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Abstract: Multi-class cancer classification based on microarray data is described. A generalized output-coding scheme based on One 
Versus One (OVO) combined with Latent Variable Model (LVM) is used. Results from the proposed One Versus One (OVO) output-
coding strategy is compared with the results obtained from the generalized One Versus All (OVA) method and their efficiencies of using 
them for multi-class tumor classification have been studied. This comparative study was done using two microarray gene expression 
data: Global Cancer Map (GCM) dataset and brain cancer (BC) dataset. Primary feature selection was based on fold change and penal-
ized t-statistics. Evaluation was conducted with varying feature numbers. The OVO coding strategy worked quite well with the BC data, 
while both OVO and OVA results seemed to be similar for the GCM data. The selection of output coding methods for combining binary 
classifiers for multi-class tumor classification depends on the number of tumor types considered, the discrepancies between the tumor 
samples used for training as well as the heterogeneity of expression within the cancer subtypes used as training data.
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Introduction
Improvements in cancer classification have been of 
great importance in cancer treatment. Conventional 
diagnostic methods are based on subjective evalua-
tion of the morphological appearance of the tissue 
sample, which requires a visible phenotype and a 
trained pathologist to interpret the view.1 It is diffi-
cult for those approaches to distinguish tumours with 
similar histo-pathological appearance (phenotype) 
but different clinical course and response to therapy. 
Since the advent of microarray technology, research-
ers have begun to use expression array analysis as a 
quantitative phenotyping tool. The potential advan-
tage of using arrays for phenotyping is that they 
provide a simultaneous quantitative measure of thou-
sands of parameters (gene expression levels) some of 
which are likely to have disease relevance. Due to the 
ability to quantify a large number of parameters, the 
use of expression array in diagnosing, promises both 
more accurate class prediction and the identification 
of subclasses that could not be defined by traditional 
methods. Even though this technology is promising 
in disease diagnosis, there are many huddles that the 
researcher should over come in order to achieve such 
goals. Since extraction of mRNA from a single cell 
is extremely difficult task, researchers are forced to 
pool tissues that seem to share the same fate or the 
same functions to obtain the adequate quantity of 
mRNA. This may imply that the expression levels 
calculated are the means of all the cells in the pool. 
Another issue is with the genetic variability of two 
individuals that will affect the expression of genes. 
The accumulation of noise to affect the outcome, at 
various points of experiment is yet another issue. 
Finally, the samples collected are small in numbers 
that results in high dimensional data with very large 
(thousands to tens of thousands) number of genes. 
The most fundamental problem that needs to solve 
the above mentioned caveats of the technology is 
to identify genes whose expression patterns either 
characterize a particular cell state or predict a certain 
forthcoming cell state. The first step in solving this 
problem is the development of tools for classifying 
samples according to their gene expression. Various 
clustering, classification and predicting techniques 
have been used to analyze and understand the gene 
expression data resulted from DNA microarray. Some 
recent applications include: molecular classification 

of acute leukaemia,1 classification of human cancer 
cell lines,2 Support Vector Machine (SVM) classifica-
tion of cancer samples.3

A challenge in predicting diagnostic categories 
using microarray data is that the number of genes is 
usually significantly greater than the number of tis-
sue samples available, and only a subset of the genes 
is relevant in distinguishing different classes. Selec-
tion of relevant genes for classification is known as 
feature selection. This has three main applications: 
first, the classification accuracy is often improved 
using a subset instead of the entire set of genes: sec-
ond, a small set of relevant genes is convenient for 
developing diagnostic tests; and third, these genes 
may lead to biologically interesting insights that are 
characteristics of the classes of interest. There have 
been many reports that address the classification and 
feature-selection problems.4 However, many of these 
methods are tailored towards binary classification in 
which there are only two classes. While majority of 
the cancer phenotypes have more than two subtypes, 
which leads us to a multi-class prediction scenario.

Multiple class prediction is more difficult than 
binary prediction because the classification algorithm 
has to consider a greater number of separation bound-
aries or relations.5,6 In binary classification, an algo-
rithm can make a decision boundary for only one of 
the classes; the other class is simply the complement. 
In multi-class classification problems, each class has 
to be defined explicitly. A multi-class problem can be 
decomposed into a set of binary problems and then 
combined to make a final multi-class prediction. The 
general term used for such procedures are called 
Ensemble methods.

The basic idea behind combining binary classifi-
ers is to decompose the multiclass problem into a set 
of easier and more accessible binary problems. The 
main advantage in this divide-and-conquer strategy is 
that any binary classification algorithm can be used. 
Besides choosing a decomposition scheme and a clas-
sifier for the binary decompositions, one also needs 
to devise a strategy for combining the binary classi-
fiers and providing a final prediction. The problems 
of combining binary classifiers have been studied in 
the computer science literature7,8 from a theoretical 
and empirical perspective. However, the literature 
is inconclusive, and the best method for combining 
binary classifiers for any particular problem is open.
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Standard modern approaches for combining binary 
classifiers can be stated in terms of what is called out-
put coding.9 The basic idea behind output coding can 
be illustrated by the following example: Given three 
classes, the first classifier may be trained to discrimi-
nate classes 1 and 2 from 3, the second classifier is 
trained to discriminate classes 2 and 3 from 1, and the 
third classifier is trained to discriminate classes 1 and 
3 from 2. Two common examples of output coding are 
the one-versus-all (OVA) and one-versus-one (OVO), 
also called all-pairs (AP) approaches. OVA and OVO 
combinations of binary classifiers have been applied 
to the analysis of DNA microarray data.10

In this paper, a generalized OVO combination 
of binary classifiers has been proposed and applied 
to multiclass tumour classification. Latent Variable 
Model (LVM) was chosen as the binary classifier, 
which has been successfully applied to microar-
ray classification. Results from the proposed OVO 
method was compared to that obtained using OVA 
strategy by applying them to two publicly available 
microarray gene expression datasets Two major cat-
egories of feature selection methods have been tested: 
fold change as well as penalized t-test.

Materials and Methods
Datasets
Two data sets have been used for this comparative 
study. The first dataset on which the proposed method 
applied was to the well-known GCM dataset.4 It con-
sisted of 144 and 54 training and test samples, respec-
tively, representing 14 tumor types. These tumor types 
included BR (breast adenocarcinoma), PR (prostate 
adenocarcinoma), LU (lung adenocarcinoma), CO 
(colorectal adenocarcinoma), LY (lymphoma), BL 
(bladder transitional cell carcinoma), ML (mela-
noma), UT (uterine adenocarcinoma), LE (leukemia), 
RE (renal cell carcinoma), PA (pancreatic adenocar-
cinoma), OV (ovarian adenocarcinoma), ME (pleural 
mesothelioma) and CNS (central nervous system). 

All samples were primary tumors with the exception 
of eight metastatic tumors in the test set. Expression 
data was generated using Affymetrix high-density oli-
gonucleotide microarrays containing 16,043 known 
human genes or expressed sequence tags (EST). The 
distribution of training and testing samples among 
the 14 classes is listed in Table 1. The expression 
intensities for each gene were calculated using 
Affymetrix GENECHIP analysis software.

The second dataset (BC)11 used in this study con-
tained 92 brain cancer expression profiles consisting 
of 7129 genes using an Affymetrix oligonucleotide 
array. These samples are grouped into 6 classes: 46 
samples of classic medulloblastoma (CMD); 14 of 
desmoplastic medulloblastoma (DMD); 10 of malig-
nant gliomas (MG); 10 of atypical teratoid/rhabdoid 
tumors (AR); 4 of normal cerebellum (NC) and 8 
of supratentorial primitive neuroectodermal tumors 
(PN). Ideally we should include all cancer and non-
cancer subtypes in the dataset for classification. After 
performing some preliminary studies, we found that 
the expression level of the NC group varies signifi-
cantly from the other cancer related sub-groups. With 
such large variability and the extreme small size 
(4 samples) we decided to remove the NC group. 
Additionally, due the large number of samples in 
the CMD group (half of all samples) and our con-
cern that it will dominate the classification progress, 
we decided to remove this group and to focus only 
on 4 groups with relative equal number of samples. 
Consequently we used 4 classes of cancer were two 
of them, when classified solely by morphological 
characteristics, were in controversy of whether they 
belong to the same group or not. The distribution of 
training and testing samples among the 4 subtypes of 
the BC dataset is listed in Table 2.

Data preprocessing
Data preprocessing of both the datasets consisted of 
threshold treatment to the expression intensities with 

Table 1. GCM dataset: Number of samples per tumor class.a

Cancer class BR PR LU CO LY BL ME UT LE RE PA OV ML CNS
Training 8 8 8 8 16 8 8 8 24 8 8 8 8 16
Testing 4 6 4 4 6 3 2 2 6 3 3 4 3 4

Abbreviations: aBR, Breast; PR, Prostate; LU, Lung; CO, Colorectal; LY, Lymphoma; BL, Bladder; ME, Melanoma; UT, Uterus; LE, Leukemia; RE, Renal; 
PA, Pancreas; OV, Ovary; ML, Mesothelioma; CNS, Brain.
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20 and 1600 as the lower and upper limit, respectively, 
after which the log2 transformation was applied. Fur-
ther, genes with the highest transformed intensity 
being smaller than two times the minimum expres-
sion were deleted.

Feature selection (Initial gene pool)
The initial gene pool was build to reduce number of 
genes or features in a data. Many researches have 
revealed that when the number of features is large, 
the performance of the learning methods degrades. 
Ideally, one would like to select an optimal subset 
of features that would yield maximum predictive 
power for a given classification algorithm. In the 
case of high-dimensional data sets, this can be very 
computationally demanding; consequently, many 
statistical and rank based methods are used. In this 
study, two criteria were used for feature selection. 
Each of the two criteria was computed for every gene 
separately.

Fold Change (FC)
At the log2 scale, the fold change is the absolute 
value of the difference of expression intensity means 
between two groups. For OVA partitioning of data, 
this can be expressed as FC = |Mo – Mr|, where Mo 
represents the mean of the training samples in a sin-
gle tumor type to be separated from the others, and 
Mr represents the mean of the training samples in all 
other cancer types. For OVO partitioning, M1 and M2 
represents the mean of the training samples of the two 
cancer types under consideration. Intrinsically. FC 
assigns equal variance to every gene.

Penalized t-statistics
T-statistics is defined as:

t M M

s N N

o r

o r
p

=
-

+1 1

where Sp is the pooled standard deviation, No and Nr 
are the numbers of the training samples in the two 
groups, respectively, and Mo and Mr for OVA and M1 
and M2 for OVO are the same as defined above.

For genes with very small Sp, their t-statistics 
could be large even when the fold change is quite 
small. The penalized statistics helps to overcome this 
shortcoming. It consists of adding a positive quantity, 
a (90th percentile of the distribution of the pooled 
standard deviation of all the genes), to the denomina-
tor of the t-statistics leading to:
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In this study, the size of the feature (genes) set used 
was 50, 75, 100 and 200 genes for the BC dataset and 
50, 100 and 200 genes for the GCM dataset.

Binary classification method
Latent variable models are often used in binary 
classification. It consists of establishing a rela-
tionship between the observed binary response, 
Y = (Y1, Y2, …, Yn), and a continuous and unobserved 
latent variable l = (l1, l2, …, ln) such that:

Yi
il=  1 if  0

0 if  0
≥
<{ li

Further, if a set of exploratory factors, Xi for ith 
sample are collected, the liability li could be modeled 
through a simple linear regression model as:

	 li = X′iβ + ei	 E(li) = X′iβ	 ei ∼ N(0, 1)	 (1)

The link function of the systematic component 
X′iβ with the binary response Yi could be structured 
via a probit model.12,13

Thus,

pi(Yi = 1) = φ(X′iβ)  and  pi(Yi = 0) = 1 – φ( X′iβ)	(2)

where φ(⋅) is the standard normal cumulative distribu-
tion function. In the case of using expression profiling 
for disease classification, the matrix X will include 
the expression intensities and β will include the vec-
tors of gene effects. For the classification of binary 

Table 2. BC datasets: Number of samples per subtype.b

Subtype DMD MG AR PN
Training 14 10 10 8
Testing 4 3 3 2

Abbreviations: bDMD, Desmoplastic medulloblastoma; MG, Malignant 
gliomas; AR, Atypical rhabdoid; PN, Primitive neuroectodermal.
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response, the probability pi can be used, leading to the 
following discrimination rule:

	 Yi if X
if X

i

i

= ′ ≥
′ <{1 0 5

0 0 5
    
     

φ β
φ β

( ) .
( ) .

	 (3)

Inferences on the model parameters β, and the point 
and interval estimates of the quantity of main interest, 
pi(Yi = 1) was achieved by Bayesian approach imple-
mented via a Markov Chain Monte Carlo (MCMC) 
algorithm (Gibbs sampling).13 All Conditional distri-
butions required for the implementation of the model 
via Gibbs sampler were in closed form being nor-
mal for the position parameters, scaled inverted Chi 
square for the residual variance, and truncated normal 
distribution for the latent variables and were sampled 
following the relationship:

	 li = X′iβ + φ–1 [yiφ(–ui) + ui(yi + (1 – 2yi) φ(–µi))]	 (4)

Convergence of the sampling process was 
accessed based on visual inspection of the samples 
trace plots, and was always reached in less than 
200 rounds. Conservatively, a long chain strategy 
of 20,000 iterations was implemented with the first 
5,000 iterations discarded as burn-in. In order to 
alleviate autocorrelations, one in every 50 samples 
of the remaining 15,000 draws was maintained for 
post Gibbs analysis.

Due to the fact that the number of genes is much 
greater than the number of samples; a dimension 
reduction technique called singular value decompo-
sition (SVD) is performed before fitting the regres-
sion model. For the BC dataset, five replications 
were done by randomly selecting the training sam-
ples and testing samples from each subtype by main-
taining the same number of samples in both training 
and testing samples as mentioned in Table 1. For the 
GCM dataset, exact split done by Ramaswamy et al4 
was done.

Output coding strategies implemented 
for multiple classifications
Once the discriminative genes (features) are selected 
based on fold change and penalized t-test, samples 
that contain only those selected (top ranked) genes 
were used for training as well as for testing. The two 

output coding strategies implemented in this study 
using LVM (binary classifier) are described below.

One-versus-all method
The one-versus-all approach4 divides the classes into 
two groups each time, with one group consisting of a 
single class and the other group consisting of samples 
in all the other classes. In other words, given k classes, 
k independent classifiers are constructed were the ith 
classifier is trained to separate samples belonging to 
class i from all others. The codebook is a diagonal 
matrix, and the final prediction is based on the classi-
fier that produces the strongest confidence:

	 Class = arg max fi

where fi is the signed confidence measure of 
the ith classifier. The maximum confidence rule with 
pi(Yi = 1) is used as the confidence measure.

For example, in this study, if we take DMD as one 
group, the other group will contain the remaining 
samples from MG, AR and PN. The DMD samples 
will be given the binary status 1 and all other tumor 
samples except DMD will have 0 as binary status. The 
predictive ability of LVM was tested using a cross-
validation procedure using the test samples (Tables 1 
and 2), in which the binary response for one test sam-
ple was treated as unknown and the regression coef-
ficients were calculated using the training samples of 
the 2 tumor types. The estimated coefficients were 
then used to predict the status of the unknown test 
sample. This process is repeated for each test sample 
of all tumor subtypes.

One-versus-One method
This approach involves implementing LVM for 
each pair of tumor classes. This ensures that each of 
these groups is compared with each of the remaining 
groups one by one, and the corresponding selected 
genes can represent the most significant differences. 
The usual way to perform this is, given k classes, 
(k(k – 1))/2 classifiers are constructed, with each clas-
sifier trained to discriminate between a class pair 
say, i and j. But in this study, two sets of (k(k – 1))/2 
classifiers are generated, were one set is the comple-
ment of the other as described in Box 1. This can be 
thought of as a (k – 1) x k matrix, where the ijth entry 
corresponds to a classifier that discriminates between 
classes i and j. The codebook, in this study was done 
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by simply calculating the mean and median of each 
column and selects the column for which measures of 
central tendency were the highest.

Results
Prediction accuracy determination of the optimum 
number of genes (features) to be used by the clas-
sification algorithm is usually a difficult task that 
depends on several factors including the classifier 
rules and the complexity of the data set. Finding the 
optimal number of genes is generally very difficult. 
Many practical solutions are based on experience or 
some heuristics.14 For binary regression algorithms, 
previous studies15,16 showed a feature set of one to 
two hundred top genes was adequate for a simple 

two-category problem. In this study, the size of the 
feature set was 50, 75, 100 and 200 for the BC dataset 
and 50, 100 and 200 for the GCM dataset.

BC dataset
The prediction accuracies when OVA and OVO 
output-coding strategies were implemented for the 5 
replications using fold change and penalized t-test for 
feature selection are summarized in Tables 3 and 4 
respectively. The highest average prediction accuracy 
of the 5 replications obtained for fold change for 
OVO was 93.33% for 75 genes, where as, for OVA 
the highest average was 83.33% for 75 genes. For 
penalized t-test, the highest average for OVO was 
91.66% for 50 genes while, for OVA, the highest 

Box 1. Proposed One Versus One (OVO) output-coding strategy.
Let A, B, C & D represents four tumor types
Step 1
The predictive ability of LVM is tested using cross validation procedure, in which the binary response for one test sample 
is treated as unknown and regression coefficients are calculated using the training dataset (only 2 classes at a time).
Step 2
For a particular test sample (for ex. A), cross validation procedure is implemented for each pair wise combination to 
estimate P(Yi = 1), resulting in the following (k–1) x k matrix for each test sample.
P(Yi = A) A (1)* vs. B (0) P(Yi = B) B (1) vs. A (0) P(Yi = C) C (1) vs. A (0) P(Yi = D) D (1) vs. A (0)
P(Yi = A) A (1) vs. C (0) P(Yi = B) B (1) vs. C (0) P(Yi = C) C (1) vs. B (0) P(Yi = D) D (1) vs. B (0)
P(Yi = A) A (1) vs. D (0) P(Yi = B) B (1) vs. D (0) P(Yi = C) C (1) vs. D (0) P(Yi = D) D (1) vs. C (0)
*Represents the binary status of the training data while implementing LVM.

Step 3
Mean and median of each column (for ex. column 1 contains the probability that the test sample is predicted to be A 
compared to all other tumor classes (pair wise comparison)) is estimated and the test sample will be assigned to that 
particular tumor class whose estimated mean or median is highest. For example, if column 1 has the highest mean 
compared to other 3 columns then the test sample will be classified as tumor class A.
Steps 1, 2 and 3 are repeated for each test sample for all tumor classes.

Table 3. Prediction accuracies for the BC dataset using fold change as the feature selection method.

No. of genes 50 75 100 200
Coding method OVA (%) OVO (%) OVA (%) OVO (%) OVA (%) OVO (%) OVA (%) OVO (%)
Rep 1 66.67 91.66 75.00 91.66 91.66 91.66 91.66 91.66
Rep 2 75.00 66.67 75.00 83.33 75.00 83.33 66.67 75.00
Rep 3 83.33 91.66 83.33 91.66 83.33 91.66 83.33 100.00
Rep 4 83.33 100.00 91.66 100.00 91.66 100.00 91.66 100.00
Rep 5 83.33 100.00 91.67 100.00 66.67 100.00 66.67 91.67
Average 78.332 89.99 83.33 93.33 81.66 93.33 79.99 91.66
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prediction accuracy was 81.67% for 200 genes. This 
result shows that OVO strategy could give a higher 
prediction accuracy compared to OVA. Also fea-
tures (genes) selected by fold change gained highest 
accuracies for both OVO and OVA. There was an 
improvement of around 12% by using OVO method 
compared to OVA method for fold change and 15% 
improvement for penalized t-test for the BC dataset. 
Leung et al16 got 17% improvement by using OVO 
over OVA using t-test for feature selection and k-
means clustering for classification.

GCM Dataset
The prediction accuracy of the 54 validation (test) 
samples, using fold change and penalized t-test, 
is summarized in Tables 5 and 6 respectively. The 
highest prediction accuracy for OVO with fold change 
feature selection was 75.92% for 50 genes where as 
for the same number of genes and fold change, OVA 
performed higher (79.6%). For 200 genes, the fold 
change feature selection method performed equally 
for both OVO and OVA (70.4%). The highest pre-
diction accuracy for OVO with penalized t-test was 
74% for 50 genes where as an accuracy of 79.6% was 
obtained for OVO method for 100 genes when the 
second highest mean was also considered for each 
sample (data not shown). For 200 genes selected based 
on penalized t-test, the OVO had a higher accuracy of 

3% compared to OVA, which is not that significant. 
But for 50 genes and penalized t-test showed higher 
performance in OVA compared to OVO.

Several works have been done using this GCM 
dataset using various feature selection methods and 
classification methods on OVA set up. Using a recur-
sive feature selection procedure and support vector 
machine (SVM) classification algorithm, Ramaswamy 
et al4 obtained their best result with 42 tumors correctly 
predicted among the 54 test samples, corresponding to 
an accuracy of 78%. Using a feature selection algo-
rithm based on overlaps of gene expression values 
between different classes in conjunction with the Cov-
ering Classification Algorithm (CCA), a modification 
of the k-NN method, Bagirov et al17 achieved predic-
tion accuracy of around 80%. Based on the concept 
of gene interaction, Antonov et al18 proposed a Maxi-
mal Margin Linear Programming (MAMA) procedure 
that combines linear programming and SVM and they 
got around 85.2% classification accuracy on an OVA 
set up. Combining all these previous research and the 
results obtained from this study, it may be concluded 
that for GCM dataset, OVA performs almost equally 
as that of OVO.

Discussions
Classification problems aim at building an efficient, 
effective model for predicting class membership 

Table 4. Prediction accuracies for the BC dataset using penalized t-statistics as the feature selection method.

No. of genes 50 75 100 200
Coding method OVA (%) OVO (%) OVA (%) OVO (%) OVA (%) OVO (%) OVA (%) OVO (%)
Rep 1 83.33 91.66 75.00 100.00 75.00 100.00 91.66 91.66
Rep 2 75.00 91.66 75.00 75.00 75.00 75.00 66.67 75.00
Rep 3 91.67 91.66 91.66 83.33 91.66 83.33 91.66 83.33
Rep 4 83.33 83.33 75.00 91.66 66.67 91.66 66.7 91.66
Rep 5 50.00 100.00 83.33 100.00 83.33 91.67 91.67 100.00
Average 76.66 91.66 80.00 89.99 78.33 88.32 81.67 88.32

Table 5. Prediction accuracies for the GCM dataset using 
fold change as the feature selection method.

No. of genes OVO  
(Accuracy in %)

OVA  
(Accuracy in %)

200 70.3 70.4
100 72.2 74.5
50 75.92 79.6

Table 6. Prediction accuracies for the GCM dataset using 
penalized t-statistics as the feature selection method.

No. of genes OVO  
(Accuracy in %)

OVA  
(Accuracy in %)

200 66.00 63.00
100 65.00 73.25
50 74.00 75.92
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from the data. The learning process is done on the 
training data, which consists of data points cho-
sen from the input data space and their class label. 
A model built from the training data is expected to 
produce the correct label on the training data and also 
to predict correctly the identity of an unknown class. 
In cases where there is only two classes, a classifica-
tion problem is said to be a binary, while many real-
world problems are multi-class problems. Majority 
of the solutions for multi-class problems is done by 
decomposing the multiple classes into binary ones. 
One-versus-the rest methods, pair wise comparison, 
error-correcting output-coding (ECOC)20 are exam-
ples. The main criticism against OVR is because of 
the inconsistent class assignment as well as solving 
potentially asymmetric problems using a symmetric 
approach.14,21 OVO also can be criticized for solving 
asymmetric problems symmetrically, but one advan-
tage of using this method is that each classifier is 
easy to train since it is purely a binary problem even 
though the number of comparisons will be higher 
than OVR.

The usual way of implementing OVO is based 
on vote, which class label gets the largest number of 
votes, that test sample will be assigned that class label. 
While the OVO implemented in this study uses sum-
mary of the posterior distribution (mean and median) 
of the classification probability to determine the fate 
of the test sample.

Latent Variable models (LVMs) postulate that the 
observed discrete (binary data) is only an indicator 
of an underlying non-observed random variable that 
follows a certain distribution (often normal distri-
bution). The discrete responses are observed when 
the latent variable exceeds a certain threshold(s). 
For example for the binary situation, the binary 

response is 1 (case) when the latent variable 
exceeds threshold, T, (i.e. T  0) otherwise it is zero 
(control). The main advantage of using LVM along 
with the proposed OVO in the context of a Bayes-
ian implementation via Gibbs sampler is because its 
ability of providing the full posterior distribution 
of the classification probability.13,15,22 Other binary 
classifiers like SVM will output only the class label 
(+, or -) of the test sample. However, knowing the 
class label or the predictive value a lot of times is 
not good enough to evaluate a classification. This 
makes LVM a good classifier that suits well with the 
proposed OVO strategy.

It has been mentioned that there is probably 
no multiclass method using binary decomposition 
approach that outperforms every thing else and that 
for practical purposes the choice of the method has 
to be made depending on the constraints, such as 
the desired level of accuracy, the time available 
for development and training, and the nature of 
the classification problem.6 The same conclusion 
has been made in the current study since different 
gene expression data sets showed differences in 
the prediction accuracies. In OVO decomposition 
strategy, we need to do 2x(K–1)/2-times as many 
binary classifiers than in OVA method which results 
in more computational time. One of the rather 
power full approach of the OVO method is the high 
demands for the representatively of the training set. 
We noticed that the OVO method for GCM data did 
not make much improvement in prediction accura-
cies. The main reason based on above discussion 
might be because of the disparity among the num-
ber of training samples in each of the 14 classes. 
Moreover, high heterogeneity observed within sub-
classes of the GCM data especially the Breast cancer 

Table 7. Number of misclassified test samples of Breast (BR) and their predicted tumour subtype according to OVO for both 
fold change and penalized t-statistics.

No. of test samples  
for BR tumour type 

No. of genes  
(features) 

No. of misclassified  
samples (using fold  
change)c

No. of misclassified  
samples (using  
penalized t-statistics)

4 200 3 (LE, UT, PA) 3 (LU, LU, PA)
4 100 3 (LE, UT, PA) 3 (LU, LU, PA)
4 50 2 (LE, PA) 3 (LE, PA, LU)
cIn parenthesis is the assigned tumour types for the misclassified BR test samples.
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(BR) sample might be one of the reasons for less 
prediction accuracies (Table 7). In fact, among the 
4 BR test samples, previous studies by Ramaswamy 
et al4 and Bagirov et al17 could correctly predict only 
2 and 1 test samples, respectively, indicating poten-
tial prediction uncertainty which in turn affects the 
classification accuracy. Potential chances of misla-
beling of tumor samples as proved by Zhang et al15 
might be another reason for reduced classification 
accuracy. It is obvious that higher prediction accu-
racies obtained while using the BC dataset in OVO 
methods might be because of sufficient represen-
tation of training data in each cancer type as well 
as homogeneous gene expression data within each 
class. Therefore it is intuitive that datasets that have 
enough representation in the training data for each 
class and training samples that have more or less 
homogeneous expression patterns of within each 
subtype, OVO will definitely out-perform OVA as 
we observe in BC data set. One of the drawbacks of 
using the proposed OVO might be the occurrence 
of over fitting although the latent variable model 
handled it quite robustly.

Conclusions
The output-coding scheme from machine learning 
has been successfully applied to multi-class micro-
array classification in this paper. It has been shown 
that a good coding matrix can lead to high accuracy 
of multi-class microarray classification. Better cod-
ing strategies are required to further improve the per-
formance of the output coding scheme. This study 
demonstrated that the choice of feature selection 
statistics, comparison method between groups and 
classification algorithms could all affect the inter-
pretation of final results of microarray data. More 
emphasis is given on the comparison methods and 
it could be concluded that the selection of OVO or 
OVA depends upon the data structure and the type of 
microarray experiment. Based on the BC dataset, we 
can assume that when dealing with multi-class can-
cer type datasets, OVO comparison method can give 
better performance accuracy than the commonly 
used OVA. But we could not conclude the same 
inference with the GCM dataset. The main reason 
could be: large number of tumor types is considered 
at the same time or may be because of the hetero-
geneity within and among the cancer subtypes or 

chances of potential mislabeling of tumor subtypes 
in the training data.
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