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The prevalence of chronic kidney disease (CKD) continues to increase worldwide, as

well as the associated morbidity and mortality and the consequences on the patients’

quality of life and countries’ economies. CKD often evolves without being recognized

by patients and physicians, although the diagnosis is based on two simple laboratory

data: the estimated glomerular filtration rate (eGFR) and urine analysis. To measure

GFR, the knowledge about the physiologic processes at the nephron level, the concept

of clearance, and the identification of creatinine as a suitable endogenous marker for

measuring the creatinine clearance (CrCl) had to be previously developed. On those

bases, different equations to calculate CrCl (Cockcroft and Gault, 1976), or estimated

GFR (four variables MDRD, 1999; CKD-Epi, 2009, among others) were generated. They

all include creatinine and some demographic data, such as sex and age. However,

to compare results throughout life or among laboratories, the creatinine determination

must be standardized. In addition, the accuracy of these equations remains controversial

in certain subgroups of patients. For these reasons, other mathematical models to

improve CrCl estimation have been developed, such as when urine cannot be collected,

in debilitated elderly patients and patients with trauma, diabetes, or obesity. Currently,

eGFR in adults can be measured and reported immediately, using isotope dilution mass

spectrometry traceable creatinine-based equations. In conclusion, based on knowledge

obtained from renal physiology, eGFR can be used in the clinic for the diagnosis and early

treatment of CKD, as well as a public instrument to estimate the prevalence.

Keywords: glomerular filtration rate, chronic kidney disease, MDRD study equation, CKD-EPI equation, cystatin

C, creatinine clearance

INTRODUCTION

The prevalence of chronic kidney disease (CKD) continues to increase worldwide, as well as the
associated morbidity and mortality and the consequences on patients’ quality of life and countries’
economies. In the year 2018, a joint document of the ASN, ERA-EDTA, and ISN societies estimated
that over 850 million people worldwide (11% of the total population) lived with kidney disease,
about twice the number of diabetic patients estimated by the IDF (422 million) (1–3). An analysis
of the Global Burden of Disease Study stated that CKD as cause of death rose from position 25 in
the year 1990 to the 17th in 2015 (4). Another publication from the same study estimated that CKD
as a mortality cause would ascend to the 5th place by 2040 (5). Besides, CKD is an independent
risk factor for cardiovascular disease, and a risk multiplier in other non-communicable chronic
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diseases such as hypertension, diabetes, and cardiovascular (6).
These data confirm that CKD is a major public health problem.

Any clinical situation resulting from a reduction in the
number of functioning nephrons can evolve to CKD, defined
by KDIGO guidelines as “abnormalities in kidney structure or
function, present for 3 months, with implications for health.”
The same guideline classifies CKD based on the cause, glomerular
filtration rate (GFR) category, and albuminuria (7).

Arterial hypertension, diabetes, obesity, proteinuric
nephropathies, race, family history, genetic diseases, low
birth weight, aging, among others, are risk factors for the CKD
(8, 9). Early detection and treatment of potentially reversible risk
factors and CKD allow to delay progression and its associated
complications as well as reduce the risk of cardiovascular disease
(10, 11).

In the real world, CKD is a silent disease that often
evolves unrecognized by the patients and physicians, although
the diagnosis is based on the two simple laboratory data:
the estimated GFR (eGFR) and urine analysis (screening for
albuminuria/proteinuria) (10). Early diagnosis of CKD by the
general practitioners and generalists would contribute to retard
progression, and reduce morbidity and mortality associated to
CKD and its associated risk factors (12).

Glomerular filtration rate continues to be the best global index
of kidney function, both in health and in disease, as it represents
the excretory capacity of the kidney, correlates directly with the
kidney functioning mass, to classify CKD in stages according
to the risk of progression, and to calculate the drug dosing and
preparing for the invasive studies. xx

Early diagnosis of CKD by the general practitioners and
generalists would contribute to retard progression and reduce
associated morbidity and mortality. Albuminuria, an important
predictor of CKD progression, will not be analyzed in this article.
Therefore, the evaluation of kidney function and the presence or
absence of proteinuria/albuminuria should be part of any routine
health evaluation, and desirable when conducting population
health surveys.

The present manuscript, after a brief historical description
on the milestones that paved the way since the emerging
physiological concepts of filtration, reabsorption, and excretion
at the nephron, will focus on the present concepts of eGFR,
and how it can be applied in the clinic and as a public health
tool. Finally, different eGFR equations derived from creatinine
and cystatin C and demographic data used for the diagnosis in
patients and as a public health instrument will be described.

The Identification of the Process of
Glomerular Filtration to Measuring GFR in
the Clinic
Knowledge of kidney physiology began in the mid-19th century,
when Carl Ludwig (1816–1895) developed the concept of
glomerular filtration. In his thesis, he identified the glomerulus as
a filter, where urine formation began; this filter was submitted to
physical and chemical forces, driven by the hydrostatic pressure
generated by the heart, and regulated by the contraction and
vasodilatation of the afferent and efferent arterioles. He went

further, speculating that the filtered volume decreased along the
tubules due to reabsorption, in order to concentrate the final
products at the urine (13, 14).

In 1874, Rudolf Heidenhain (1834–1897) injected a dye,
indigo carmine, in hypotensive anuric rabbits; after 15min he
removed the kidneys and identified the dye in tubular cells. He
deduced that secretion from blood into the tubule occurred that
meant an active tubular transport mechanism (15).

Arthur Cushny (1866–1926) in 1917 reasoned that Ludwig’s
theory (the glomerulus as a filter) implied a large volume of
water, and near all the filtered glucose, amino acids, sodium,
and other solutes should be in the ultrafiltrate. And, as these
solutes are present at different concentrations in the plasma,
the reabsorption of glucose, amino acids, and others dissolved
substances present in urine should happen according to their
respective blood levels. He concluded that there was a threshold
for differential reabsorption of some solutes (16).

In 1924, Alfred Richards (1876–1966) and Joseph Wearns
(1893–1984) published their results for the filtration process,
infusing epinephrine into the glomerulus of an anesthetized frog,
and observing the hemodynamic effects on the afferent and
efferent arterioles and the resulting ultrafiltrate. They confirmed
that the free-protein ultrafiltrate was due to filtration at the
glomerular tuft, the solutes were filtered and reabsorbed at the
tubular level, and there was a threshold for glucose reabsorption,
corroborating the differential reabsorption of filtered solutes in
the tubule (17).

At this point, the mechanism of filtration, secretion, and
reabsorption in the nephron had been proved, but to transfer the
concept of GFR to the clinic, it was still necessary to find a solute
removed only by filtration, and not reabsorbed or secreted in the
tubule. In 1926, Paul Rehberg identified creatinine as that solute,
as it was produced by the body itself, filtered and, presumably, it
was not reabsorbed or excreted (18).

Donald Van Slyke (1883–1971), in 1928, introduced the
concept of “clearance,” regarding urea, as the volume of blood
that would be totally cleared of it in a minute when urine flow
exceeded 2 ml/min. The clearance technique was quickly applied
to different solutes and became itself a fundamental tool in
kidney physiology (19). Applying this concept, in 1937, Homer
Smith measured GFR using inulin, a substance he had proved
previously was excreted exclusively by glomerular filtration. After
that, for many years, inulin was the gold standard tomeasure true
GFR (20).

The clearance concept was fundamental, not only for studying
the formation of urine or kidney physiology, but because it
provided a simple tool to be used in the clinic, as GFR could be
measured as creatinine clearance (CrCl). Since then, over many
years, CrCl has been used in the clinic to evaluate GFR.

Creatinine and Creatinine Clearance as
Estimated GFR
Creatinine is a waste product of muscle metabolism, generated
relatively constantly. It is almost eliminated by the glomerular
filtration as it is a small molecule (113 Daltons) not bound to
proteins. However, as its concentration depends on muscle mass,
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it is different in men and women, and may change according to
the protein diet and muscle mass (21).

In 1886, Max Jaffe (1841–1911) noticed that creatinine in
contact with picric acid in an alkaline solution developed an
orange-red color, proportional to creatinine concentration (22).
Years later, in 1914, based on the Jaffe’s experiment, Otto Folin
measured the creatinine in deproteinized blood, incorporating
Jaffe’s reaction to the clinical diagnosis (23). By this time,
creatinine had been identified as a substance removed only by
filtration, the concept of clearance was introduced and widely
applied in his studies by Homer Smith, and the determination
of serum creatinine was available. All the conditions were met for
using CrCl as a proxy for GFR in clinical practice.

At present, creatinine is one of the most frequent laboratory
determinations: easy to perform, available almost everywhere,
and cheap. It can be determined by enzymatic or colorimetric
methods. However, as every analyte, serum creatinine measure
is exposed to random error (performed by the operator) and
systematic error (depending on the material, the instrument,
and the process). Standardizing its determination as a method
with traceable calibration to isotope dilution mass spectrometry
(IDMS) reduces biases, improving the accuracy of creatinine
determination (24, 25).

Isolated creatinine is not a good marker to evaluate kidney
function, as it increases when GFR is around 50ml/min or below.
Creatinine clearance is better to estimate GFR, but it has some
disadvantages when evaluating kidney function. Creatinine is
not excreted only by glomerular filtration, as a small fraction is
secreted at the tubular level. This fraction increases as kidney
function decreases and cannot be calculated individually (21).
Also, in advanced CKD, the intestinal microbiota contributes
to degrading creatinine, and this proportion also cannot be
estimated (26). Therefore, when CKD is present, CrCl tends
to overestimate GFR, and the difference increases as kidney
function decline. This fact moved to search mathematical
formulas based on creatinine and demographic factors, such as
age, sex, body mass index, and race, to estimate GFR (eGFR).

Despite the limitations described, creatinine continues to be
the most frequent marker used in the clinic to assess the function
of kidney.

In some situations, a 24-h urine collection is mandatory, and
the measured creatinine clearance is preferred in some patient
groups to avoid misinterpretations. This is the case of a very
low protein intake, such as vegetarians, high protein intake,
creatine supplementation, diet rich in meat, some muscle mass
abnormalities (malnutrition, amputation, and loss of muscle
mass), rapid change in kidney function, before starting dialysis
or in children and pregnant women (27, 28).

The Development of Equations, Based on
Creatinine, for Measuring eGFR
Equations to estimate GFR are widely used in day-to-day
practice. More than 70 have been developed. In this publication,
the most used and recent will be detailed.

One of the first ones was the Cockcroft–Gault (C–G) equation,
available since themid-1970s, that (or which) includes creatinine,

TABLE 1 | Most used creatinine and cystatin C equations to estimate glomerular

filtration rate (eGFR).

Cockcroft-Gault equation

Creatinine Clearance =
140−age (years) x weight (kg)
72 x serum creatinine (mg/dl) x 0.85 (if female)

MDRD-4 (simplified)

Estimated Glomerular Filtration Rate (mL/min/1.73 m2) =

= 175 (Serum Creatinine in mg/dl × 0.011312)−1.154
× (age in years )−0.203

× (0.742 if female) × (1.212 if African American/black)

CKD-EPI (2009)

Estimated GFR = 141 x min(SCr/κ, 1)
α x max(SCr /κ, 1)

−1.209 x 0.993Age x

1.018 [if female] x 1.159 [if Black]

SCr (standardized serum creatinine) = mg/dL., K = 0.7 (females) or 0.9

(males), α = −1.329 (female) or−0.411 (male), Min = indicates the minimum

of SCr/K or 1, max = indicates the maximum of SCr/K or 1, Age = Years

FAS (2016)

1) Estimated GFR = 107.3/(SCr/ Q) for age ≤ 2 to ≤ 40 years

2) Estimated GFR = 107.3/(Scr/ Q) x 0.988 (age−40) for age > 40 years

Q: the mean or median SCr value for age/sex-specific healthy populations

CKD-EPI cystatin C equation

Estimated Glomerular Filtration Rate (mL/min/1.73 m2) =

= 133 × min(Scys/0.8, 1)−0.499
× max (Scys/0.8, 1)−1.328

× 0.996Age [×

0.932 if female]

Scys = serum cystatin C, min indicates the minimum of Scr/κ or 1, and max

indicates the maximum of Scys/κ or 1

CKD-EPI creatinine-cystatin C

Estimated Glomerular Filtration Rate (mL/min/1.73 m2) =

135 × min(Scr/κ, 1)α × max(Scr/κ, 1)−0.601
× min(Scys/0.8, 1)−0.375

×

max(Scys/0.8, 1)−0.711
× 0.995Age [× 0.969 if female] [× 1.08 if black]

Scr = serum creatinine, Scys = serum cystatin C, κ is 0.7 for females and

0.9 for males, α is −0.248 for females and −0.207 for males, min indicates

the minimum of Scr/κ or 1, and max indicates the maximum of Scr/κ or 1.

sex, and weight, and is not adjusted for the body surface
area (Table 1) (29). However, this equation correlates more to
CrCl than to GFR. Besides that, the creatinine method used
in the development of the C–G equation is no longer in use,
and samples from the study are not available to compare the
results to standardized creatinine values (30). Anyway, this
equation has been and continues to be widely utilized, in part
because many pharmacokinetic studies had been performed in
the previously used C–G equation, before the standardization of
serum creatinine traceable to IDMS (31, 32).

Similar equations require other data like patient height and/or
weight; many times this information is not recorded or correctly
recorded, favoring erroneous results.

In 1999, Levey and associates developed seven equations
applying a regression model to predict eGFR, using data of 1,628
patients enrolled in the baseline period of the Modification of
Diet in Renal Disease (MDRD) study. The equation that gave
the best agreement with iothalamate-measured GFR was the
six variable equation, valid for a standard body surface of 1.73
m2 (33):

GFR = 170 × [PCr]-0.999 × [Age]-0.176 × [0.762 if
women] × [1.180 if African American/black] × [SUN]-0.170
× [Alb]+0.318

In 2000, Levey and coworkers proposed the simplified four-
variable MDRD equation that correlates very well with the
six-parameter equation proposed before (Table 1) (34). This

Frontiers in Medicine | www.frontiersin.org 3 November 2021 | Volume 8 | Article 769335

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cusumano et al. The Glomerular Filtration Rate

formula, originally defined for serum creatinine measured
by the old Jaffe method, was re-expressed with the serum
creatinine calibrated to an assay traceable to IDMS in 2006
(35). A recommendation to convert Jaffe-measured creatinine
into reference method-based procedures (SCr_Jaffe × 0.95 @
SCr_enzyme) if the reference procedure used for the calibration
was IDMS has been proposed but a full agreement for doing so
has not arisen (25).

The MDRD GFR has little bias compared with measured
GFR with urinary clearance of iothalamate under 60 ml/min/1.73
m2, but underestimated the measured GFR at higher levels
(36). These results are expected, as any equation reflects the
characteristics of the population from which it derives; and the
MDRD study was performed on the population with CKD.

In the year 2009, an improved creatinine-based equation, the
CKD–EPI Collaboration (Chronic Kidney Disease Epidemiology
Collaboration) was published, based on new methods for
measuring creatinine, valid for all stages of renal insufficiency
(Table 1). To work out the CKD–EPI equation, the authors
took data from 8,254 participants of 10 studies (development
set), 3,896 subjects from 16 studies (validation set) and,
16,032 individuals from NHANES (National Health and
Nutritional Survey) for prevalence. The new equation performed
significantly better than the MDRD study equation, especially at
higher GFR, with lesser bias, improved precision, and greater
accuracy (37).

This equation is still the most accurate GFR estimating
equation evaluated in large diverse populations, applicable for
the general clinical use. It provides lower estimates of the
prevalence of decreased eGFR, and is useful as a trial measure
for decreased eGFR and to replace the MDRD Study equation
for routine reporting of serum creatinine-based eGFR by clinical
laboratories (38).

A systematic search of MEDLINE, between 1999 and 21
October 2011, was performed by Earley et al. to review the GFR
estimating equations performance; 12 studies were selected. In
those from North America, Europe, and Australia, the authors
corroborated, once again, that the CKD–EPI equation performed
better at higher GFRs (> 60 ml/min/1.73 m2) and the MDRD
equation behaved better at lower GFRs (< 60 ml/min/1.73 m2).
In Asian or African populations, neither equation worked as well
as in the other regions (39).

KDIGO CKD Guidelines recommend clinical laboratories to
report eGFR in adults using the 2009 CKD–EPI equation (7),
provided creatinine determination is traceable to IDMS.

The inclusion of race in the eGFR equation has been
questioned, even though, in adults, age, sex, weight, height, and
race are surrogates of muscle mass. In the original MDRD and
CKD–EPI equations, the inclusion of race (Black/non-Black)
improved accuracy (40). It has been argued that to exclude race
from the eGFR equations would provoke a systematic under
interpretation of measured GFR. To disclosure about the use
of race when estimating GFR, or to accept denial to identify
race from the patient, or to use a cystatin C confirmatory
test has been proposed as a way to overcome the conflict
(41, 42). In September 2021, the National Kidney Foundation
and the American Society of Nephrology Joint Task Force on

Reassessing the Inclusion of Race in Diagnosing Kidney Diseases
recommended a new 2021 CKD-EPI creatinine eGFR equation
which does not include race to estimate GFR (Table 1). They
recommend for the United States immediate implementation of
the CKD-EPI creatinine equation refit without the race variable
in all laboratories, and to facilitate increased, routine and timely
use of cystatin C, as combining creatinine and cystatin C is more
accurate (43).

Finally, in 2016, Pottel et al. developed a novel equation, the
full age spectrum (FAS) equation, to estimate the GFR across all
over the age spectrum since available equations lack continuity
with aging (the Schwartz equation for pediatrics, the CKD–
EPI equation for adults under 70 years age, and the BIS-1 for
older than 70 years old). This new equation is normalized on
serum Cr (SCr/Q) for age (children and adolescents) and gender
(adolescents and adults), being Q the median serum Cr from
a specific healthy subpopulation. In the validation study, 6,870
healthy and kidney disease caucasian and from the non-African
origin individuals, of whom 765 were children and adolescents
<18 years old and 1,748 elderly higher than 70 years old,
participated. For validation, measured GFR was performed using
inulin or iothalamate or iohexol clearance (Table 1) (44). The
FAS equation that can be used in ages <2–100 years old, resulted
less biased and more accurate than the Schwartz equation for
children and adolescents, and less biased and as accurate as the
CKD–EPI equation for adults under or over 70 years old.

The Development of Equations Using
Cystatin C
Cystatin C was described for the first time in 1961 (45). As
creatinine, it is an endogenous marker. It is a low molecular
weight protein (13 kD) and consists of a chain of 120 amino
acids. Produced constantly by all nucleated cells of the body, it
filters freely through the glomerulus and is totally reabsorbed and
catabolized by the proximal tubular cells. Muscle mass, age, sex,
or diet do not affect its concentration; these characteristics make
Cystatin C useful in groups with reduced muscle mass (46, 47).

To improve the accuracy of eGFR several equations have
now been developed using either cystatin C alone or cystatin
C in combination with creatinine. Cystatin C-based equations
have advantages over the creatinine-based equation as they are
less influenced by age, sex, and race (48). The 2012 CKD–EPI
creatinine-cystatin C equation is more accurate than the 2009
CKD–EPI creatinine and 2012 CKD–EPI cystatin C equations
and it is useful as a confirmatory test for decreased eGFR as
determined by serum creatinine-based eGFR (Table 1) (49).

Despite its greater usefulness, cystatin C has not displaced
creatinine for GFR estimation in clinical practice, possibly due
to its higher cost and lower availability.

Clinical Situations Where mGFR Is Needed

In some clinical situations, such as patients with anorexia
nervosa, cirrhosis, obesity, evaluation of living kidney donors,
prescribing nephrotoxic drugs with a narrow therapeutic
window, pharmacokinetic studies of drugs excreted by the
kidney, or any situation in which eGFR is unreliable, it is
reasonable to measure GFR (mGFR), despite the added cost
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and time and resources consuming (7, 50–52). At present,
iothalamate or 51Cr-EDTA or 99Tcm-DTPA urinary clearance
or 99Tcm-DTPA or iohexol plasma clearance are the accurate
methods for determining mGFR (52–55). In patients with large
edema or ascites, urinary clearance should be employed (55).

Iohexol, a low-cost non-toxic non-ionic contrast agent, has
some advantages for the plasma clearance such as simplicity,
low cost, stability, and low interlaboratory variation. Besides
that, it is not radioactive, is excreted almost exclusively by the
kidney, is neither secreted nor reabsorbed at the tubular level, has
low protein binding, and correlates with inulin renal clearance
(56, 57). It is contraindicated in patients with allergy to iodine.

CONCLUSION

From the knowledge that emerges from renal physiology,
laboratory medicine, epidemiology, and biostatistics, have
emerged equations that constitute tools not only for the clinical
care of patients, but also to establish the prevalence of CKD, and
consequently implementing the public health policies aimed to
reduce it.

The inclusion of the automatic calculation of GFR
in the laboratory reports of creatinine determinations
constitutes a useful tool for daily practice, and from
public health perspectives for population screening
for CKD.

CKD–EPI Study equation continues to be the
most used in general practice and from public health
perspective. Recently, the FAS equation emerged as a
promising option to estimate eGFR for all ages (from 2 to
100 years old).

Further improvement in GFR estimating equations will
require development inmore broadly representative populations,
such as diverse racial and ethnic groups, use of multiple filtration
markers, and evaluation using statistical techniques to compare
eGFR to mGFR.
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