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Abstract: In this study, we aimed to develop a deep learning model for identifying bacterial keratitis
(BK) and fungal keratitis (FK) by using slit-lamp images. We retrospectively collected slit-lamp
images of patients with culture-proven microbial keratitis between 1 January 2010 and 31 December
2019 from two medical centers in Taiwan. We constructed a deep learning algorithm consisting of
a segmentation model for cropping cornea images and a classification model that applies different
convolutional neural networks (CNNs) to differentiate between FK and BK. The CNNs included
DenseNet121, DenseNet161, DenseNet169, DenseNet201, EfficientNetB3, InceptionV3, ResNet101,
and ResNet50. The model performance was evaluated and presented as the area under the curve
(AUC) of the receiver operating characteristic curves. A gradient-weighted class activation mapping
technique was used to plot the heat map of the model. By using 1330 images from 580 patients, the
deep learning algorithm achieved the highest average accuracy of 80.0%. Using different CNNs, the
diagnostic accuracy for BK ranged from 79.6% to 95.9%, and that for FK ranged from 26.3% to 65.8%.
The CNN of DenseNet161 showed the best model performance, with an AUC of 0.85 for both BK and
FK. The heat maps revealed that the model was able to identify the corneal infiltrations. The model
showed a better diagnostic accuracy than the previously reported diagnostic performance of both
general ophthalmologists and corneal specialists.

Keywords: deep learning; infectious keratitis; cropped corneal image; slit-lamp images

1. Introduction

Microbial keratitis (MK) is a serious corneal disease that can lead to reduced vision
and even blindness [1,2]. The annual incidence of MK as a cause of monocular blindness
ranges from 1.5 to 2 million cases worldwide [3]. It is considered an epidemic, partic-
ularly within South Asia, Southeast Asia, and East Asia, and in regions where fungal
keratitis (FK) accounts for more than 50% of all MK cases [4]. The management of FK
is challenging and may require surgical intervention, and FK has been reported to have
poor visual outcomes [5,6]. Hence, early diagnosis is essential for avoiding devastating
vision-threatening outcomes.

However, the early diagnosis of FK is also challenging. Although some predisposing
factors and clinical features could lead ophthalmologists to suspect fungal infection [7],
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culture-based methods, which are laborious and time consuming, remain the cornerstone
of diagnosis [8]. The time gap between patient presentation and diagnosis may lead
the patient to miss the optimal time for treatment initiation, resulting in deep fungal
invasion. Therefore, ophthalmologists may start antifungal medication based on distinctive
lesions of each pathogenic microorganism identified on the cornea. Previous studies have
reported that with an image-only diagnosis, general ophthalmologists are only able to
correctly distinguish FK from bacterial keratitis (BK) 49.3–67.1% of the time [9,10], and this
percentage ranges from 66.0% to 75.9% among corneal specialists [10,11].

Deep learning algorithms with artificial intelligence (AI) have demonstrated an ex-
ceptional performance at detecting various ocular conditions through different image
modalities, such as fundus photos for diabetic retinopathy [12], age-related macular de-
generation [13], retinal nerve fiber layer thickness and visual field for glaucoma [14], and
topography for keratoconus [15]. AI appears to be a promising tool for first-line medical
care, especially in scenarios in which ophthalmologists are not readily available. How-
ever, only limited studies have applied AI for the diagnosis of FK by using slit-lamp
images, [9,10] and the accuracy was approximately 69% [10]. In this study, we aimed to
develop a deep learning model that uses cropped slit-lamp images and to improve the
prediction in differentiating BK and FK.

2. Materials and Methods
2.1. Identification of Microbial Keratitis

Patients with culture-proven MK who presented to Chang Gung Memorial Hospital,
Linkou Medical Center, and Kaohsiung Medical Center in Taiwan between 1 January 2010
and 31 December 2019 were recruited. MK diagnosis was corroborated by the clinical man-
ifestations of corneal infection and pathogen identification of the sample from the infection
site. Corneal scrapings obtained from patients with presumed MK underwent smear and
culture examinations for the detection of bacteria, mycobacteria, and fungi through the
use of standard microbiological culture techniques [16,17], including blood and chocolate
agar (Nippon Becton Dickinson Co. LTD, Akasaka Garden City, Japan), inhibitory mold
agar (IMA) and IMA supplemented with chloramphenicol and gentamicin (Creative CMP®

New Taipei City, Taiwan), Lowenstein–Jensen agar slants (Creative CMP® New Taipei
City, Taiwan), and thioglycolate broth (BioStar, Taichung City, Taiwan). Cultures were
defined as positive if microbial growth was observed on two media, microbial elements
were observed in smears and growth on one medium, or confluent microbial growth was
observed on one medium.

2.2. Exclusion Criteria

Patients were excluded if they had mixed bacterial and fungal infections; corneal per-
foration; no documented slit-lamp images; poor-quality or fluorescein-staining images; a
history of ocular surface surgery, such as penetrating keratoplasty, and amniotic membrane
transplantation; or the presence of other corneal diseases, such as viral keratitis, Acan-
thamoeba keratitis, marginal keratitis, corneal opacity, chemical burn, Stevens–Johnson
syndrome, mucous membrane cicatricial pemphigoid, or bullous keratopathy.

2.3. Image Collection

We obtained slit-lamp images from two centers by using the same standard procedure
certified by ophthalmic technicians. Images from Linkou Medical Center were captured
with a Canon EOS 7D camera mounted on Haag-Streit BX900 slit-lamp microscopy, and
images from Kaohsiung Medical Center were captured with a Nikon D100 camera mounted
on a Topcon SL-D8 slit-lamp biomicroscope (before May 2015) and Canon EOS 7D camera
mounted on a Haag-Streit BX900 slit-lamp microscope (after May 2015) [10]. Images with
white light illumination without slit-beam enhancement from each patient were used for
image classification.
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2.4. Algorithm Architecture

The algorithm architecture is illustrated in Figure 1. The algorithm was divided into
two main parts, namely the segmentation model and classification model. We trained
the segmentation model by using U square Net (U2 Net) to crop the image of the cornea
(sample in Figure 2). The U2 Net model performed better than the U-net and U-net++
models did because it could access more information and preserve complete features of
the cornea [18]. All of the images were then resized to a resolution of 512 × 512 × 3 before
being input into the U2 Net model. We also normalized each image into (0,1) and then
augmented the image by subtracting 0.485 and dividing by 0.299, which enabled the model
to converge more quickly and steadily. A total of 100 patients were randomly selected
and divided into training, validation, and testing sets, which consisted of 70 patients
(183 images), 20 patients (45 images), and 10 patients (15 images), respectively. The U2 Net
Intersection over Union model achieved accuracies of 93% on the validation set and 95%
on the independent testing set. Furthermore, the trained U2 Net model was applied to a
total of 580 patients (1330 images).
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Figure 2. Raw slit-lamp images with white illumination (A) and cropped corneal images (B) excluding
the eyelid and the conjunctival area.

In the classification model, we used five-fold cross-validation to divide the cropped
images from the aforementioned U2 Net segmentation model. For data randomization,
we set different seeds to simulate the same sequence of number randomization in each
seed. We categorized the images in the data set according to the patient. The whole data
set was then split into six parts; one-sixth of the data set was reserved for testing, and the
remaining five parts were used for cross-validation training. For each patient, the data
were separated into training, validation, and testing data sets at a ratio of 4:1:1. We also
used image augmentation approaches including random brightness adjustment, saturation
adjustment, contrast adjustment, horizontal flipping, rotation, and normalization, as shown
in Supplementary Figure S1.

For the classification model, we applied various convolutional neural networks (CNNs),
including ResNet50, ResNet101, DenseNet121, DenseNet161, DenseNet169, DenseNet201,
InceptionV3, and EfficientNetB3. DenseNet161 was used as the basis of our classification
model, as shown in Figure 1, with preweights from ImageNet Large Scale Visual Recog-
nition Competition [19,20]. Age and sex were also input into fully connected layers and
yielded two output vectors; the output vectors were then concatenated into the vectors pro-
duced from the global average pooling layer [21]. The model was trained up to 100 epochs
and established on the basis of maximum accuracy and minimum loss in the validation set.

2.5. Performance Interpretation and Statistics

For visualizing heat maps, the gradient-weighted class activation mapping (Grad-
CAM) technique [22], in which the model’s attention scores are computed according to the
calculation of the gradients of the model’s output and the last convolutional layer, was
used to plot the heat map of the model. Receiver operating characteristic (ROC) curves
were illustrated to discriminate between BK and FK, and the area under the curve (AUC)
was measured. From the ROC curve, Youden’s index was used to obtain the sensitivity
and the specificity. The accuracy of the model was also calculated. Statistical analysis was
performed with IBM SPSS Statistics Version 23 (SPSS, Inc., Chicago, IL, USA).

3. Results
3.1. Patient Classification and Characteristics

A total of 580 patients (420 male and 160 female) with 1330 images (with only one eye
involved) were included. The average patient age was 55.4 years. According to the culture
results, 346 patients (824 images) were classified as having BK and 234 patients (506 images)
were classified as having FK. The final data set consisted of 388 patients (904 images) for
training, 96 patients (212 images) for validation, and 96 patients (214 images) for testing.
The distribution and characteristics of the patients are shown in Table 1.
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Table 1. Distribution of patients in the training, validation, and testing datasets.

Characteristics Total (n = 580) Training (n = 388) Validation (n = 96) Testing (n = 96)

Male, n (%) 420 (72.4) 278 (71.6) 74 (77.1) 68 (70.8)
Age, years 1 55.4 ± 20.2 53.6 ± 19.7 62.1 ± 20.0 55.8 ± 21.2
Patients, n (%)/Photos, n

Bacteria 346 (59.7)/824 231(39.8)/562 60 (10.3)/134 55 (9.5)/128
Fungus 234 (40.3)/506 157(27.1)/342 36 (6.2)/78 41 (7.1)/86

1 Continuous variables presented as the mean ± standard deviation, n: number.

3.2. Performance of Different Models

We evaluated the performance of the models by using the validation and testing
data sets; the average accuracy was approximately 80%. Details regarding the accuracy,
sensitivity, and specificity of all of the models are presented in Table 2. The rate of diagnostic
accuracy for BK ranged from 79.6% to 95.9%, and that for FK ranged from 26.3% to 65.8%.
DenseNets, EfficientNets, and InceptionV3 exhibited a similar performance; the average
accuracy ranged from approximately 76% to 79%, and the diagnostic rates for FK were all
between 56% and 66%. By contrast, ResNet achieved a diagnostic rate of over 90% for BK
but below 50% for FK.

Table 2. Performance of different deep learning models.

Model Validation Testing Average Accuracy BK FK
Sensitivity Specificity PPV NPV

(95% Confidence Interval)

DenseNet121 79.7 77.9 78.8 85.0 59.6 59.7
(45.8–72.4)

85.0
(78.2–90.4)

60.7
(49.9–70.6)

84.5
(79.7–88.2)

DenseNet161 77.5 79.7 78.6 87.3 65.8 65.8
(41.5–65.8)

87.3
(86.0–95.3)

74.0
(65.1–82.9)

82.4
(74.9–82.4)

DenseNet169 83.6 75.0 79.3 79.6 63.2 63.2
(49.34–75.6)

79.6
(72.2–85.8)

54.6
(45.2–63.6)

84.8
(79.7–88.8)

DenseNet201 78.0 78.9 78.4 87.8 56.1 56.1
(42.4–69.3)

87.8
(81.3–92.6)

64.0
(52.1–74.4)

83.8
(79.3–87.4)

EfficientNetB3 77.8 74.3 76.1 85.2 58.1 58.1
(47.0–68.7)

85.2
(77.8–90.8)

72.5
(62.6–80.5)

75.2
(70.0–79.7)

InceptionV3 79.7 78.0 78.9 89.1 61.6 61.6
(50.5–71.9)

89.1
(82.3–93.9)

79.1
(69.2–86.5)

77.6
(72.4–82.0)

ResNet101 79.2 80.9 80.0 93.2 49.1 49.1
(35.6–62.7)

93.2
(87.9–96.7)

73.7
(59.3–84.3)

82.5
(78.5–86.0)

ResNet50 78.2 76.5 77.3 95.9 26.3 26.3
(15.5–39.7)

95.9
(91.3–98.5)

71.4
(50.5–86.0)

77.1
(74.1–79.7)

BK—bacterial keratitis; FK—fungal keratitis; PPV—positive predictive value; NPV—negative predictive value.

DenseNet161 achieved the best performance in the prediction of BK and FK, with an
AUC of the ROC curve of 0.85 for both BK and FK (Figure 3). The diagnostic accuracy for
BK was 87.3%, and that for FK was 65.8%. A sample heat map generated with Grad-CAM
for model visualization is presented in Figure 4. With the cropped corneal images, the
model was able to identify the corneal infiltrations and focus on the pathology of MK while
ignoring most of the reflected light on the cornea.
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4. Discussion

In this study, we developed a deep learning model to differentiate MK into BK and
FK. The model using cropped slit-lamp images of the cornea with white light illumina-
tion achieved an AUC of 0.85. The accuracy approached 80%, exceeding that of general
ophthalmologists and is comparable to that of corneal specialists [9,10].

Early diagnosis of FK is important but challenging. No pathognomonic features can
wholly support a physician’s diagnosis, and delayed diagnosis can increase the difficulty
of FK management, often necessitating surgical intervention and resulting in poor visual
outcomes [5]. Culture-based methods are the current cornerstone for FK diagnosis; how-
ever, a time lag exists between patient presentation and diagnosis. Dalmon et al. reported
that the clinical signs of BK and FK can be used to identify their causative organisms. In
their study, 15 corneal specialists assessed 80 slit-lamp images and were able to correctly
differentiate between BK and FK 66% of the time [11].

Few studies have applied AI and deep learning models for FK diagnosis by using
slit-lamp images. Kuo et al. developed a slit-lamp image–based deep learning model for FK
diagnosis. Although their work yielded promising results, the average reported accuracy
was 69.4%, and the ROC curve was only 0.65; moreover, the diagnostic rate was lower than
the rate reported by corneal specialists in their own study [10]. According to their findings,
the wrong prediction of the model was due to incorrect focusing on the eyelid, eyelash,
and sclera [10]. The use of fluorescein-staining images was reported in only one study;
however, the researchers aimed to identify early corneal ulcers by recognizing point-like
patterns, which could not differentiate fungal ulcers that were difficult to manage from
other corneal ulcers [23]. Xu et al. reported diagnostic rates of 80% for MK, 53.3% for BK,
and 83.3% for FK by using a deep sequential-level learning model with slit-beam slit-lamp
images. The accuracy of their model exceeded that of ophthalmologists (49.3% ± 11.9%)
for over 120 test images [9]. However, the model required sophisticated patch sampling
over the cornea and the lesion, as well as the application of an additional sequential model,
constituting a relatively complicated approach.

In the present study, our model achieved an average accuracy of approximately 80%
and diagnostic accuracies of approximately 80% and 60% for BK and FK, respectively
(Table 2), and we used approximately 1.5-times more training images for BK than for FK. To
alleviate the incorrect focusing reported in the previous study [10], we used cropped corneal
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images to train the model. We also evaluated the performance using slit-lamp images
without cropping to train and test the model, but the average accuracy was decreased to
approximately 70% (data not shown), which was comparable with the previous study [10].
The decreased performance may be due to inappropriate focusing on the area without
clinically relevant features. (Figure 5).
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come a robust tool for assisting early FK diagnosis [24]. 

We also tested various models by using different CNNs in our study. All of the mod-
els had an average accuracy between 76% and 80%. Because we applied five-fold cross-
validation, both the validation and test data sets were independent of the training data 
set; thus, we also considered the validation accuracy and selected the best model based 
on the average validation and test performance. Among all of the models, DenseNet161 
achieved the highest FK diagnostic accuracy (65.8%) and a relatively high average accu-
racy (78.6%). DenseNet outperformed other CNNs because of its unique architectural de-
sign, which efficiently took the features of every layer and reused them in all the subse-
quent layers, thereby enhancing the model [20]. In comparison, ResNet101 had the highest 
average diagnostic accuracy (80.0%) for BK and FK; however, its diagnostic rate for FK 
was relatively low (49.1%). The diagnostic accuracy of ResNet101 also had the largest 
standard deviation, indicating that the results varied considerably between layers. 

From the heat maps generated with Grad-CAM, the model could identify the pathol-
ogy of infection and ignore artifacts from reflected light by using cropped images of the 
cornea alone. We noticed that when the slit-lamp images were not cropped, the model 
focused on regions outside the cornea, such as the eyelid or conjunctiva. Therefore, we 
cropped the cornea by training a U2 segmentation model. To differentiate FK from BK, the 
model focused on the feature of corneal infiltration. 

Figure 5. Sample images comparing slit-lamp with and without cropping. (A) Original slit-lamp im-
age without cropping in an eye with bacterial keratitis. (B) Heat map generated by the model with the
wrong prediction using the uncropped image showing the incorrect focus on the eyelid. (C) Cropped
image from the slit-lamp image. (D) Heat map generated by the model with correct prediction using
the cropped image showing the focus on corneal infiltration, corneal edema, and hypopyon.

The other previous model developed by Xu et al. achieved a higher model accuracy
and a better diagnostic rate for FK than our model did; their overall accuracy was enhanced
by the diagnostic accuracy for herpes simplex keratitis and other corneal diseases, which
reached 93.3% and 90.0%, respectively. Furthermore, approximately 1.3-times more training
images were used for FK than for BK. These results also indicate that the model accuracy
was strongly influenced by the number of training images used, which supports our
expectation that the integration of more images can help deep learning models become a
robust tool for assisting early FK diagnosis [24].

We also tested various models by using different CNNs in our study. All of the
models had an average accuracy between 76% and 80%. Because we applied five-fold
cross-validation, both the validation and test data sets were independent of the training
data set; thus, we also considered the validation accuracy and selected the best model based
on the average validation and test performance. Among all of the models, DenseNet161
achieved the highest FK diagnostic accuracy (65.8%) and a relatively high average accuracy
(78.6%). DenseNet outperformed other CNNs because of its unique architectural design,
which efficiently took the features of every layer and reused them in all the subsequent
layers, thereby enhancing the model [20]. In comparison, ResNet101 had the highest
average diagnostic accuracy (80.0%) for BK and FK; however, its diagnostic rate for FK was
relatively low (49.1%). The diagnostic accuracy of ResNet101 also had the largest standard
deviation, indicating that the results varied considerably between layers.

From the heat maps generated with Grad-CAM, the model could identify the pathol-
ogy of infection and ignore artifacts from reflected light by using cropped images of the
cornea alone. We noticed that when the slit-lamp images were not cropped, the model
focused on regions outside the cornea, such as the eyelid or conjunctiva. Therefore, we
cropped the cornea by training a U2 segmentation model. To differentiate FK from BK, the
model focused on the feature of corneal infiltration.
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In this study, we demonstrated the promising role of AI in the diagnosis of infectious
keratitis through the use of images only. Although microbiological culture remains the gold
standard for FK diagnosis, early clinical detection of potential FK could aid the subsequent
initiation of empirical treatment or referral management. Because most ophthalmolo-
gists and general practitioners may not have extensive experience in FK diagnosis, the
deep learning-based model may help clinicians improve their diagnostic accuracy and
subsequently initiate early and appropriate treatment. Moreover, AI can provide disease
screening or telemedicine in places where prompt medical or ophthalmologic evaluation
is infeasible.

This study has some limitations. First, we excluded patients with poor-quality slit-
lamp images before training the model. However, poor-quality images are encountered in
daily clinical practice, and the model performance may have thus been affected by factors
such as patient cooperation, light reflection in the images, and photographer experience.
Second, although corneal images are relatively easy to capture, environmental factors may
render their real-world application challenging [25]. Third, fewer FK than BK cases and
images were documented, which caused an imbalance in the data set used for training
the model to differentiate between BK and FK, and subsequently affected the model’s
accuracy [15]. Fourth, selection bias could occur in a referral medical center where a
proportion of patients have received medical treatment before presentation; treatments
could alter lesion features and affect the model’s learning process and performance. Fifth,
we did not perform patient matching between the training, validation, and testing groups;
thus, differences in clinical characteristics might also have affected the performance of the
model. Sixth, we did not integrate pertinent clinical information such as risk factors for
infectious keratitis, which are indispensable for clinical diagnosis. Finally, the model’s
function lies in assisting in the differentiation of FK from BK, and we did not subclassify
the dataset to different pathogens, which may have different clinical characteristics. Viral
and parasitic keratitis were not included in this study, either. In clinical practice, cultures
remain crucial for final species identification.

5. Conclusions

In conclusion, we developed a deep learning model for differentiating between FK and
BK. The accuracy of the model was better than that previously reported for both general
ophthalmologists and corneal specialists. Owing to the high accessibility of corneal images,
we anticipate that the inclusion of more images would help deep learning models become
a robust tool for aiding in early FK diagnosis.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/
10.3390/diagnostics11071246/s1, Figure S1: Examples of cropped corneal images processed through
augmentation, including (A) brightness adjustment, (B) saturation adjustment, (C) contrast adjust-
ment, (D) horizontal flipping, and (E) rotation.
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