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Metagenomic pipeline 
for identifying co‑infections 
among distinct SARS‑CoV‑2 
variants of concern: study cases 
from Alpha to Omicron
Jose Arturo Molina‑Mora1*, Estela Cordero‑Laurent2, Melany Calderón‑Osorno2, 
Edgar Chacón‑Ramírez1 & Francisco Duarte‑Martínez2

Concomitant infection or co-infection with distinct SARS-CoV-2 genotypes has been reported as 
part of the epidemiological surveillance of the COVID-19 pandemic. In the context of the spread of 
more transmissible variants during 2021, co-infections are not only important due to the possible 
changes in the clinical outcome, but also the chance to generate new genotypes by recombination. 
However, a few approaches have developed bioinformatic pipelines to identify co-infections. Here 
we present a metagenomic pipeline based on the inference of multiple fragments similar to amplicon 
sequence variant (ASV-like) from sequencing data and a custom SARS-CoV-2 database to identify 
the concomitant presence of divergent SARS-CoV-2 genomes, i.e., variants of concern (VOCs). This 
approach was compared to another strategy based on whole-genome (metagenome) assembly. 
Using single or pairs of sequencing data of COVID-19 cases with distinct SARS-CoV-2 VOCs, each 
approach was used to predict the VOC classes (Alpha, Beta, Gamma, Delta, Omicron or non-VOC 
and their combinations). The performance of each pipeline was assessed using the ground-truth or 
expected VOC classes. Subsequently, the ASV-like pipeline was used to analyze 1021 cases of COVID-
19 from Costa Rica to investigate the possible occurrence of co-infections. After the implementation 
of the two approaches, an accuracy of 96.2% was revealed for the ASV-like inference approach, 
which contrasts with the misclassification found (accuracy 46.2%) for the whole-genome assembly 
strategy. The custom SARS-CoV-2 database used for the ASV-like analysis can be updated according 
to the appearance of new VOCs to track co-infections with eventual new genotypes. In addition, the 
application of the ASV-like approach to all the 1021 sequenced samples from Costa Rica in the period 
October 12th–December 21th 2021 found that none corresponded to co-infections with VOCs. In 
conclusion, we developed a metagenomic pipeline based on ASV-like inference for the identification 
of co-infection with distinct SARS-CoV-2 VOCs, in which an outstanding accuracy was achieved. Due 
to the epidemiological, clinical, and molecular relevance of the concomitant infection with distinct 
genotypes, this work represents another piece in the process of the surveillance of the COVID-19 
pandemic in Costa Rica and worldwide.

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has affected 282 million people worldwide and 
570,000 people in Costa Rica by December 2021. The genomic sequencing approach is one of the hallmarks in the 
management of COVID-19 to follow up virus evolution and spread across the globe almost in real-time, unlike 
other pandemics1. Thus, since the emergence of the virus, efforts have been made to map the genetic diversity 
of the virus and to identify genotypes with a possible selective advantage2.

The SARS-CoV-2 genotypes, which share several common mutations and are expected to have similar biologi-
cal properties, can be classified as clades, PANGOLIN lineages, or variants depending on the nomenclature sys-
tem. These versions of the SARS-CoV-2 virus have been reported each time faster during the last year in part due 
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to the increased mutation rate of the virus over time3. Out of the thousands of lineages that have been reported at 
the end of the year 2021, the World Health Organization (WHO) has recognized five of those divergent genotypes 
as a variant of concern (VOC), mainly due to the increased transmissibility and/or a capacity to evade inhibition 
by neutralizing antibodies. The divergent VOCs, namely Alpha (lineage B.1.1.7), Beta (B.1.351), Gamma (P.1), 
Delta (B.1.617.2), and Omicron (B.1.1.529) variants, have been initially reported in specific geographic regions, 
but rapidly were spread to multiple locations worldwide3–5. Other genotypes, such as the variants of interest 
(VOI) or variants under monitoring (VUM) have been also reported, which are still under study owed to possible 
changes in the patterns of transmission, severity, clinical manifestations, mortality, or vaccine effectiveness6,7.

Because of the amount and features of circulating variants, epidemiological surveillance of the pandemic must 
include the analysis of concomitant infections (co-infection) with different SARS-CoV-2 genomes8. Co-infection 
can be described as the occurrence of a re-infection when a first infection was not yet cured9 or the horizontal 
transmission of multiple genotypes11. Estimation of frequency and the study of effects of co-infections are relevant 
not only for the management of the disease at the personal (symptoms) or population (transmission) level but 
also for the molecular surveillance of possible risky events of recombination that can be triggered10. However, the 
incidence of concomitant mixed infections with different genotypes has not been extensively reported11,12. Some 
studies have reported up to 2.6–8% of COVID-19 cases as co-infections2,3,12, but a more specific and confident 
analysis found that 0.18% of cases were concomitant infections13.

Regarding the bioinformatic strategies, only a few studies have implemented analyses to detect co-infections 
by SARS-CoV-2 genomes2,10–12. These pipelines are based on the identification of haplotypes (sequences of each 
genome in the concomitant infection) using haplotype reconstruction programs2,10–12. However, haplotype iden-
tification is usually used to detect co-infections with related but distinct viruses and performs poorly for close 
genomes29. The only specific pipeline to identify co-infections by divergent SARS-CoV-2 viruses was recently 
developed by13.

In this context and as part of the epidemiological surveillance of the pandemic in Costa Rica, we now present 
a new pipeline based on metagenomic analyses to detect co-infections with divergent SARS-CoV-2 viruses, 
specifically with VOCs. After sequencing and pre-processing, the workflow follows the inference of multiple 
fragments similar to amplicon sequence variant (ASV-like) from sequencing data and a taxonomy assignment 
with a custom database of SARS-CoV-2 sequences. Thus, this study aimed to develop a pipeline to identify co-
infections with divergent SARS-CoV-2 genomes using an ASV inference approach.

Methods
General strategy.  To identify cases of COVID-19 with a co-infection with two distinct SARS-CoV-2 
VOCs, we implemented a strategy using genome sequencing data and two different pipelines (Fig. 1). Sequenc-
ing data of samples with different SARS-CoV-2 lineages (one or two lineages, including VOCs) were obtained 
(Fig. 1A). A first strategy was the whole-genome assembly, in which a metagenomic assembler was used to build 
the genome sequence(s) in the sample. After the lineage assignment, genome sequences in each sample were 
classified into VOC classes (Alpha, Beta, Gamma, Delta, Omicron, or non-VOC) and this prediction was com-
pared to the known or expected categories (Fig. 1B).

In a second approach, sequencing data were used for the analysis with sequences at single-nucleotide resolu-
tion, the ASV-like calling strategy. In this case, lineage assignment was not directly done but ASVs were mapped 
to a custom database of SARS-CoV-2 genomes sequences. For genome sub-sequences that are shared among all 
the lineages, the corresponding ASV are expected to map multiple sequences, including the non-VOC genomes 
if they are provided first. However, ASVs carrying specific mutations of the VOC are expected to only map to 
the genome of the variant. Thus, for each genome sequence in the database, the mapping ASVs were counted 
to assign the sample to a VOC category (Fig. 1C). The prediction of these classes was compared to the expected 
results to assess the performance of the pipeline.

Clinical isolates and genome sequencing.  Using the sample collection of Costa Rican cases of COVID-
19 in the period between March 2020 and August 2021 as part of the genomic surveillance of the SARS-CoV-2 
virus, 12 samples from distinct lineages were selected (single lineages in Table 2). Genotypes included VOCs and 
VOIs, as well as the regional lineage B.1.1.389 circulating in Costa Rica (Table 2).

Patients had been diagnosed in INCIENSA (Instituto Costarricense de Investigación y Enseñanza en Nutri-
ción y Salud) or different public and private clinical laboratories by real-time reverse transcription-polymerase 
chain reaction (RT-PCR) using nasopharyngeal swab samples. The diagnosis was done using the guidelines of the 
Pan American Health Organization and the World Health Organization14, and the Ministry of Health of Costa 
Rica. All subsequent experiments and analyses were performed following Costa Rican guidelines and regulations.

Selected samples had a CT < 25 (cycle threshold in the PCR) and genome sequencing had been done in the 
local sequencing service of INCIENSA. Amplicons were obtained using the protocol by15. Sequencing libraries 
were prepared using the Illumina DNA Prep Kit (Illumina, San Diego, CA, USA) according to the laboratory 
standard operating procedure for pulsenet Nextera DNA flex library preparation (https://​www.​cdc.​gov/​pulse​
net/​patho​gens/​wgs.​html). Paired-end sequencing was performed for each library on a MiSeq instrument using 
500 cycles v2 chemistry cartridges (Illumina, San Diego, CA, USA).

Pre‑processing and ground‑truth genotype.  FastQC v0.11.716 was used for the quality control 
of sequencing data. Trimmomatic v0.3817 was used for adapters removal and trimming of low-quality bases 
(Q < 30). Filtered reads were used to infer the ground-truth genotype, the de novo whole-genome assembly, and 
the ASV calling.

https://www.cdc.gov/pulsenet/pathogens/wgs.html
https://www.cdc.gov/pulsenet/pathogens/wgs.html
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To identify the ground-truth (expected) genotype of the sequences, a reference-based genome assembly 
was implemented. BWA-MEM 0.7.5a-r40518 with default parameters was used to map reads to the reference 
genome NC_045512.2. Freebayes v1.3.119 (parameters -p 1 -q 20 -m 60 -min-coverage 10 –V) was implemented 
to call variants. Low-confidence variants were removed using VCF_filter v3.2 (https://​github.​com/​moska​lenko/​
vcf_​filter). Annotation of variants was done using SNPeff20. The genotype for each genome was allocated using 
the PANGOLIN lineages assigner version 3.1.17 (https://​pango​lin.​cog-​uk.​io/). Based on the lineage, genome 
sequences were classified into the VOC classes (Alpha, Beta, Gamma, Delta, Omicron, or non-VOC) and the 
results were used as the ground-truth genotype (expected lineage or VOC class, Table 2).

Based on the SARS-CoV-2 genotypes found in the 12 samples (samples with a single lineage, Table 2), 14 
new datasets were generated by combining sequencing data of two distinct cases (double lineages, Table 2). The 
ground-truth genotypes were inferred based on the individual genomes (expected genotypes, Table 2).

Whole‑genome (metagenome) assembly.  To assemble the genome of cases with a single (12 sam-
ples) or double (14 samples) genotype, a de novo metagenomic assembler was implemented using the filtered 
sequencing reads. Megahit v1.1.321 was used due to its ability to build sequences of an individual or multiple 
genomes21,22. Genome assembly was evaluated based on contiguity, completeness, and correctness using the 
3C criterion22,23. The genotype for each genome was allocated using the PANGOLIN lineages assigner (https://​
pango​lin.​cog-​uk.​io/). Based on the lineage, the 26 genome sequences were classified into the VOC classes and 
the results were used as the prediction of this pipeline. The predicted genotypes were compared to the expected 
(ground-truth) genotypes (Table 2).

ASV‑like inference.  To call ASVs for each sample, the DADA2 package24 was run using the R software. 
The standard protocol of this software for Illumina sequencing data was implemented (https://​benjj​neb.​github.​
io/​dada2/​tutor​ial.​html), in which the only modified step was the taxonomy assignment using a custom data-
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Figure 1.   Conceptual design of the approach to identify co-infection by SARS-CoV-2 VOCs. Samples with two 
distinct VOCs (X and Y) of the SARS-CoV-2 virus are sequenced (A). Using a strategy for the whole-genome 
assembly, a single and misclassified sequence is obtained (B). In contrast, the correct identification of the two 
VOCs is achieved when an ASV inference is implemented, with the use of a custom database of SARS-CoV-2 for 
the taxonomy assignment. In this process, specific ASV are recognized for the VOCs, while shared ASVs among 
all the genomes are assigned to other sequences.

https://github.com/moskalenko/vcf_filter
https://github.com/moskalenko/vcf_filter
https://pangolin.cog-uk.io/
https://pangolin.cog-uk.io/
https://pangolin.cog-uk.io/
https://benjjneb.github.io/dada2/tutorial.html
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base (see below). Briefly, sequencing data (fastq files) were filtered by quality as error rates were calculated and 
removed from the dereplicated reads. Possible chimeric reads were identified and removed. Finally, taxonomy 
was assigned using the RDP Naive Bayesian Classifier algorithm against a custom SARS-CoV-2 database, and 
an error-corrected table of the abundances of ASVs was obtained. In addition, because of the nature of the ASV 
inference in which a consensus sequence is built and results are dependent on the iteration, we completed 5 
repetitions of the analysis to verify the reproducibility of the results.

Custom SARS‑CoV‑2 database.  To assign the taxonomy to the ASVs, nine SARS-CoV-2 genome sequences 
were incorporated into a custom database. Sequences corresponded to VOCs (which were retrieved from https://​
viral​zone.​expasy.​org/​9556) and other non-VOC genomes circulating in Costa Rica since March 2020, which are 
detailed in Table 1. Because of the use of the DADA2 pipeline, the database required a format like 16S-rRNA 

Table 1.   SARS-CoV-2 sequences used to build the custom database to classify genome sequences into VOC 
categories based on ASV calling analysis.

ID Lineage VOC classes Database

CRC-0381 B.1.1.519 Non-VOC GISAID

CRC-0449 B.1.1.389 Non-VOC GISAID

CRC-0493 B.1.525 Non-VOC GISAID

CRC-0653 C36.3 Non-VOC GISAID

MZ344997.1 B.1.1.7 Alpha NCBI

MW598419.1 B.1.351 Beta NCBI

MZ169911.1 P.1 Gamma NCBI

MZ359841.1 B.1.617.2 Delta NCBI

PI_ISL_6913995 B.1.1.529 Omicron GISAID

Table 2.   Genome classification using a whole-genome assembly strategy with sequencing data for one or two 
variants of the SARS-CoV-2 virus (PERF: performance of the prediction regarding the expected class).

Samples Expected genotype Predicted genotype

PERFType ID Expected lineage Expected VOC class Predicted lineage Predicted VOC class

Single lineage

S1 B.1.1.389 Non-VOC B.1.1.389 Non-VOC ✔

S2 C.36.3 Non-VOC C.36.3 Non-VOC ✔

S3 P.2 Non-VOC P.2 Non-VOC ✔

S4 B.1.625 Non-VOC B.1.625 Non-VOC ✔

S5 B.1.429 Non-VOC B.1.429 Non-VOC ✔

S6 B.1.525 Non-VOC B.1.525 Non-VOC ✔

S7 B.1.1.519 Non-VOC B.1.1.519 Non-VOC ✔

S8 B.1.1.7 Alpha B.1.1.7 Alpha ✔

S9 B.1.351 Beta B.1.351 Beta ✔

S10 P.1 Gamma P.1 Gamma ✔

S11 AY.113 Delta AY.113 Delta ✔

S12 B.1.1.529 Omicron B.1.1.529 Omicron ✔

Double lineage

D1 (S4 + S6) B.1.625 + B.1.525 Non-VOC (+ Non-
VOC) B.1 Non-VOC ✘

D2 (S1 + S8) B.1.1.389 + B.1.1.7 Alpha (+ Non-VOC) B.1.1 Non-VOC ✘

D3 (S8 + S9) B.1.1.7 + B.1.351 Alpha + Beta B.1 Non-VOC ✘

D4 (S8 + S10) B.1.1.7 + P.1 Alpha + Gamma B.1 Non-VOC ✘

D5 (S8 + S11) AY.113 + B.1.1.7 Alpha + Delta B.1 Non-VOC ✘

D6 (S8 + S12) B.1.1.7 + B.1.1.529 Alpha + Omicron B.1 Non-VOC ✘

D7 (S9 + S11) AY.113 + B.1.351 Beta + Delta B.1 Non-VOC ✘

D8 (S9 + S10) P.1 + B.1.351 Beta + Gamma B.1 Non-VOC ✘

D9 (S9 + S12) B.1.351 + B.1.1.529 Beta + Omicron B.1 Non-VOC ✘

D10 (S11 + S10) AY.113 + P.1 Delta + Gamma B.1 Non-VOC ✘

D11 (S10 + S12) P.1 + B.1.1.529 Gamma + Omicron B.1 Non-VOC ✘

D12 (S11 + S2) AY.113 + C.36.3 Delta (+ Non-VOC) B.1.629 Non-VOC ✘

D13 (S7 + S11) AY.113 + B.1.1.519 Delta (+ Non-VOC) B.1 Non-VOC ✘

D14 (S11 + S12) AY.113 + B.1.1.529 Delta + Omicron B.1 Non-VOC ✘

https://viralzone.expasy.org/9556
https://viralzone.expasy.org/9556
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databases for amplicon-based metagenomics (16S-rRNA). Thus, the sequence name in the fasta file required a 
format including the organism and subtype, i.e., “ > SARS-CoV-2; VOC_class-lineage-ID” according to the data 
in Table 1. The SARS-CoV-2 genome database is provided as a supplementary file.

Assessment of the pipelines performance.  To assess the performance of the two pipelines to iden-
tify co-infections, the genome assembly and the ASV calling, the predictions regarding the VOC class of each 
approach were compared to the expected genotype. A ROC (Receiver Operating Characteristics) analysis was 
implemented in R software (https://​www.r-​proje​ct.​org/) using the ROCR package25. AUC (Area Under Curve) of 
the ROC curve, as well as the general accuracy of the predictions, were calculated for each pipeline.

Estimation of occurrence of co‑infections in Costa Rica.  Using the ASV-like approach, we run the 
pipeline to identify possible co-infection with VOCs in COVID-19 cases in Costa Rica. The analysis was done 
using all the samples which had been locally sequenced (1021 cases) in the period October 12th–December 21th 
2021. Samples were processed as described before.

Ethical approval and consent to participate.  This study was approved by INCIENSA (INCIENSA-
DG-of-2020-174) and the scientific committee of CIET-UCR (No. 242-2020). Samples were collected for epi-
demiological surveillance according to the Costa Rican regulation Law Nº 8270 (May 17th, 2002), in which no 
additional consent was required for retrospective studies of archived and anonymized samples. All experiments 
were performed following Costa Rican guidelines and regulations.

Results
In order to identify cases of COVID-19 with a co-infection with two distinct SARS-CoV-2 VOCs, we imple-
mented a strategy using genome sequencing data and two different pipelines (Fig. 1). First, a whole-genome 
analysis approach, which included the metagenome assembly, lineage assignment, and the classification into 
the VOC categories, resulted not suitable to identify co-infections with VOCs. With an accuracy of 46.2%, this 
strategy misclassified all the genome sequences for cases with two lineages, including VOCs, while only samples 
with a single lineage were properly identified (Table 2 and Fig. 2). The ROC analysis found a value of AUC = 0.500, 
revealing that the performance of the VOC assignment is equivalent to a classification by chance.

To deal with this, a second metagenomic approach was implemented using an ASV-like calling strategy. A 
custom database of SARS-CoV-2 genomes sequences was created to assign the taxonomy of the ASV sequences 
into VOCs or Non-VOC genomes. During the standardization, it was determined that the identification of a 
VOC was possible if at least three ASV were mapped to the VOC genome. Thus, the presence of a specific VOC 
was determined if the number of total mapping ASVs was ≥ 3. This is in line with the profile of mutations for 
each VOC, in which a few mutations are shared and most of them are exclusive (Fig. 3).

According to Table 3, the ASV-inference pipeline was able to correctly classify all samples with two lineages 
but one (sample D13) into the VOC classes. In the same way, all the samples with a single genotype were cor-
rectly classified. As presented in the Supplementary file, the classification of the VOC class is consistent among 
the iterations for all the samples when the pipeline was run 5 times to assess reproducibility. In the case of the 
misclassified sample D13, the combination was done using the Delta variant and a case of the B.1.1.519 lineage. 
Results of the 5 iterations predicted a Beta variant in the sample.

When the profile of mutations was compared, 3 mutations (ORF1b-P314L, ORF8-S84L, and S-D614G) are 
shared by Beta, Delta, and B.1.1.519 genotypes, which made the ASV-like inference to incorrectly assign the 
subsequences to the Beta variant. However, this phenomenon was not a drawback for the rest of the cases.

The metrics for the ASV-like calling strategy showed an accuracy value of 96.2% and AUC of 0.964 (Fig. 2), 
indicating an outstanding performance in the identification of the lineages for cases with one or two SARS-
CoV-2 variants. Based on these results, the ASV-like calling is a suitable strategy to identify co-infections with 
two SARS-CoV-2 VOCs.

Finally, we investigated the possible occurrence of SARS-CoV co-infections in Costa using the ASV-like 
approach. We found that none of the 1021 samples were identified with concomitant infections with distinct 
VOCs in the period October 12th–December 21th 2021.

Discussion
The SARS-CoV-2 genome has rapidly evolved into multiple variants due to not only the widespread in diverse 
human populations but also the increase in the mutation rate during 20213. In this context, the interaction of 
multiple viral sequences with each other during simultaneous infection can lead to potential differences in 
epidemiological behavior11. Thus, it is vital to reveal the frequency of co-infection events, how often it occurs in 
the population as well as and the exact composition of lineages13.

Here we presented an analysis of co-infection by divergent VOCs of the SARS-CoV-2 virus, in which samples 
with two distinct genotypes were analyzed using a metagenomic approach by ASV inference. Similar to another 
work by13, we assumed that the existence of specific lineage-defined feature mutations of the lineages in viral 
quasi-species achieves the identification of co-infection events (Fig. 3). A custom SARS-CoV-2 database led to 
identifying specific ASV belonging to VOCs, as well as non-specific ASV found in other genotypes. The metrics 
of the classification (VOCs classes) revealed a high performance of the pipeline with an accuracy of 96.2% and 
AUC of 0.964. This completely contrasted with the metagenome assembly approach, in which the classification 
was suggested to be by chance (accuracy = 46.2% and AUC = 0.500). The poor performance of the metagenome 
assembly relies on the generation of a single consensus sequence even for cases with two distinct genomes, in 

https://www.r-project.org/
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which a mutation of a genotype can be overshadowed by the presence of the non-mutated nucleotide in the other 
sequence, creating an incorrect profile of few mutations with an erroneous VOC class assignment (Table 2).

Besides, previous to the arrival of the omicron variant by November 2021, the first version of this work was 
prepared and the accuracy was reported at 96.3% for the ASV-like approach and 57.7% for the whole-genome 
assembly (more data not shown). This update demonstrated the versatility of our approach to incorporate new 
genotypes to infer co-infections with distinct VOCs.

Although the pipeline can be adapted to identify co-infection with more than 2 genotypes, the relevance of 
implementing the analysis with three 3 genotypes is questionable due to the very low incidence of co-infection 
with 2 genotypes (almost impossible with 3) and the unnecessary negative impact on the performance (muta-
tions among three lineages have more chance to create a mutation profile close to another single lineage). Thus, 
we only considered combinations with two divergent genotypes.

Also, the ASV approach was originally designed to identify distinct bacteria using 16S rRNA. By adapting the 
database, this method is completely suitable to identify co-infections with other pathogens. However, for distinct 
microorganisms, metagenome assembly is a better strategy to identify dual infection. In our case, the SARS-
CoV-2 genotypes are not different enough to use the metagenome assembly to identify concomitant infections.

Regarding sequencing data, the high reliability of Illumina technology has been reported to keep the genomic 
evidence of co-infections or within-host variations13, which has motivated its use for co-infection studies, includ-
ing this work. General approaches to identify the concomitant presence of organisms can be done using: (i) 
metagenomics strategies, or (ii) strategies based on the reconstruction of haplotypes by mapping. For SARS-
CoV-2 co-infections, the last has been the selected method due to the availability of ready-to-use bioinformatic 
tools26–28. Despite this, viral haplotype reconstruction programs usually perform poorly for sequences with low 
divergence or rare haplotypes29, which represent a possible limitation for the use among samples with simulta-
neous SARS-CoV-2 genomes. Because of this, the assembly of single genomes and the subsequent combination 
into simulated co-infection data were preferred here not only for the developed pipeline but also to create the 
ground-truth dataset rather than the comparison to a haplotype caller.

Using analysis of haplotype reconstruction, some studies have reported events of co-infection caused by 
the occurrence of two distinct genotypes. In 2020, 19 cases of co-infections were identified in Iraq11. Up to 
8% of co-infections were informed in a study from Singapore2, while at least 5% was estimated in the United 
Arab Emirates12. In Brazil, a co-infection was detected with local lineages in early 202110. By September 2021, 

Table 3.   Genome classification using an ASV inference strategy with sequencing data for one or two variants 
of the SARS-CoV-2 virus (PERF: performance of the VOC prediction regarding the expected VOC class).

Samples Expected genotype Predicted genotype

PERFType ID Expected lineage Expected VOC class Score by iterations Predicted VOC class

Single lineage

S1 B.1.1.389 Non-VOC 5 Non-VOC ✔

S2 C.36.3 Non-VOC 5 Non-VOC ✔

S3 P.2 Non-VOC 5 Non-VOC ✔

S4 B.1.625 Non-VOC 5 Non-VOC ✔

S5 B.1.429 Non-VOC 5 Non-VOC ✔

S6 B.1.525 Non-VOC 5 Non-VOC ✔

S7 B.1.1.519 Non-VOC 5 Non-VOC ✔

S8 B.1.1.7 Alpha 5 Alpha ✔

S9 B.1.351 Beta 5 Beta ✔

S10 P.1 Gamma 5 Gamma ✔

S11 AY.113 Delta 5 Delta ✔

S12 B.1.1.529 Omicron 5 Omicron ✔

Double lineage

D1 (S4 + S6) B.1.625 + B.1.525 Non-VOC (+ Non-
VOC) 5 Non-VOC (+ Non-

VOC) ✔

D2 (S1 + S8) B.1.1.389 + B.1.1.7 Alpha (+ Non-VOC) 4 Alpha (+ Non-VOC) ✔

D3 (S8 + S9) B.1.1.7 + B.1.351 Alpha + Beta 3 Alpha + Beta ✔

D4 (S8 + S10) B.1.1.7 + P.1 Alpha + Gamma 4 Alpha + Gamma ✔

D5 (S8 + S11) AY.113 + B.1.1.7 Alpha + Delta 4 Alpha + Delta ✔

D6 (S8 + S12) B.1.1.7 + B.1.1.529 Alpha + Omicron 5 Alpha + Omicron ✔

D7 (S9 + S11) AY.113 + B.1.351 Beta + Delta 5 Beta + Delta ✔

D8 (S9 + S10) P.1 + B.1.351 Beta + Gamma 5 Beta + Gamma ✔

D9 (S9 + S12) B.1.351 + B.1.1.529 Beta + Omicron 5 Beta + Omicron ✔

D10 (S11 + S10) AY.113 + P.1 Delta + Gamma 5 Delta + Gamma ✔

D11 (S10 + S12) P.1 + B.1.1.529 Gamma + Omicron 5 Gamma + Omicron ✔

D12 (S11 + S2) AY.113 + C.36.3 Delta (+ Non-VOC) 5 Delta (+ Non-VOC) ✔

D13 (S7 + S11) AY.113 + B.1.1.519 Delta (+ Non-VOC) 0 Beta ✘

D14 (S11 + S12) AY.113 + B.1.1.529 Delta + Omicron 5 Delta + Omicron ✔
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Figure 2.   Performance of two distinct pipelines to identify co-infection by SARS-CoV-2 VOCs. Metrics for the 
whole-genome assembly, with AUC = 0.5 and accuracy = 46.2%, suggest no discrimination of the VOCs among 
samples, with a misclassification of all the cases with two variants. In contrast, the ASV-like inference was able 
to correctly identify VOCs in cases with one or two variants, with an outstanding performance according to the 
AUC = 0.964 and accuracy = 96.2%. FPR: False Positive Rate.
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the genotypes while most of them are exclusive to each genome, making it possible to map and track genome 
subsequences to identify the concomitant presence of VOCs.
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a study analyzed 30,806 raw sequence datasets, in which about 2.6% were identified as co-infections with high 
confidence3.

To our knowledge, only one study has implemented a specific pipeline to identify co-infections by distinct 
SARS-CoV-2 genotypes, which used a strategy with an intra-host variant calling analysis and a hypergeometric 
distribution method13. Using sequencing data of COVID-19 cases from the United States of America, the authors 
recognized only 53 out of 29,993 samples (0.18%) as co-infection cases. A single case was reported with three 
lineages, while the other 52 were identified with two genotypes. These results regarding the frequency are in line 
with our results on the possible occurrence of co-infections in Costa Rica. None of the 1021 analyzed cases were 
identified as a concomitant presence of VOCs. Due to the frequency of co-infections, which is suggested to be 
very low, the analyzed cases could be not enough to identify at least a single case in this country. In addition, 
other factors affecting this result are the very few sequenced samples in comparison to the diagnosed cases (0.4% 
in Costa Rica and 0.41% in Latin America according to GISAID database), the inability to clinically differentiate 
cases of co-infection (see later), as well as the rapid displacement of circulating lineages by VOCs which have 
higher transmissibility. However, with the co-dominance of Delta and Omicron during the transition between 
the years 2021 and 202230, the reports of co-infections could be increased in the coming months. Thereby, this 
work could be a useful tool to investigate the occurrence of this phenomenon.

Regarding the biological meaning, the report of co-infections is of concern because other studies have dem-
onstrated that this phenomenon can contribute to the recombination of RNA viruses1,8,13. Product of the recom-
bination processes, the new virions may acquire different pathogenic properties1 and it might impact the clinical 
presentation of the disease into more severe symptoms13. In detail, co-infections can impact viral evolution 
by inducing recombination and possibly generating new genotypes. In this scenario, new features regarding 
transmission, vaccine effectiveness, or clinical outcome can be also triggered. Thus, the contribution of this 
study is mainly to support genomic surveillance and eventually provide an epidemiological context to explain 
the possible origin of recombinants. This is an eventual first step to making a decision regarding additional 
boosters or developing new vaccines based on the genome architecture, as it has been previously reported for 
mutation-based changes.

Regarding the clinical outcome, cases with a co-infection with distinct SARS-CoV-2 genotypes have been 
reported with the same symptoms as other COVID-19 patients2,10. However, a single report of co-infection, in 
a young female patient without co-morbidities that presented a severe COVID-19, suggested the concomitant 
infection as responsible for the clinical presentation9. More studies and updated statistics are required to establish 
the relevance of co-infections in terms of severity and mortality of COVID-19 disease11. Also, the detection of 
possible cases of co-infections is another factor to consider in the interaction between the immune system and 
SARS-CoV-2 mutations. It has been suggested that immunity driven by a specific SARS-CoV-2 genotype does 
not protect against another one but can instead lead to a more severe disease pattern9. However, the real immu-
nological implications of co-infections on the cellular or humoral levels are not well known10.

On the other hand, in this study some considerations and limitations are needed to take into account. First, 
the approach using ASV inference requires a custom database that needs to be built using sequences of genomes 
circulating locally, i.e., local genomic surveillance is a previous step to implement the pipeline. This includes 
the update of VOC sequences carrying new mutations (sublineages). Second, similar to the other approaches 
to identify co-infections, only co-infections with divergent sequences (VOCs in this case) can be identified. A 
test using co-infections with VOIs and VUMs was not able to identify concomitant sequences due to the low 
diversity, in which a poor performance was obtained during the genotype classification. Also, de novo intra-host 
mutation cannot be identified using this approach. This does not represent a drawback for this implementation 
because there is a very low probability of the de novo appearance of mutations corresponding exactly to all the 
feature mutations of the VOCs. If some de novo mutation was equal to a feature mutation, the ASV can be dis-
carded with the implementation of the threshold of the mapping ASVs, as we followed here. Finally, although 
co-infection with SARS-CoV-2 and other pathogens have been reported, such as Influenza or bacterial agents31,32, 
and this pipeline could be adapted to identify them, a metagenome assembly could be a suitable strategy rather 
this approach.

Altogether, this analysis represents a new effort to track the SARS-CoV-2 genotypes circulating in Costa Rica, 
which are complementary to our other local studies for genomic surveillance7,33 as well as the identification of 
clinical patterns of COVID-19 patients34. Concomitant infection with distinct viral genotypes can lead to the 
generation of SARS-CoV-2 variants with possible new properties in terms of transmission, severity, mortality, 
or vaccine effectiveness. This remarks the relevance to continue with the surveillance of the dynamics of the 
pandemic including origin and tracking, genotyping, and clinical features of the infections worldwide, which 
can eventually arise new insights about co-infection events.

Conclusions
In conclusion, we developed a metagenomic pipeline based on ASV-like inference for the identification of 
co-infection with distinct SARS-CoV-2 VOCs, in which a 96.2% of accuracy was achieved. This performance 
was outstanding in comparison to the whole-genome assembly approach in which a resolution by chance was 
suggested with an accuracy of 46.2%. The custom SARS-CoV-2 database used for the ASV-like inference can be 
updated according to the appearance of new VOCs to track co-infections with eventual new genotypes. In addi-
tion, the application of the ASV-like approach to all the 1021 sequenced samples from Costa Rica in the period 
October 12th–December 21th 2021 found that none corresponded to co-infections with VOCs. Although a small 
percentage of COVID-19 cases worldwide are reported as co-infections with different SARS-CoV-2 lineages, 
the spread of more transmissible variants and the possibility of recombination to induce new genotypes remark 
the need for developing tools and pipelines to track concomitant infections with SARS-CoV-2 variants. Thus, 
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this work represents another piece in the process of the genomic surveillance of the COVID-19 pandemic in 
Costa Rica and worldwide.

Data availability
Script and the custom database used in this work are available at https://​github.​com/​josem​olina6/​sars-​cov-2-​
co-​infec​tions.

Received: 23 February 2022; Accepted: 3 May 2022

References
	 1.	 Gouvêa dos Santos, W. Co-infection, re-infection and genetic evolution of SARS-CoV-2: Implications for the COVID-19 pandemic 

control. Comment. dos Santos 2(3), 56–61 (2021).
	 2.	 Young, B. E. et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory 

response: An observational cohort study. Lancet 396(10251), 603–611 (2020).
	 3.	 Schrörs, B. et al. Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening 

of virus isolates. PLoS ONE 16(9), e0249254 (2021).
	 4.	 C. C.-19 R. Team. SARS-CoV-2 B.1.1.529 (Omicron) variant—United States, December 1–8, 2021. Morb. Mortal. Wkly. Rep. 70(50), 

1731 (2021).
	 5.	 Bentley, E. G. et al. SARS-CoV-2 Omicron-B.1.1.529 Variant leads to less severe disease than Pango B and Delta variants strains 

in a mouse model of severe COVID-19. bioRxiv. 1–15. https://​doi.​org/​10.​1101/​2021.​12.​26.​474085 (2021, In Press).
	 6.	 Graham, M. S. et al. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: 

An ecological study. Lancet Public Health 6(5), e335–e345 (2021).
	 7.	 Molina-Mora, J. A. Insights into the mutation T1117I in the spike and the lineage B.1.1.389 of SARS-CoV-2 circulating in Costa 

Rica. Gene Rep. 27, 1–24 (2021).
	 8.	 Banerjee, A., Mossman, K. & Grandvaux, N. Molecular determinants of SARS-CoV-2 variants. Trends Microbiol. 29(10), 871–873 

(2021).
	 9.	 Pedro, N. et al. Dynamics of a dual SARS-CoV-2 lineage co-infection on a prolonged viral shedding COVID-19 case: Insights into 

clinical severity and disease duration. Microorganisms 9(2), 300 (2021).
	10.	 Francisco, R. D. S. et al. Pervasive transmission of E484K and emergence of VUI-NP13L with evidence of SARS-CoV-2 co-infection 

events by two different lineages in Rio Grande do Sul, Brazil. Virus Res. 296, 198345 (2021).
	11.	 Hashim, H. O. et al. Infection with different strains of SARS-CoV-2 in patients with COVID-19. Arch. Biol. Sci. 72(4), 575–585 

(2020).
	12.	 Liu, R. et al. Genomic epidemiology of SARS-CoV-2 in the UAE reveals novel virus mutation, patterns of co-infection and tissue 

specific host immune response. Sci. Rep. 11(1), 1–14 (2021).
	13.	 Zhou, H.-Y. et al. Genomic evidence for divergent co-infections of SARS-CoV-2 lineages. bioRxiv. 1–16. https://​doi.​org/​10.​1101/​

2021.​09.​03.​458951 (2021, In Press).
	14.	 P. A. H. O. PAHO. Laboratory Guidelines for the Detection and Diagnosis of COVID-19 Virus Infection. (PAHO, 2020).
	15.	 Resende, P. C. et al. SARS-CoV-2 genomes recovered by long amplicon tiling multiplex approach using nanopore sequencing and 

applicable to other sequencing platforms. bioRxiv. 1–11 (2020, in press).
	16.	 Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data 2010. https://​www.​bioin​forma​tics.​babra​ham.​ac.​

uk/​proje​cts/​fastqc/ (Accessed 10 Apr 2018).
	17.	 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–

2120 (2014).
	18.	 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14), 1754–1760 

(2009).
	19.	 Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv:​1207.​3907 [q-bio.GN] (2012).
	20.	 Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the 

genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2), 80–92 (2012).
	21.	 Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex 

metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10), 1674–1676 (2015).
	22.	 Molina-Mora, J.-A., Campos-Sánchez, R., Rodríguez, C., Shi, L. & García, F. High quality 3C de novo assembly and annotation of 

a multidrug resistant ST-111 Pseudomonas aeruginosa genome: Benchmark of hybrid and non-hybrid assemblers. Sci. Rep. 10(1), 
1392 (2020).

	23.	 Molina-Mora, J. A. & Garcia, F. The 3C criterion: Contiguity, completeness and correctness to assess de novo genome assemblies. 
BMC Bioinform. Bioinform. Algorithms Appl. 21(S20: O7), 5 (2020).

	24.	 Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
	25.	 Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: Visualizing classifier performance in R. Bioinformatics 21(20), 

3940–3941 (2005).
	26.	 Leviyang, S., Griva, I., Ita, S. & Johnson, W. E. A penalized regression approach to haplotype reconstruction of viral populations 

arising in early HIV/SIV infection. Bioinformatics 33(16), 2455 (2017).
	27.	 Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N. & Roth, V. HIV haplotype inference using a propagating dirichlet process 

mixture model. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(1), 182–191 (2014).
	28.	 Prosperi, M. C. F. & Salemi, M. QuRe: Software for viral quasispecies reconstruction from next-generation sequencing data. 

Bioinformatics 28(1), 132–133 (2012).
	29.	 Schirmer, M., Sloan, W. T. & Quince, C. Benchmarking of viral haplotype reconstruction programmes: An overview of the capaci-

ties and limitations of currently available programmes. Brief. Bioinform. 15(3), 431–442 (2014).
	30.	 GISAID. GISAID—Clade and lineage nomenclature aids in genomic epidemiology of active hCoV-19 viruses. (GISAID, 2021) 

https://​www.​gisaid.​org/​refer​ences/​state​ments-​clari​ficat​ions/​clade-​and-​linea​ge-​nomen​clatu​re-​aids-​in-​genom​ic-​epide​miolo​gy-​of-​
active-​hcov-​19-​virus​es/. (Accessed 18 Nov 2020).

	31.	 Dadashi, M. et al. COVID-19 and influenza co-infection: A systematic review and meta-analysis. Front. Med. 8, 681469 (2021).
	32.	 Musuuza, J. S. et al. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A sys-

tematic review and meta-analysis. PLoS ONE 16(5), e0251170 (2021).
	33.	 Molina-Mora, J. A. et al. SARS-CoV-2 genomic surveillance in Costa Rica: Evidence of a divergent population and an increased 

detection of a spike T1117I mutation. Infect. Genet. Evol. 92, 104872 (2021).
	34.	 Molina-Mora, J. A. et al. Clinical profiles at the time of diagnosis of COVID-19 in Costa Rica during the pre-vaccination period 

using a machine learning approach. medRxiv. 1–23. https://​doi.​org/​10.​1101/​2021.​06.​18.​21259​157 (2021, In Press).

https://github.com/josemolina6/sars-cov-2-co-infections
https://github.com/josemolina6/sars-cov-2-co-infections
https://doi.org/10.1101/2021.12.26.474085
https://doi.org/10.1101/2021.09.03.458951
https://doi.org/10.1101/2021.09.03.458951
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://arxiv.org/abs/1207.3907
https://www.gisaid.org/references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/
https://www.gisaid.org/references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/
https://doi.org/10.1101/2021.06.18.21259157


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9377  | https://doi.org/10.1038/s41598-022-13113-4

www.nature.com/scientificreports/

Acknowledgements
We are grateful to clinicians, microbiologists, and other personnel of the public (Caja Costarricense de Seguro 
Social CCSS) and private clinical laboratories for the samples of confirmed cases of COVID-19. We also thank 
Meriyeins Sibaja, Carlos Martínez and Daniel Ulate for their participation in distinct activities associated with 
the project.

Author contributions
J.A.M.M., E.C.L and F.D.M. participated in the conception and design of the study. E.C.L., M.C.O., and F.D.M. 
were involved in sample processing. J.A.M.M. implemented and standardized the bioinformatics pipelines. 
J.A.M.M. and E.C.R processed all data using the pipelines. J.A.M.M., E.C.L., and F.D.M. participated in the inter-
pretation of the results. J.A.M.M. drafted the manuscript. All authors reviewed and approved the final manuscript.

Funding
This work was funded by Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA) 
and Vicerrectoría de Investigación–Universidad de Costa Rica, with the Project “C0196 Protocolo bioinformático 
y de inteligencia artificial para el apoyo de la vigilancia epidemiológica basada en laboratorio del virus SARS-
CoV-2 mediante la identificación de patrones genómicos y clínico-demográficos en Costa Rica (2020–2022)”.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​13113-4.

Correspondence and requests for materials should be addressed to J.A.M.-M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-13113-4
https://doi.org/10.1038/s41598-022-13113-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Metagenomic pipeline for identifying co-infections among distinct SARS-CoV-2 variants of concern: study cases from Alpha to Omicron
	Methods
	General strategy. 
	Clinical isolates and genome sequencing. 
	Pre-processing and ground-truth genotype. 
	Whole-genome (metagenome) assembly. 
	ASV-like inference. 
	Custom SARS-CoV-2 database. 

	Assessment of the pipelines performance. 
	Estimation of occurrence of co-infections in Costa Rica. 
	Ethical approval and consent to participate. 

	Results
	Discussion
	Conclusions
	References
	Acknowledgements


