circadian clock model differs from

these three models both in terms of displaying large variation

between phenotypes and in terms of having a much larger

Figure 2. Dimensionality of phenotypic variation. The proportion
of total phenotypic variation explained (y axis) versus the number of
principal components (x axis) across all five cGP models (colour coded).
For each Monte Carlo data set the 27|M matrices containing the full
genotype-phenotype map for all M recorded phenotypes was
standardized to unit variance before principal components analysis.
Each boxplot summarizes explained variance for close to 1000 Monte
Carlo simulations.
doi:10.1371/journal.pcbi.1003053.g002

Figure 3. The empirical cumulative distribution function of VA/VG ratios for phenotypes of the cAMP (A) and the glycolysis (B)
models. A. The empirical cumulative distribution functions (y axis) of VA/VG ratios (x axis) for all phenotypes studied in the cAMP model: The initial
steady state concentrations before adding external glucose of the cyclic adenosine monophosphate (cAMP), the G-protein Ras2a (Ras2a), the
guanine-nucleotide-exchange factor (Cdc25), the protein kinase A (PKAi). The peak values after adding glucose of these proteins (cAMPv, Ras2av,
Cdc25v and PKAiv), the Kelch repeat homologue protein (Krhv), the G-protein Gpa2a (Gpa2av), and the phosphodiesterase (Pde1v). The time taken to
reach the peak values (cAMPt, Ras2at, Cdc25t, PKAit, Krht, Gpa2at, Ped1t). See Table S6 for further phenotype descriptions and numerical summaries
of the distribution of VA/VG ratios. B. The empirical cumulative distribution function (y axis) of VA/VG ratios (x axis) for the steady state concentrations
of 13 metabolites in the glycolysis model: acetaldehyde (ACE), 1,3-bisphospoglycerate (BPG), fructose-1,6-bisphosphate (F16P), fructose 6-phosphate
(F6P), glucose 6-phosphate (G6P), glucose in cell (GLCi), nicotinamide adenine dinucleotide (NADH), phosphates in adenine nucleotide (P), 2-
phosphoglyerate (P2G), 3-phosphoglycerate (P3G), phosphoenolpyruvate (PEP), pyruvate (PYP), and trio-phosphate (TRIO). See Table S7 for further
phenotype descriptions and numerical summaries of the distribution of VA/VG ratios.
doi:10.1371/journal.pcbi.1003053.g003
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proportion of low VA/VG values (Figure 4A and Table S9). Four

phenotypes stand out with VA/VG distributions that resemble a

uniform distribution U(0,1). These are the time from bottom to

peak for the phosphorylated and unphosphorylated proteins of Per

and Cry, and they have median VA/VG values ranging from 0.46 to

0.70 and 0.05-quantile values in the range 0.04 to 0.10. The

remaining phenotypes have somewhat higher VA/VG values, but

over half of the recorded phenotypes have 0.05-quantiles below

0.6. Median VA/VG values are below 0.9 for the majority of

phenotypes of the action potential model. And all recorded

phenotypes have a large proportion of low VA/VG ratios (Figure 4B

and Table S10) with 0.05-quantiles in the range 0.18-0-35. The

Figure 4. The empirical cumulative distribution function of VA/VG ratios for phenotypes of the circadian model (A) and the action
potential model (B). The empirical cumulative distribution functions (y axis) of VA/VG ratios (x axis) for phenotypes studied in the circadian model
and the heart cell model. A. The upper-left panel (Bmal1) shows phenotypes related to bmal1 gene, including the mRNA (MB), the
unphosphorylated/phosphorylated protein in cytosol (BC/BCP) and nucleus (BN/BNP). The bottom-right panel (Per) is for per gene, including the
mRNA (MP), the unphosphorylated protein (PC) and the phosphorylated protein (PCP). The bottom concentration (solid line) and the time take to
peak (dashed line) of each species are recorded phenotypes. The bottom-left panel (Cry) is related to cry gene, including the mRNA (MC), the
unphosphorylated protein (CC) and phosphorylated protein (CCP). The upper-right panel (Complex) is for protein complexes PCC, PCN, PCCP and
PCNP. The period of circadian rhythm (Period, dotted line) is also shown. See Table S9 for further phenotype descriptions and numerical summaries of
the distribution of VA/VG ratios. B. The empirical cumulative distribution functions (y axis) of VA/VG ratios (x axis) for phenotypes studied in the action
potential model: time to 25%, 50%, 75% and 90% of initial values, the amplitude, initial values (Base), peak values, time to reach peak values of action
potential (left panel) and calcium transient (right panel) are shown. See Table S10 for further phenotype descriptions and numerical summaries of the
distribution of VA/VG ratios.
doi:10.1371/journal.pcbi.1003053.g004

Heritability and Regulatory Architecture
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distributions are quite similar across action potential and calcium

transient phenotypes, but the time to 90% repolarization for the

action potential shows somewhat higher values than the others.

All five cGP models are capable of creating VA/VG ratios close to

1, and except for two phenotypes for the circadian model all

median values of VA/VG are well above 0.5. This supports the

hypothesis [30] that biological systems tend to involve regulatory

machinery that in general leads to considerable additive genetic

variance even at intermediate allele frequencies. That is not to say

that selection cannot sometimes produce regulatory solutions that

tend towards low VA/VG ratios; in fact, the incidence of low VA/VG

ratios varied markedly among the five models that we studied.

Because the genotype-parameter maps were purely additive, all

non-additive genetic variance is a result of non-linearity in the

ODE models. The expected effect of introducing non-additivity in

the genotype-parameter maps would be a further decrease in the

VA/VG ratios.

Our finding that models with complex regulation involving

positive feedback loops tend to give lower VA/VG agrees with a

previous study on gene regulatory networks [11]. Considering the

relatively high VA/VG ratios of the cell cycle model compared to

the circadian and action potential models, the following quote

from Tyson and Novak’s [34] discussion of why the cell-cycle is

better understood as a hysteresis loop than as a limit cycle

oscillator (LCO), is highly informative: ‘‘Generally speaking, the period

of an LCO is a complicated function of all the kinetic parameters in the

differential equations. However, the period of the cell division cycle depends on

only one kinetic property of the cell: its mass-doubling time.’’ This seems to

explain why the genotype-phenotype maps arising from the cell-

cycle models are much more linear than the maps from the

circadian model, which is an LCO.

Monotonicity explains much of the VA/VG patterns
In a given population VA/VG is a function of allele frequencies as

well as the GP map, and GP maps with strong interactions can still

give high VA/VG values in populations with extreme allele

frequencies [3]. In populations with intermediate allele frequencies

the VA/VG values are determined mainly by the shape of the

genotype-phenotype map, and the observed differences between

the five cGP models in the distribution of VA/VG values motivates a

search for underlying explanatory principles.

The recently proposed concept of monotonicity (or order-

preservation) of GP maps seems to be one such principle. In short,

a GP map is said to be monotone if the ordering of genotypes by

gene content (the number of alleles of a given type) is preserved in

the ordering of the associated phenotypic values (see [30] for

details). Figure 5 depicts three extreme types of GP maps seen in

our simulations. Nearly additive GP maps as shown in Figure 5A

Figure 5. Three distinct types of genotype-phenotype maps. Examples of three distinct types of genotype-phenotype maps seen in our
simulations. For each subfigure the phenotypic value is shown on the y-axis while the x-axises, line colours and plot columns indicate the genotype at
the three loci. A. A nearly additive map exemplified by the GP map of the time to peak concentration of Cdc25 (VA/VG = 0.99) in the cAMP model; B. A
fully monotone but non-additive map exemplified by the GP map of the concentration of P2G protein (VA/VG = 0.41) in the glycolysis model; and, C. A
strongly non-monotonic map is found the time to peak concentration of the PC protein (VA/VG = 0.03) from the circadian model.
doi:10.1371/journal.pcbi.1003053.g005
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give VA/VG values very close to one. GP maps with strong

magnitude epistasis, but still order-preserving, typically result in

intermediate VA/VG values (Figure 5B), while highly non-

monotone or order-breaking GP maps (Figure 5C) showing strong

overdominance and/or sign epistasis result in VA/VG values close

to zero.

Based on recent results from studies of gene regulatory networks

[30], we anticipated that the three cGP models with complex

regulation involving positive feedback would result in considerably

more non-monotone or order-breaking GP maps than the two

pathway models. To test this, we measured the amount of order-

breaking in all simulated GP maps (see Methods) and found a very

clear pattern (Figure 6). While the datasets from the glycolysis and

cAMP models contained only 1.1% and 1.3% GP maps with

order-breaking for any locus, those from the cell cycle, circadian

and action potential models contained 20.7%, 44.4% and 69.5%,

respectively. Moreover, monotone GP maps gave higher VA/VG

values than non-monotone GP maps for all five cGP models

(Mann-Whitney test; p-values below 1e-10 for all five models).

However, despite the fact that the glycolysis model rarely shows

order-breaking even for a single locus, it possesses much lower VA/

VG values than the cAMP model. A plausible explanation is that

the steady-state concentrations of metabolites can markedly

increase for parameter values close to a saddle-node bifurcation

point [26]. Simulation outcomes with unstable steady states were

discarded, but in those cases where one of the genotypes (i.e.

Figure 6. The number of loci for which the GP-map shows order-breaking. The number of Monte Carlo simulations where the GP-map for a
given phenotype is clearly order-breaking (GP maps with N/A.0.05, see Methods) is shown for the cAMP model (A), the glycolysis model (B), the cell
cycle model (C), the circadian model (D) and the action potential model (E). Only phenotypes with at least one Monte carlo simulation resulting in an
order-breaking GP map are shown.
doi:10.1371/journal.pcbi.1003053.g006
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parameter sets) come close to the bifurcation point without

crossing it we get genotype-phenotype maps as in Figure 5B,

where one genotype (or a small set) gives much higher

phenotypic values than the others. Such GP maps, similar to

the duplicate factor model in Hill et al. [3], are known to give

low VA/VG ratios despite being monotonic. Similar GP maps

giving VA/VG ratios close to zero were also found by Keightley

[32] in his study of metabolic models possessing null alleles at all

loci.

Considerations on the genericity of the results
Our main reason for restricting the sampled genetic variation of

parameters to within 30% of the published baseline values was to

avoid qualitative (or topological) changes of the dynamics. Such

qualitative changes are often biologically realistic descriptions of

knockouts or other large genetic changes, for example action

potentials of alternating amplitude (alternans) [17]; loss of stable

circadian oscillation [23]; and non-viable cell-cycle mutants

phenotypes [22]. However, since the heritability and variance

component concepts are defined for phenotypes showing contin-

uous rather than discrete variation, we sought to avoid such

qualitative changes here.

We ran simulations with five polymorphic loci for the cAMP

(Figure S8A), glycolysis (Figure S8B), cell cycle (Figure S9) and

action potential (Figure S10) models (the circadian model describes

only three genes explicitly). The resulting VA/VG values were

slightly lower than with three loci, but the overall shape of the

distributions and the clear differences between models did not

change. This indicates that our findings are of general relevance

for oligogenic traits.

It should be emphasized that the five studied cGP models differ

in several other aspects than those highlighted here, such as the

system size (number of state variables) and the process time scales.

These features could also contribute to the observed variation in

the distributions of VA/VG ratios. However, such structural

differences are unavoidable when the aim is to compare

experimentally validated models designed to describe specific

biological systems. A complementary approach is to study generic

models where system size and equation structure is fixed, while

the connectivity matrix can be changed to describe a family of

systems [35]. This facilitates graph-theoretic comparison of

systems at the expense of some biological realism. We anticipate

that the major conclusions from such studies will be similar to

ours, but it may very well be that other important generic insights

may also come to the fore.

All the models in our study describe parts of the cellular

machinery and the resulting phenotypes are thus cellular rather

than organismal. We do not think this is a major shortcoming in

terms of the main conclusions that emerge from our results.

However, we anticipate that application of our approach on

multiscale models including cellular, tissue and whole-organ

phenotypes [36] will provide a much improved foundation for

explaining how properties of the GP map vary across and within

biological systems in terms of regulatory anatomy and associated

genetic variation [37,38].

As our approach can be used together with any computational

biology model, it has the potential to contribute substantially to a

theoretical foundation capable of predicting when we are to expect

low or high VA/VG or h2/H2 ratios from the principles of

regulatory biology. Causally cohesive genotype-phenotype model-

ing thus appears to qualify as a promising approach for integrating

causal models of biological networks and physiology with

quantitative genetics [39–44].

Supporting Information

Figure S1 Flowchart of Monte Carlo simulations and
analysis. Flowchart of the Monte Carlo simulations described in

the Methods section ‘‘Monte Carlo simulations’’ and subsequent

analysis described in the Methods section ‘‘Statistical analysis’’.

(PDF)

Figure S2 Graphical representation of cAMP model.
Figure modified from http://www.biomedcentral.com/1752-

0509/3/70/figure/F7. Red numbers, correspond to the rows in

Table S1, and indicate the model elements where genetic variation

was introduced.

(PDF)

Figure S3 Graphical representation of glycolysis model.
Figure modified from the CellML model repository (http://

models.cellml.org/workspace/teusink_passarge_reijenga_esgalhado_

vanderweijden_schepper_walsh_bakker_vandam_westerhoff_snoep_

2000). Red numbers, correspond to the rows in Table S2, and

indicate the model elements where genetic variation was introduced.

(PDF)

Figure S4 Graphical representation of cell cycle model.
Figure modified from the CellML model repository (http://models.

cellml.org/workspace/chen_calzone_csikasznagy_cross_novak_tyson

_2004). Red numbers, correspond to the rows in Table S3, and

indicate the model elements where genetic variation was introduced.

(PDF)

Figure S5 Graphical representation of circadian model.
Figure modified from the CellML model repository (http://

models.cellml.org/workspace/leloup_goldbeter_2004). Red num-

bers, correspond to the rows in Table S4, and indicate the model

elements where genetic variation was introduced.

(PDF)

Figure S6 Graphical representation of action potential
model. Figure modified from the CellML model repository (http://

models.cellml.org/workspace/bondarenko_szigeti_bett_kim_rasmusson

_2004). Red numbers, correspond to the rows in Table S5, and

indicate the model elements where genetic variation was

introduced.

(PDF)

Figure S7 The empirical cumulative distribution func-
tion of VA/VG ratios for phenotypes of the cell cycle
model. The empirical cumulative distribution functions (y axis) of

VA/VG ratios (x axis) for all phenotypes studied in the cell cycle

model. The phenotypes are divided into 3 groups. Cell events refer

to the discrete events defined in the model paper and include

timing of budding (Bud), timing of DNA replication (Rep) and

timing of alignment of chromosomes on the metaphase plates

(Spn). Peak concentration include the concentration of the

phosphorylated anaphase-promoting complex (APCP), the G1-

stabilizing protein Cdc6, the B-type Cyclin protein 2 (Clb2), the S-

phase promoting B-type Cyclin (Clb5), the starter kinase (Cln2)

and the G1 phase stabilizing protein (Sci1). The time to peak

phenotypes include the time to reach peak concentrations of

APCP, Cdc6, Clb2, Clb5, Cln2 and Sci1. See Table S8 for further

phenotype descriptions and numerical summaries of the distribu-

tion of VA/VG ratios.

(PDF)

Figure S8 The empirical cumulative distribution func-
tion of VA/VG ratios for phenotypes of the cAMP (A) and
the glycolysis (B) models with 5 polymorphic loci. Figure 3

shows results from simulations with 3 polymorhpic loci. A. The
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empirical cumulative distribution functions (y axis) of VA/VG ratios

(x axis) for all phenotypes studied in the cAMP model: The initial

steady state concentrations before adding external glucose of the

cyclic adenosine monophosphate (cAMP), the G-protein Ras2a

(Ras2a), the guanine-nucleotide-exchange factor (Cdc25), the

protein kinase A (PKAi). The peak values after adding glucose

of these proteins (cAMPv, Ras2av, Cdc25v and PKAiv), the Kelch

repeat homologue protein (Krhv), the G-protein Gpa2a (Gpa2av),

and the phosphodiesterase (Pde1v). The time taken to reach the

peak values (cAMPt, Ras2at, Cdc25t, PKAit, Krht, Gpa2at,

Ped1t). B. The empirical cumulative distribution function (y axis)

of VA/VG ratios (x axis) for the steady state concentrations of 13

metabolites in the glycolysis model acetaldehyde (ACE), 1,3-

bisphospoglycerate (BPG), fructose-1,6-bisphosphate (F16P), fruc-

tose 6-phosphate (F6P), glucose 6-phosphate (G6P), glucose in cell

(GLCi), nicotinamide adenine dinucleotide (NADH), phosphates

in adenine nucleotide (P), 2-phosphoglyerate (P2G), 3-phospho-

glycerate (P3G), phosphoenolpyruvate (PEP), pyruvate (PYP), and

trio-phosphate (TRIO).

(PDF)

Figure S9 The empirical cumulative distribution func-
tion of VA/VG ratios for phenotypes of the cell cycle
model with 5 polymorphic loci. Figure S7 shows results from

simulations with 3 polymorhpic loci. The empirical cumulative

distribution functions (y axis) of VA/VG ratios (x axis) for all

phenotypes studied in the cell cycle model. The phenotypes are

divided into 3 groups. Cell events refer to the discrete events defined

in the model paper and include timing of budding (Bud), timing of

DNA replication (Rep) and timing of alignment of chromosomes on

the metaphase plates (Spn). Peak concentration include the

concentration of the phosphorylated anaphase-promoting complex

(APCP), the G1-stabilizing protein Cdc6, the B-type Cyclin protein

2 (Clb2), the S-phase promoting B-type Cyclin (Clb5), the starter

kinase (Cln2) and the G1 phase stabilizing protein (Sci1). The time

to peak phenotypes include the time to reach peak concentrations of

APCP, Cdc6, Clb2, Clb5, Cln2 and Sci1.

(PDF)

Figure S10 The empirical cumulative distribution func-
tion of VA/VG ratios for phenotypes of the action
potential model with 5 polymorphic loci. Figure 4B shows

results from simulations with 3 polymorhpic loci. The empirical

cumulative distribution functions (y axis) of VA/VG ratios (x axis)

for phenotypes studied in the action potential model: time to 25%,

50%, 75% and 90% of initial values, the amplitude, initial values

(Base), peak values, time to reach peak values of action potential

(left panel) and calcium transient (right panel) are shown.

(PDF)

Table S1 Polymorphic model elements of the cAMP
model. A list of cAMP model elements and parameters used to

manifest genetic variation. Parameter names from the original

publication (Table 4 in [21], names used in the SBML file

retrieved from http://www.biomedcentral.com/content/

supplementary/1752-0509-3-70-s1.xml and baseline values with

units.

(PDF)

Table S2 Polymorphic model elements of the glycolysis
model. A list of glycolysis model elements and parameters used to

manifest genetic variation. Parameter names from the original

publication [20], names used in the SBML file retrieved from

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000064 and

baseline values with units.

(PDF)

Table S3 Polymorphic model elements of the cell cycle
model. A list of cell cycle model elements and parameters used to

manifest genetic variation. Parameter names from Table 1 and

Table 2 in the original publication [22], names used in the CellML

file retrieved from http://models.cellml.org/workspace/

chen_calzone_csikasznagy_cross_novak_tyson_2004 and baseline

values with units.

(PDF)

Table S4 Polymorphic model elements of the circadian
model. A list of circadian model elements and parameters used to

manifest genetic variation. Parameter names from Table 1

(parameter set 4) in the original publication [23], names used in

the CellML file ‘‘leloup_goldbeter_2004.cellml’’ retrieved from

http://models.cellml.org/workspace/leloup_goldbeter_2004/ and

baseline values with units.

(PDF)

Table S5 Polymorphic model elements of the action
potential model. A list of action potential model elements and

parameters used to manifest genetic variation. Parameter names

from Table B1 in the original publication [24], names used in the

CellML file which is available as supplementary material (filename

‘‘LNCS model.zip’’) at doi:10.3389/fphys.2011.00106 and base-

line values with units.

(PDF)

Table S6 Summary of phenotype descriptions, variabil-
ity thresholds and distribution of VA/VG ratios for the
cAMP model. The first three columns list the phenotype

abbreviations used in this study, a text description of the

phenotypes and their units. The thresholds used to filter out

dataset with very low relative and/or absolute variability are listed

in the next two columns, followed by the number of Monte Carlo

simulations (out of 1000) passing the threshold. The last 7 columns

contain quantiles and means of the VA/VG values for the datasets

passing the variability threshold.

(PDF)

Table S7 Summary of phenotype descriptions, variabil-
ity thresholds and distribution of VA/VG ratios for the
glycolysis model. The first three columns list the phenotype

abbreviations used in this study, a text description of the

phenotypes and their units. The thresholds used to filter out

dataset with very low relative and/or absolute variability are listed

in the next two columns, followed by the number of Monte Carlo

simulations (out of 1000) passing the threshold. The last 7 columns

contain quantiles and means of the VA/VG values for the datasets

passing the variability threshold.

(PDF)

Table S8 Summary of phenotype descriptions, variabil-
ity thresholds and distribution of VA/VG ratios for the
cell cycle model. The first three columns list the phenotype

abbreviations used in this study, a text description of the

phenotypes and their units. The thresholds used to filter out

dataset with very low relative and/or absolute variability are listed

in the next two columns, followed by the number of Monte Carlo

simulations (out of 1000) passing the threshold. The last 7 columns

contain quantiles and means of the VA/VG values for the datasets

passing the variability threshold.

(PDF)

Table S9 Summary of phenotype descriptions, variabil-
ity thresholds and distribution of VA/VG ratios for the
circadian model. The first three columns list the phenotype

abbreviations used in this study, a text description of the
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phenotypes and their units. The thresholds used to filter out

dataset with very low relative and/or absolute variability are listed

in the next two columns, followed by the number of Monte Carlo

simulations (out of 1000) passing the threshold. The last 7 columns

contain quantiles and means of the VA/VG values for the datasets

passing the variability threshold. Abbreviations: phosphorylated –

phos., cytosolic – cyt., nuclear – nuc., bottom concentration – b.c.,

peak concentration – p.c.

(PDF)

Table S10 Summary of phenotype descriptions, vari-
ability thresholds and distribution of VA/VG ratios for
the action potential model. The first three columns list the

phenotype abbreviations used in this study, a text description of

the phenotypes and their units. The thresholds used to filter out

dataset with very low relative and/or absolute variability are listed

in the next two columns, followed by the number of Monte Carlo

simulations (out of 1000) passing the threshold. The last 7 columns

contain quantiles and means of the VA/VG values for the datasets

passing the variability threshold.

(PDF)

Text S1 More detailed descriptions of the five cGP
models.
(PDF)
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